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Abstract:

This chapter presents how the formal methods can be used to analyse
biological regulatory networks which are at the core of all biological
phenomena as, for example, cell differentiation or temperature control. The
dynamics of such a system, i.e. its semantics, is often described by an ordinary
differential equation system, but has also been abstracted into a discrete
formalism due to R. Thomas. This second description is well adapted to state-
of-the-art measurement techniques in biology, which often provide qualitative
and coarse-grained descriptions of biological regulatory networks. This
formalism permits us to design a formal framework for analysing the dynamics
of biological systems. The verification tools, as model checking, can then be
used not only to verify if the modelling is coherent with known biological
properties, but also to help biologists in the modelling process. Actually, for a
given biological regulatory network, a large class of semantics can be
automatically built and model checking allows the selection of the semantics
which are coherent with the biological requirement, ie. the temporal
specification. This modelling process is illustrated with the well studied
genetic regulatory network controlling immunity in bacteriophage lambda.
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1 Introduction

Biological systems are one of the most fascinatisgects in biology. They control such
diverse dynamics phenomena as temperature contn@rnm-blooded animals; differentiation
of a zygote into the various specialized organsuéis and cells of the mature organism; the
fate of certain viruses, called temperate bacteriopfiagshich upon infection of a bacterial
population can behave in two extremely different waWsst of these infected cells display a
response calleditic: virus multiplies and Kkills cells. But, a fraction ofetitells become
lysogenic bacteriaand carry the viral genome in a dormant form mgkime host immune
towards infection of other virus.

Computational systems biology tries to establishhods and techniques that enable us to
understand such systems as systems, including ribfaiistness, design and manipulation. It
means to understand : the structures and the dynamsystems, methods to control, design
and modify systems to cope with desired propertié® modelling contributes in a major
way to reach these aims by introducing methods ridletstanding, simulating and predicting
the behaviour of the systems. However, the modeltihdiological systems is currently
subject to two major difficulties: the biochemicedaction mechanisms underlying the
interactions of systems are usually not or incomplétetywn and quantitative information on
kinetic parameters or molecular concentration is yaaghilable. Thus the modelling activity
needs an interaction with the experimental biologgdofront models to biological objects.
Consequently as in the design of large computing systevo activities can be distinguished
in the modelling step:

1. build a rigorous model of the system satisfying @alssumed behaviour corresponding
to biological knowledge,
2. design experiments to veridyposteriorithe model predictions.

Here we would like to show that some methods frommater science can be reused in the
context of system biology, as, for example, forma&timds for validation and verification
used for the design of large computing systems.désigning experiments, we just mention
that the test methodda test generation from model theories may be an eficieay to
propose experiments permitting biologists to validaterefute models. For building a
rigorous model, the model checking verification t@particularly suited. In this chapter we
present an application of this formal method to duwjualitative models of biological
regulatory networks.

A biological regulatory network describes interactidmetween the biological entities,
often macromolecules or genes, of a given systeis statically represented by an interaction
graph whose vertices abstract biological entitiesand their interactions. For describing the
evolution of the system, the concentration level atheentity is represented by a value
associated to the corresponding vertex. The tempuoddliteon of these levels constitutes the
dynamics of the system.

Ordinary differential equation systems have beentssd for describing the dynamics of
networks. They are powerful tools particularly to moatetabolic processe83]. However,
due to the non-linearity of biological regulationsegh differential equation systems cannot
often be solved analytically. They can be solved nurablyito any desired precision, but this
precision itself may be misleading because the vabdigbe parameters and the shape of
interactions often have to be guessed for lack oéenxgental data. This remark led Thomas
to simplify the models: he introduced in the 70's alBan approach to capture the qualitative
nature of the dynamics and he proved its usefulnesshe context of immunity in
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bacteriophages3D, 27]. Later on, he generalized his formalism to multi-ealulevels of
concentration (the so called multi-valued logic @eneralized logical approact82) since
the Boolean idealization may be too caricatured toectly model biological systems. It has
been proved that this qualitative description allows tbpresentation of the essential
gualitative features of an ordinary differential equatsystem provided that the differential
equations are piece-wise line@f]. The underlying parameters of the qualitative dpson
can be deduced from the kinetic parameters of the cmssystem but can take only a
finite number of values. Consequently, all possihlaligative features of the system can be
reduced to a finite number of modeks. parameterisations.

