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Verification of biological models with Temporal Logic and Timed
Hybrid Petri Nets

Sylvie Troncale, Jean-Paul Comet and Gilles Bernot

Abstract— The Hybrid Functional Petri Nets (HFPN) formal-
ism has already shown its convenience for modelling biological
systems. This class of models have been fruitfully applied in
biology but the remarkable expressiveness of HFPN often leads
to incomplete formal validations. In this paper, we proposea
formal logical framework for Timed Hybrid Petri Nets (THPN) ,
a sub-class of HFPN. We propose an extension of Event Clock
Logic dedicated to THPN and a procedure to convert a THPN
into a real-time automaton. A small biological model shows that
our framework allows us to formally prove properties by a well
suited model-checking procedure.

I. INTRODUCTION

Systems biology aims to a system-level understanding
of the functioning of a biological system like the cell,
taking into account not only molecular phenomena but
also structuration of the cells, communication channels and
exchanges with the outside space. This global aim is now
conceivable thanks to the recent developments of genomic
and postgenomic which enable identification of numerous
genes and proteins. Nevertheless, the precise role of each
actor stays hard to determine experimentally. Then, mathe-
matical modelling is an essential approach to study complex
biological processes. There exist numerous modelling for-
malisms which allow different evaluation techniques: simula-
tion, proof, etc. The Hybrid Functional Petri Nets (HFPN) [1]
formalism offers a maximum of flexibility such that mod-
elling of discrete and continuous processes or definition of
consumed or produced quantity as a function of marking.
This explain why HFPN are well suited for simulation.
Nevertheless, it is also necessary to verify that the global
system satisfies a behavioral property. This verification step
is difficult to perform on a so expressive formalism since
such an expressiveness prevents the application of general
formal or proof methods.

Since usual validation methods turned out to be unsuitable
on HFPN, we propose an original procedure based on works
of David and Alla [2] (Petri nets) and of Raskin and
Schobbens [3] (satisfaction of temporal logic formulas). To
tackle such a validation step, we first reduce the expressive-
ness of models, we focus on a sub-class of HFPN where
functional aspects have been removed: the Timed Hybrid
Petri Nets (THPN).

In this paper, we describe continuous traces of THPN
as a particular automaton, an Event Clock automaton [4],
based on a real time logic, the Event Clock logic [3]. This
step needs to define precisely the continuous models, the
extended Event Clock logic. THPN models can then be
transcripted via the evolution graph and some manipulations
and formulas in terms of Event Clock automata. We then

show how the introduction of such a real time logic can
be helpful in the context of biological modelling. We
study a simplified model of amphibian metamorphosis
regulation [5]. After having constructed the associated Event
Clock automaton, we show that classical approaches of
verification of Event Clock logic formulas can be applied to
prove that the THPN model satisfies a particular temporal
property.

This paper is organized as follows: Section 2 presents
syntax and semantics of our logic. Definitions of a THPN
and an evolution graph are sketched in Section 3. In Section
4, conversion algorithms of an evolution graph into an Event
Clock automaton are detailed. Finally, Section 5 sketches out
a biological example before we discuss our results in Section
6.

II. CONTINUOUS TIME LOGIC

A. Syntax and semantics

We define an extended syntax and semantics of Event
Clock logic [3], where atoms are extended to handle continu-
ous and discrete time executions. We call it Continuous Time
Evolution Logic, CTEL for short. We first define signatures
which specify variables and observable events abstracted by
predicates.

Definition 1 A signature for CTEL is a coupleΣ = (V, Pr)
whereV and Pr are respectively a set of variables and a
set of predicates.

Definition 2 Given a CTEL signatureΣ = (V, Pr), a
continuous-time modelM is defined by a setπ ⊂ Pr× R

+

and a functionµ : (V ∐ R) × R
+ → R (where∐ stands

for the disjoint union) such that for anyr ∈ R, and for
any t ∈ R

+, µ(r, t) = r. The set of models defined on the
signatureΣ is denoted byMod(Σ).

We distinguish two kinds of atoms: instantaneous atomsα

(Definition 3) and atoms (Definition 6).

Definition 3 An instantaneous atomα is an expression of
the form:v ≥ v′, p or their negations, wherev, v′ ∈ (V ∐R)
and p ∈ Pr.