Certainly the most important concepts of the geneardlibgical analysis are those of
positive and negative feedback circuits. If an ertyds to favour (resp. decrease) its own
productionvia the feedback circuit, the circuit is said positivesfrenegative). It has been
least one positive circuit is necessary to generathi-stationarity whereas at least one
negative circuit is necessary to obtain a stablellascy behaviour. These concepts are
especially important since when modelling biologicalsteyns, differentiation and
homeostasis have often to be taken into consideratiorsuch cases, these biological
constraints can reduce drastically the set of modelsonsider. These properties can be
reinforced by introducing some more complex prapsrbn the dynamics of the system
extracted from the biological knowledge or hypothesebecomes necessary to construct
models which are coherent not only with the previousnddions of multi-
stationarity/homeostatis but also with the additiona¢ Formal methods from computer
science should be able to help modeller to automatipaitiorm this verification17, 3] and
to select exhaustively all suitable models.

The chapter is organized as follows. Secfiantroduces the formalism due to Thomas for
modelling the dynamics of a biological regulatory watk. The resulting dynamics
corresponds to a Kripke structure which can be dediwasily from the interaction graph.
Section3 describes the link between this transition systentlamdlynamics obtained with the
classical modelling using piece-wise linear ordinaiffecential equation systems. Sectidn
explains how formal methods can improve the modelliragess of regulatory networks. The
temporal properties have first to be translated atiemporal specification language. Then
one has to answer automatically the question: does a gieelel satisfy the given temporal
specifications ? Model checking makes this stagenaatio and its principle is also presented
in this section. Sectiob illustrates the use of model checking to model wedl studied
genetic regulatory network of temperate bacteriopHagédda rapidly described before. A
model of this system has already been proposedhipsffily and Thomas in6]. We show
that our approach, using model checking, automéficalects this model as well as other
models satisfying the same criteria of validation.

2 Qualitative dynamics of biological regulatory networks

The multi-valued modelling of Thomas is able to esent the qualitative dynamics of
biological regulatory networks whose entities can rbelecules, macromolecules, cells,
organs, or organisms, if no societies. In fact,sgitems whose regulations have a sigmoid
shape can be modelled in this formalism. The reguiatof genetic regulatory networks have
almost always a sigmoidal nature, that explains why finimalism has been introduced in
this context and why its main application domain remdhe genetic regulatory networks. In
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such systems, the concentration of a protein encogeddeneu may activate or inhibit the
synthesis of proteins encoded by other genes di (tiggire 1).

protein

+
DNA | genew P, I I !
I 1 1 — ) I gone © 1
protein ¢

Figure 1. A genetic regulatory network. The ganeynthesizes a protein
which activates the expression of gerend itself by binding the promotelPg
and P, respectively. In turn, the protein of gemenhibits the expression of
geneu when it bindsP,. Then, the arrow from a gene to its protein reprissen
the transcription and translation processes and tloevdrom a protein to a
promoter abstracts the diffusion and the fixatiothef protein on the promoter.

If the protein ofu activates (resp. inhibits) the expression of aegernwe said thau is a
positive (resp. negative) regulatorwoflin such situation an increasing of the concentnatio
the protein encoded hyinduces an increasing of the rate of synthesis optbiin encoded
by v. Generally, the relation between the concentraticam refgulator and the rate of synthesis
of its target is, as we have seen before, sigmolakn the sigmoid is steep, as in figare
(@), u has a little effect orv if it is below the concentration threshold, and at higher
concentration a plateau is reached representingnthemal rate of synthesis efunder the
effect ofu. Naturally, for an negative regulator, the sigmoiddsrdasing.

rate of svothesis of v
A

concentration of o

ngr

rate of aynthesis of w
A

concentration of u

(a)

(b] | | gualitative lovels of
0 1 2

Figure 2: (a) Sigmoid relations between the conceatraif u and the rate of
synthesis o and itself. Asu is an activator of and itself, see figurg, both
sigmoids are increasing. (b) Resulting qualitativele ofu.
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This section presents successively how the regulatansbhe summarized into a regulatory
graph corresponding to the static part of the modeltimgn introduces the parameters which
encode the effects of regulators on their targetdlipossible situations, and finally presents
how the dynamics can be deduced from these paresnete

2.1 Biological regulatory graphs

To formally define the static part of biological regtary networks, we use labelled directed
graphs. Vertices represent the biological entitfedb® network and arcs their regulations.

Definition 1 [Biological regulatory graph] A biological regulatory graphs a labelled
directed graph G=(V,E) where
« each vertex v of V, calladariable is provided with @oundaryb,JIN less or equal to
the out-degree of vin G.
- each arc u- v of E is labelled with a couplé.,aw) where §, is an integer between
1 and K, called qualitative thresholdand wherea/{+,-} is the sign of the
regulation.
Moreover it is required that for any variable u with » 0, O i){1,2,... b}, there exists a
successor v of u such that i.

In a biological regulatory grapB, the set of the regulators of a variableorresponds to the
set of its predecessors @) denoted byG (v), and the set of its targets corresponds to the set
of its successors B, denoted byG'(v). Each regulation - v is labelled by a sigoy, which
indicates ifu is an activator or an inhibitor @f and by a qualitative threshalgd. Thresholdg
are integers and do not correspond to biological tltdsCIR, most often difficult to
measure, but they give the order of the contindbresholds: it,,= i then the corresponding
continuous threshol@y, is thei" lowest threshold among®{, | vOG'(u)}. That explains the
requirement on qualitative thresholds of the prevideBnition which implies thab, is the
number of different thresholds “outgoing” from

Figure3-(a) gives an example of biological regulatory gragticlv can be deduced from the
genetic regulatory networks described in figlreFigure 2 assumes thaéy,< 6,, and
consequently,, = 1 andt,, = 2.

(L4)
TN L@, 1) | (1,1 f2.1)
c‘:z,+:|Cu . )
w Tl ‘ ‘
a.) 00,00 ] (L, 0)[(2.0)
(a) (b) 0 fuw 1 fux 2 ¢

Figure 3: (a) Biological regulatory graph deduceahfrthe genetic regulatory
network of figurel. (b) States of the biological regulatory graph.
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Obviously concentration levels are associated tabées. For describing the evolution of the

concentration level of each variable, it is necgssarknow which regulators have an effect

on the variable. Only the position of the regulatoncentration with regard to their thresholds
is sufficient. The concentrations are then discrdtaecording to thresholds and each variable
can take a finite number of values called abstractitqtiak levels. For example, in figug

(b), the variables has three different behaviours with regard to rtgdts:

« In the first region (the concentration wfis less thar®,,), u acts neither ow nor on
itself.

« In the second region (the concentratiorua$ betweerf,, and,,), u acts onv but it
still not act on itself.

- In the last region (the concentrationwfs greater tha®,,), u acts both orv and on
itself.

Three qualitative levels emerge, 0, 1 and 2, coording to the three previous regions and
constitute the only relevant information from a quéirea point of view. More generally, a
variablev can takeb,+1 qualitative levels, from 0 to,, and the qualitative leve] means that

v acts on all targets' such thatt,y <q. A state of the system is then defined as a vector
constituted by qualitative levels of variables.

Definition 2 [Qualitative state] Let G=(V,E) be a biological regulatory graph.qualitative
stateof G is a vector qfqg,).ov such that for all 41V, q{0,1,...,b}. The set Q of states of G
is then defined by QByov {0,1,...b/}.