Definition 4 The satisfaction relation |=ti between a
continuous-time modelM and an instantaneous atomα at
a time ti ∈ R

+ is defined as follows:

• M |=ti p iff (p, ti) ∈ π



• M |=ti v ≥ v′ iff µ(v, ti) ≥ µ(v′, ti)
• M |=ti ¬α, iff M 2ti α

An instantaneous atomα can be timed thanks to the use
of two clocks, the history clockxα and the prophecy clock
yα [4]. The value of a history clockxα is the time elapsed
since the last occurrence ofα. The value of a prophecy
clock yα is the time to wait for the next occurrence ofα.
Introduction of the clocksxα andyα allows us to define the
set of terms on the signatureΣ, notedTΣ.

Definition 5 A term on a signatureΣ is either a variable
v ∈ V or a constantr ∈ R or an expression of the formxα
(resp.yα) whereα is an instantaneous atom.

Definition 6 Given a signatureΣ = (V, Pr), an atom is an
expression of the formr ≥ r′, p or their negations, where
r, r′ ∈ TΣ and p ∈ Pr, such that ifr (resp. r′) is of the
form xα or yα, the other termr′ (resp.r) is necessarily an
integer constant.

Definition 7 The set of well formed formulas onΣ, For(Σ),
is defined according to following syntaxic rules [3]. A well
formed formula is composed of atoms, boolean connectives
¬, ∨, ∧, qualitative temporal operators Next (#), Previous
(⊖), Until (U ) and Since (S) and of real-time operators:
predicting and history operators (�, �):

ϕ ::= a|¬ϕ|#ϕ| ⊖ ϕ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|
ϕ1Uϕ2|ϕ1Sϕ2| �∼n α| �∼n α,

where a is an atom,∼∈ {=, <,>,≤,≥}, ϕ, ϕ1, ϕ2 ∈
For(Σ) andn is in N ⊂ R.

Events observed during the execution of a continuous time
model can be expressed by a subset of well formed formulas.

Definition 8 The set of observations on the signatureΣ is
the subsetObs(Σ) of For(Σ) defined as follows : ϕ ::=
a|¬ϕ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2 wherea is an atom,ϕ, ϕ1 andϕ2

are observations.

During a continuous time model execution, observations
are made at different times which define a time sequence.

Definition 9 A time sequenceh is an infinite succession of
timesti which is strictly increasing and divergent.

We now define a functionevalhM which evaluates each
term of a continuous modelM on a time sequenceh.

Definition 10 Given aΣ-modelM and a time sequenceh,
the function which evaluates each termt in the modelM on
the time sequenceh, evalhM : TΣ × |h| → R ∪ {⊥}, where
|h| is the set of times inh is defined as follows :

• evalhM (v, ti) = µ(v, ti) wherev ∈ (V ∐R) andti ∈ R
+

• evalhM (xα, ti) =




ti − tj if ∃tj , 0 ≤ tj < ti| M |=tj α

and ∀tk, tj < tk < ti, M 2tk α

⊥ otherwise





• evalhM (yα, ti) =




tj − ti if ∃tj , tj > ti| M |=tj α

and ∀tk, ti < tk < tj , M 2tk α

⊥ otherwise





Definition 11 The satisfaction relation|=h
ti
⊂ Mod(Σ) ×

For(Σ) whereti ∈ |h|, is defined inductively as follows:
• M |=h

ti
p iff (p, ti) ∈ π

• M |=h
ti
r ≥ r′ iff evalhM (r, ti) ≥ evalhM (r′, ti)

• M |=h
ti
¬ϕ iff M 2

h
ti
ϕ

• M |=h
ti
ϕ1 ∧ ϕ2 iff M |=h

ti
ϕ1 andM |=h

ti
ϕ2

• M |=h
ti

#ϕ iff M |=h
ti+1

ϕ

M |=h
ti
⊖ϕ iff i > 0 andM |=h

ti−1
ϕ

• M |=h
ti

ϕ1Uϕ2 iff ∃tj ≥ ti | M |=h
tj

ϕ2 and
∀tk ∈ [ti, tj [, M |=h

tk
ϕ1

M |=h
ti
ϕ1Sϕ2 iff ∃tj ∈ [0, ti] | M |=h

tj
ϕ2 and

∀tk ∈]tj , ti], M |=h
tk
ϕ1

• M |=h
ti

�∼nϕ iff ∃tj > ti |M |=h
tj

ϕ and
∀tk ∈]ti, tj [,M 2

h
tk
ϕ and ti − tj ∼ n

M |=h
ti

�∼nϕ iff ∃tj ∈ [0, ti[ |M |=h
tj

ϕ and
∀tk ∈]tj , ti[,M 2

h
tk
ϕ and tj − ti ∼ n

B. Discrete timed traces

Continuous time models are difficult to represent in an
abstract formalism manipulable by a computer. We then
focus on discretization of continuous time evolutions. We
first define a satisfaction relation between a continuous time
model and a discrete timed trace.