In the sequel, we write = | for denotingq, = | if it does not cause confusion. FigB€b)
shows the possible states of the biological regojagoaph of figure3-(a).

2.2 Models of biological regulatory graphs

Remember that the sigmoid nature of a regulation v leads to distinguish two different
situations: ifu = t,,, then the regulation is active anduik t,,, it is not. We said that is a
resourceof v whenu induces an increasing of

 if the regulatioru- v is positive,u is a resource of when the regulation is active,
- if the regulatioru- v is negativey is a resource of when the regulation is not active.

From the point of view of resources, the absencenahhibitor acts as the presence of an
activator.

Definition 3 [Resources] Let G=(V,E) be a biological regulatory graph,JV and qIQ. The
setw,(q) of resource®f v at the state q is the subset of\pdefined by:
w(q)={udG (V) | (qu = twwanday, = +) or (qu < tyy anda, = -)}.

At the state, the evolution of variable depends on its resourcasq). It remains to define
in which direction evolvey at the stat&. The parameteK, ), called the attractor of
when the resources ai®(q), denotes the level towards whiels attracted:

« if gy <Ky(g thenvtends to increase,
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« if gy =Ky thenv does not evolve and

« if gqv> Ky (g then ofv tends to decrease.

Different values for these parameters are possiluerencallmodelof a biological regulatory
graph, a possible instantiation of these parameters.

Definition 4 [Model of a biological regulatory graphlet G=(V,E) be a regulatory graph. A
modelof G, denoted M(G) by abuse of notation, is a familnatural numbers |4, indexed
by the set of couples @), such that

« vV,
o wOG(v),
o KV,(,O < t)\/.

It is often additionally required that:
Kvw <Ky forall viOV, and for all w,w' O G (v) such thato [ ' 1)

These constraints, called Snoussi's constraintseimegmainder, mean that the more a variable
has resources the greater is the level towards whishattracted. In other words, neither the

presence of an activator nor the absence of an iohilsiin induce a decrease of the

considered target (see the following section foe tlmathematical grounds of these

constraints). This property, as well as signs ajulations, can often be deduced from

biological knowledge and when it can be used, thalbmr of models to consider for a given

biological regulatory graph decreases drastically.

Model u v Attractors Tendencies
Ku,{} =0 0 0 Ku,{v} =2 Kv,{} =0 7 -
Kufu = 2 0 1 Kug = 0 Kvg = o| - N
Ku,{v} =0 1 0 Ku,{v} =2 KV,{U} =1 7 7
Kufum = 2 11 Kug = 0 Kufy = 4 -
Kvg =0 2 0 |Kyww =2| Ky = - 7
Kyqg =1 2 1 Ky =2 Ky =1f =~

Table 1: One possible model for the biological regmatraph of figure3.
The table gives for each state the correspondingcaédirs and tendencies
deduced from the model.

ModelsM(G) of the biological regulatory graph of figure 3 are all possible instantiations of
six parametersKy g, Ky, Kvg, Kvus Ky, Kv{uv. Becausdy, = 1 (resphb, = 2) each
Ky,... (resp.Ky,..) can take 2 (resp. 3) different values. $o 2=324 different models can be
a priori associated t€, but only 60 of them respect the Snoussi's conssralrablel gives
the tendencies of variables resulting from such deho

More generally there arflyov (bv+1)2|G_(v)| models associated to a biological regulatory
graph G. This number increases exponentially with the numifepredecessors of each
variable and even if static constraints on pararaedeg used, as the Snoussi's constraints, it
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remains huge. Moreover, since parameiteese most often not measurabievivo, additional
properties deduced from biological experiments areded to eliminate the models whose
dynamics do not satisfy them.