Definition 12 A timed trace is of the form{(ϕi, ti)}i∈N,
where theϕi are observations andhτ = (ti)i∈N is a time
sequence. The satisfaction relation between a modelM and
a timed traceτ is defined by:M |= τ iff ∀i ∈ N, M |=hτ

ti
ϕi.

We now define the satisfaction relation between timed
traces and a CTEL formulaφ, denoted〈∼.

Definition 13 Given a timed traceτ , a positioni ∈ N and
a CTEL formulaφ, τ satisifesφ at the positioni, noted
(τ, i)〈∼ φ iff ∃M |M |= τ andM |=hτ

ti
φ.

III. FORMALIZATION OF THPN

We first define the THPN models [2], then present how the
evolution of such models can be represented by an evolution
graph.

Definition 14 A Timed Hybrid Petri Net is a 7-tuple
(P , T , ζ, P re, Post,m0, T empo) where:

• P and T are disjoint sets of places and transitions,
• ζ : P∪T → {D,C} called “hybrid function,” indicates

for every node whether it is a discrete node or a
continuous one.
Let TD (resp.PD) and TC (resp.PC ) be the sets of
discrete and continous transitions (resp. places),

• Pre : P × T → R
+ ∪ N is the input incidence

application. If T ∈ TD then Pre(P, T ) ∈ N else
Pre(P, T ) ∈ R

+.



Let T be the set of places preceding the transitionT
andP = {T ∈ T |P ∈ T },

• Post : T × P → R
+ ∪ N is the output incidence

application. If T ∈ TD then Post(T, P ) ∈ N else
Post(T, P ) ∈ R

+.
Let T be the set of places succeeding to the transition
T andP = {T ∈ T |P ∈ T },

• m0 : P → R
+ ∪ N is the initial marking. IfP ∈ PD

thenm0(P ) ∈ N elsem0(P ) ∈ R
+,

• Tempo is a function from the setT to the set of
positive rational numbers. IfT ∈ TD, Tempo(T ) is
a timing associated withT . It is noted delay(T ). If
T ∈ TC , 1

Tempo(T ) represents the maximal firing speed
associated withT . In the sequel, it is notedV (T ).

A. Semantics intuition

A discrete transitionT is enabledif each placePi ∈ T

satisfiesm(Pi) ≥ Pre(Pi, T ). If the transition T stays
enabled during the timedelay(T ), it will be fired at the
end of this delay.Pre(Pi, T ) tokens are then removed from
each placePi ∈ T and Post(T, Pj) tokens are added to
each transitionPj ∈ T . The marking can be sufficient to
allow fewer simultaneous firings. The number of allowed
firings defines theenabling degree. By definition,T ∈ TD

is enabled if its enabling degree is not null.
A continuous transitionT is enabledif each placePi ∈ T

satisfies eitherm(Pi) ≥ Pre(Pi, T ) if Pi is a discrete place,
or m(Pi) > 0 if Pi is a continuous place. A continuous
transition is fired to itsinstantaneous firing speedv(T ) such
that 0 ≤ v(T ) ≤ V (T ). v(T ) corresponds to the maximal
speed a transition can fire according to the current marking.
By definition,T ∈ TC is active if its instantaneous speed
is not null. A flow ofPre(Pi, T )×v(T ) tokens are removed
from each placePi ∈ T and a flow ofPost(T, Pj) × v(T )
tokens are added to each transitionPj ∈ T .

B. Evolution graph

The behavior of a THPN can be represented by an
evolution graph, represented by a Petri net [2]. Each place
corresponds to an IB-state (invariant behavior state) and each
transition is associated with an event (change of marking)
whose occurrence produces a change from one IB-state
to another. Such a transition can only occur if an event
belonging to one of the following types takes place: the
marking of a continuous place becomes zero (C1-event), a
discrete transition fires (D1-event) or the enabling degreeof
a discrete transition changes because of the marking of a
continuous place (D2-event).

Intuitively, the ith transition of the evolution graph, de-
notedTGEi is labelled with the setEvt(TGEi ) of occured
events, with time of the event occurrence and with marking
of all continuous places. IB-states are annoted by marking
of all discrete transitions, by the vector of enabling degrees
and by the vector of instantaneous speed.

For constructing such an evolution graph, two restrictions
are imposed to THPN. First, the marking of each placeP ∈
P must be bounded. This restriction guarantees the algorithm

to end. Secondly, since the evolution graph represents a
deterministic behavior, one has to solve conflicts which occur
when the marking of a place is not sufficient to allow the
different transitions to fire simultaneously. Generally, there
are two ways for solving conflicts.Sharingproposes to share
resources between transitions according to a given schema
(general case: stoichiometric constants are then helpfullfor
determining sharing schema). Andpriority ranks transitions
and gives limited resources according to the ranks (e.g.
catalytic phenomena).

C. Signature

For constructing the Event Clock automaton related to a
THPN, let us first define the signaturesign = (V, Pr) of a
given THPN:

V is the following set of variables.m(P ) represents the
marking ofP ∈ P , v(T ) represents the instantaneous speed
of T ∈ TC and dg(T ) represents the enabling degree of
T ∈ TD,

Pr is the following set of predicates:

• Enable(T ), Act(T ): unary predicates associated with
respectively enabling ofT ∈ TD and activation of
T ∈ TC ,

• Fire(T ), NulMark(P ): unary predicates associated
with respectively a D1-event and a C1-event,

• Th(P, x): binary predicate associated with a D2-event,
(Threshold)

• NoEvt: predicate associated with the first transition of
the evolution graph when no event occurs.

IV. ASSOCIATED EVENT CLOCK AUTOMATON

Let us first recall the definition of an Event Clock automa-
ton [4].

Definition 15 An Event Clock automaton on the signature
sign is a 6-tupleA = (L,L0, At, C, E,F) where :

• L is a finite set of locations andL0 ⊆ L is the subset
of start locations,

• At is a set of atoms,
• C is a set of history or prophecy clocks,
• E is a finite set of edges. An edge is a triplet(l1, ψ, l2)

wherel1 ∈ L is the source location,l2 ∈ L is the target
location, andψ ∈ Obs(sign) describes the state,

• F = {F1, ..., Fn} whereFi ⊆ L is a set of sets of
accepting locations

Definition 16 A trace τ = {(ϕi, ti)}i∈N is recognized
by an Event Clock automatonA = (L,L0, At, C, E,F)
if there exists an infinite accepted computationγ =

l0
ψ0
→ l1

ψ1
→ ...ln

ψn
→ ... where:

• eachli ∈ L and l0 ∈ L0,
• (li, ψi, li+1) ∈ E and (τ, i)〈∼ ψi with ψi ∈ Cl(ϕi)

where the closureCl(ϕi) is the set of sub-formulas of
ϕi,



• for everyFi ∈ F , there exists infinitely many positions
j such thatlj ∈ Fi.

Let us now define the satisfaction relation between an
automaton and a timed traceτ , denoted|≈.

Definition 17 The timed language of an Event Clock au-
tomatonA, denotedL(A), is the set of timed traces recog-
nized byA, L(A) = {τ | A|≈ τ}

We now introduce a procedure to transform an evolution
graph (deduced from a THPN) into an Event Clock
automaton. This procedure is composed of four steps, the
first and the second one constructing the set of locations,
the third one determining the initial and accepting locations
and the fourth one constructing edges.

1- From IB-states to locations:Each IB-state of the evo-
lution graph gives a location of the Event Clock automaton.
With each of these locations we associate an observation
φ1(IBi) describing the THPN state during the whole time
of the IB-state numberedi. φ1(IBi) has the following form,
where val associates with a variable its current value and
where I(TGE)i+1

i corresponds to the interval bounded by
the value of the continuous marking at the transitionsTGEi
andTGEi+1 .