2.3 Dynamics of models

The classical approach to describe the dynamics of @l define the state of the system
at timet +1 from its state at time One possibility is to consider that the next sigdirectly

the attractor of the current stateqifs the current state the&n= (Ky (ghov is the next one

and we said that there is a transition frqito ' (figure 5-(a)). This description raises serious
problems for its application to biological systems:

1. From any initial state, the system will follow a lligefined path, without any
branching or possibility of choice whereas biologgyestems typically include choices
among several pathways (as illustrated for exaniptethe numerous different
pathways leading to various cell lines from a zyghteng embryonic development).

2. Suppose thatis a gene which can take two valubg< 1) and that the current state is
g. If gy = 0, thenK,,q = 1 means that resourceswinduce the production of the

corresponding protein. This protein will appear afigime delay corresponding, for
example, to the time of diffusion of its regulatofigyre 4). Similarly the same

phenomenon is observed whay= 1 andKy g, (g = O with ana priori different delay.

However, whenq differs from g = (Kyug)vov by at least two components, the

corresponding variables change simultaneously @thsiirow in figures-(a)). This
synchronous description thus assumes that timgslal@ equal which is unlikely.

gu =1 g =0
Ko oslg) =1
I{_‘!:'..JJIJ C;'Tw] o 0 . .—}
ow=0— ] L
At At

Figure 4: Time delays. Genehas a unique regulatar which is an
activator. Initially, bothu andv are absent. Then, protaimppears and

stimulates the expression of(Ky ) = Kv{y = 1). The resulting
protein appears after the del@y, . Finally, the proteiru disappears,
the gener is no more stimulated(  (q,) = Ky, = 0), and the proteim
disappears after the different delAy; .
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3. If the attractor of a variable is sufficiently amfiom its current value, one can have
lav — Kyl > 1. In such cases the qualitative level increadesptly and jumps

several thresholds (dotted arrow in figur€a)). Since the dynamics of the model
abstracts a continuous phenomenon, during a tramsigach variable can pass
through at most one threshold.

These points lead us to introduce the following alyonous description.

Definition 5 [Asynchronous state graphlet G=(V,E) be a biological regulatory graph and
M(G) be a model of G. Thesynchronous state graphM(G) is a directed graph whose set of
vertices is the set Q of states of G, and such tlea¢tis an edge from q to q' if:

- for all variables V1V, g, = q\ = Ky (g Of
« there exist a variablelW such that:
o for any variable &£ v, q,=q' , and

o Ov<Kyu( and g=q+1 or @>Kygyandq=0q -1

In this definition, a state] which has itself as successor, istable steady statef the
asynchronous state graply = Ky (q for all vOV. Otherwise, ifq is a state for whicm

variables tend to evolven (ariablesv such thaty, # K, (), d hasn successors and each of

them differs fromg by only one component corresponding to one of thesariables. Thus,
when time delays are unknown, the asynchronous gtapd contains all the priori possible
transitions. Some of them can be removed when teteeyd are taken into consideration.

Figure5 shows the synchronous and asynchronous dynamite ahodel of tablé. The
attractors are the same in both descriptions but mdiffes: the asynchronous state graph
contains a circuit (0,0» (1,0) - (1,1) - (0,1) - (0,0) which is absent in the synchronous
description.

(a) Synchronous (1y) Asynchronous

I d [
Ty / MEEREN

0 [ I . 0

| p | = | O
|

i i
0 tm.l 1 tuu. 2 0 tmr 1 tuw. 2

Figure 5: Synchronous and asynchronous dynamicsh&model, given in
tablel, of the biological regulatory graph of figuge

3 Differential modelling

We have seen that the asynchronous dynamics is sodeel than the synchronous one for
describing biological regulatory networks. This s&ttproves how this asynchronous
description can be deduced from a discretization pdréicular class of ordinary differential

equation systems classically used for describiotpgical regulatory networks.