φ1(IBi) ≡ ∧

























∧

P∈PD

(m(P ) = val(m(P )))

∧

T∈TC

(v(T ) = val(v(T )))

∧

T∈TD

(dg(T ) = val(dg(T ))

∧

P∈PC

(m(P ) ∈ I(TGE)i+1
i )

























2- From transitions to locations: Each transition of the
evolution graph also gives a location of the Event Clock
automaton. With each of these locations we associate an
observationφ2(T

GE
i ) describing the THPN state when en-

tering into the IB-state numberedi. φ2(T
GE
i ) has then the

following form, where val associates with a variable its
current value. Note thatxle represents the time elapsed since
the last event occurs. This last event can be eitherNoEvt,
Fire(T ), NulMark(P ) or Th(P, x) and∆t is the timing
associated with the transitionTGEi .

φ2(T
GE
i ) ≡ ∧





























∧

IBi∈T
GE
i

φ1(IBi)

∧

e∈Evt(T )

e

∧

P∈PC

(m(P ) = val(m(P )))

∆t=evt time
∧

le∈Evt(T )

(xle = ∆t)





























3- Start and accepting locations: The start location
is the location corresponding to the first transitionTGE0 .
The accepting locations are determined according if the
evolution graph ends. In case of deadlock, the accepting

location is the location corresponding to the last IB-state. In
case of loopback (cycle), each location which corresponds
to a transition (TGE) or to an IB-state involved in the
loopback is an accepting location.

4- Edges:There is an edge between two locations if there is
an arc between the corresponding IB-states or transitions in
the evolution graph. Moreover, each location obtained from
an IB-state loops to model the time of the IB-state. Finally,
an edge outgoing from a locationl is labelled by the formula
of the locationl.

V. BIOLOGICAL ILLUSTRATTION

Hindlimb growth during amphibian metamorphosis is
induced by triggering regulations responsible for cellular
cycle activation. Such regulations are controlled by thyroid
hormones [5]. The active form of thyroid hormone (TH),
denoted T3 is produced from the inactive form T4 by the
enzymatic action of the deiodinase of type 2, denoted D2 [6]:
D2 + T 4 → T 3 +D2.

A. THPN model and evolution graph

Each thyroid hormone (T3 and T4) as well as the enzyme
D2 are modelled by a continuous place representing their
molecular concentrations (left part of Figure 1). Since the
enzymatic reaction is a continuous phenomenon, the reac-
tion allowing D2 to transform T4 into T3 is modelled by
the continuous transitionT2. Since this reaction does not
consume D2, a test arc (dotted arc) is used. Parameters are
estimated from known kinetics of T3, T4 [7] and D2 [6].

The hindlimb growth is abstracted by the number of cells,
which is represented by a discrete place (C). Initially, there
is a unique cell. The discrete transitionT1 simulates cellular
proliferation which occurs after mitosis time (delay1 onT1).

The dynamic of the previous THPN model can be ex-
tracted by constructing the evolution graph (right part of
Figure 1). Only two sets of events occur: at the timet = 2
(∆t = 2) of the THPN execution, the continuous place T3
reaches the threshold of6.0 enabling the discrete transition
T1 to fire and one time unit later (∆t = 1), two events
simultaneously occur: the discrete transitionT1 fires and the
continuous place T4 becomes empty, leading to a deadlock
of the system.

B. Automaton construction

The Event Clock automatonAM is presented in Figure 2.
It is easy to observe that traces ofAM correspond to the
execution of the THPN.

C. Proof of a property

Amound different kinds of properties, we focus here on
dynamics of the cellular cycle. In this section, we consider
the following property: at a moment, a minimum of three
time units is necessary before the enzymatic reaction stops.
This biological property enables biologists to estimate time
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T1
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(3.0; 4.0; 6.0)

(9.0; 4.0; 0.0)

∆t = 2

∆t = 1

T1

v(T2)

m(T4, D2, T3)
m(C)

dg(T1)

Fig. 1. The THPN of cellular cycle activation in amphibian metamorphosis
and its evolution graph.

l0 l1 l2

l5 l4 l3
xT h(T3,6) = 1∧

dg(T1) = 0∧

v(T2) = 0

dg(T1) = 1∧

v(T2) = 3∧

m(C) = 1

∧F ire(T1)∧

ϕ3 ∧ NulMark(T4)

m(C) = 2∧

v(T2) = 0 ∧ dg(T1) = 0

m(C) = 1∧

v(T2) = 3∧

dg(T1) = 0

ϕ2 ∧ T h(T 3, 6)∧

∧dg(T1) = 1

dg(T1) = 0

v(T2) = 3∧

ϕ1 ∧ NoEvt∧

xNoEvt = 2 ∧ v(T2) = 3

Fig. 2. Event Clock automaton of the THPN model, denotedAM . ϕ1 ≡

(m(C) = 1)∧(m(T4) = 9)∧(m(D2) = 4)∧(m(T3) = 0), ϕ2 ≡

(m(C) = 1)∧ (m(T4) = 3)∧ (m(D2) = 4)∧ (m(T3) = 6) and
ϕ3 ≡ (m(C) = 2)∧(m(T4) = 0)∧(m(D2) = 4)∧(m(T3) = 3)

of the metamorphosis end. It can be translated into a CTEL
formulaφ:

φ ≡ ⋄ �≥3 (v(T2) = 0) ≡ ¬2¬ �≥3 (v(T2) = 0)

where⋄ means eventually and2 means always. The Event
Clock automaton associated with the negation of the studied
property,A¬φ, is then constructed by using the procedure
detailed in [3], see Figure 3. Traces ofA¬φ represent the set
of timed traces which satisfy¬φ.

The product automatonAp = AM × A¬φ is drawn in
Figure 4 where only accepted computations and relevant
labels are indicated on edges.

The language of the product automatonAp can be proved
to be empty by constructing its region automaton as in [3],
[8]. Intuitivelly, the language of the product automaton is
empty if one of its traces passes through an edge labelled
by (v(T2) = 0) after three time units. In fact, the history
clocksxNoEvt andxTh(T3,6) (dashed box on Figure 4) count
elapsed time. The time constraints related to these clocks
indicate that three time units elapse when the edge label
(v(T2) = 0) is recognized by the automaton. It proves that
the Ap language is empty. The Petri net then satisfies the
propertyφ, i.e. at a moment of the biological process, more
than three time units will be required to observe the end of
the enzymatic reaction.

VI. DISCUSSION

Hybrid Functional Petri Nets [1] constitute a powerfull
framework to define formal models of complex biological
systems. Many rather large and complex systems have al-
ready been modelled using HFPN [9]. Unfortunately,func-
tions (the “F” of HFPN) offer such an expressive power
that they are the main obstacle to performformal proofson
models defined using HFPN. Other more restricted logical
frameworks without functions and generally without explicit
quantitative time [10] are dedicated to precise aspects of
biological systems (such as genetic regulatory networks).
This kind of formalism offers automated proof procedures.
Unfortunately, when defining formal models of biological
systems, we often need explicit quantitative time and some
functions in order to fully address the biological problem
and express the biological questions in logical formulas.

Our (long term) motivation is consequently to offer au-
tomated proof procedures for a significant sub-framework
of HFPN. Transitions and functions in HFPN being often
continuous and quantitative, the model checking procedure
of [3] based on Event Clock Logic and products of automata
is promisingw.r.t our motivation. So, the work described in
this article is a first step toward our aim: it introduces a small
extension of Event Clock Logic and a compatible translation
of THPN models into automata, which makes it possible to
perform automated reasonings on THPN models.

Future works in this vein include the development of a
complete model checking procedure, extended and exhaus-
tive definition of the set of biologically sensible strategies
to translate a THPN into an automaton, and introduction of
functions. For each of these three points, the main difficulties
are the following.

To develop a complete model checking procedure compat-
ible with our extension of Event Clock logic, it is necessary
to accept product transitions labeled by different formulas
provided that the intersection of their domain is not empty.

The construction of evolution graph depends on the reso-
lution of conflicts as mentioned in section 3. Theoretically,
this could lead to an infinite set of deduced automata, except
that biologically, when a particular conflict is solved using a
given rule, this rule is deduced from biochemical knowledge
and has to be reused at each occurrence of this conflict.

Introduction of functions is the truly hard question. Firstof
all, functions may hide interactions which are not shown in
the graph, and this should deeply influence the construction
of the automaton. Moreover, HFPN allow any form of
mathematical functions and obviously, to maintain formal
verification capabilities, the form of mathematical functions
has to be carefully restricted.

Our approach based on Event Clock logic gives an in-
teresting alternative to hybrid extension of classical model-
checking [11], [12]. Event Clock logic seems to be well
suited to add to THPN more and more sophisticated func-
tions.
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Fig. 3. Event Clock automatonA¬φ reduced to accessible locations
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Fig. 4. Event Clock automatonAM × A¬φ. ϕ ≡ ¬(yv(T2)=0 ≥ 3)