10
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3.1 Ordinary differential equation systems

Classically, the dynamic of a biological regulatgnaphG=(V,E) is modelled by ordinary
differential equation system&(, 22, 29], called hereunderlying differential system&DSs
for short) ofG, whose form is

X =fX) - 2%, forallvdlV,
wherex = (x,)yov is a vector, whose componer{SlIR" give the concentrations of variables
The vectorx is called the quantitative state Gf The previous equations define the rate of
change of each concentratigras the difference of the synthesis ffiape) and the degradation
rate Ax, of v. The functionf, expresses how the synthesis ratevoflepends on the
concentrations, of its regulatorai G (v). It can be defined as,

fu(x) =k + z Kuv SGUV(XUaeuv)y
udG (v)
where:
- kOR" andk,OIR™ are kinetic parameters,
- the functions™w gives the effect of a regulator and its targev. This function is
usually a sigmoid depending on the sigp and on the quantitative thresh@gJIR™
of the interaction.

Since the qualitative thresholtd®f G give the order of the continuous threshddsee the
section2.1), it is required that for all target§1G"(u) of u different tharv, 8,y < Buy if tyy < tuy
andBy, > Buy if tu > tuy. By denoting ) the threshold(s,, such thavd G'(u) andtu=l we
then have:

1_p2 1_pb
Bu<By<...<0Oy<By

The sigmoidal functios’w is often approximated by a step function in ordemtake possible

the analytical analysis of the systesiw is then defined as a Boolean function which
indicates ifu is or not a resource of

01 if x, >6

S* (X, 0w)=0 . " and s (X, 6u) =1~ 5* (X, Bu)

L O, |f Xu <euv
Notice that these functions are not defined Xpr= 6,, and that the system becomes a
piecewise linear equation system. Figérgives an example of an UDS of the biological
regulatory graph of figur8.

20+ 35xs57(%,10) + 40xs*(%,,20) - 5% X,
25 x s*(X,,16) - 2% X

B
S

Figure 6: Example of UDS of the biological regulataysaph of figure3.
Parameters aré;, = 20,k,, = 35,k,, = 40,6,, = 10,6,, = 20,A, = 5 for the first
equation andk, = 0, k,, = 25,0,, = 16, and\, = 2 for the second. Notice that
Bu < By since 1 =, <ty =2.

11
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3.2 Discretization map and domains

Since the step functiors8w are not defined fox, = 6y, the differential equation system is not
defined for the statesfor which at least one componegtequals a thresholély, VOG'(v).
Such states are callesingular states Consequently, the properties of the system can be
analysed in theé/]-dimensional phase spa@edefined by

Q= |_| Q, with Q= IR \{8, |VOG'(v)} for all vOV.
vV

Q corresponds to the setm@&gular statesWe are now in position to define tdescretization
mapd: Q - Q byd(x) = (du(x,))vov with, for everywllV, dy: Q, —» Q, defined by

du(x,) = [{Bw | VOG' (V) andByy < xJ}.

This discretization map gives directly the cardinéltlre set of thresholds less than the
concentration of. If d(x,) =1, thenx, is greater than thiesmallest thresholds and less than
others. For allvlG'(u) we havex, > 8, O dy(X) = tw and xy < By O du(X) < tu.
Consequently, for all staté] Q:

S'u(x,,0u) = 10 uld (d(X)).

Then, for allx[@ |, f, can be rewritten as

fu(X) = k,+ G, Kuv- (2)
(d(x))
The infinite set of continuous states whose discretimagivesql]Q is an hyper-rectangular
regionD(q) of Q, calleddomain defined by:

D(q) = |_| DJq,) with Dy(qy)={x0 Qy|du(x,) =q.} for all v(IV.
vV

A domainD(q) is bounded by hyperplanes corresponding to thtdshéor all variablev, if
q,>0 thenBy is the lower bound db,(q) and ifq, < b, thenB»* is the upper bound @.(qy)
(see the figuré).

L

D0,1) | D11y | B2.1)

00,0y | DL | D(2.0)

0 7, A

Figure 7: Domains of the phase sp&ref the UDS of figures (9& = By and6y;
= euv).

12
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3.3 Dynamics of differential equation systems

In a domainD(q), each functiorf, reduces to the constakit} g, (g Kuv (SE€ equation).
The system thus simplifies to a linear and uncoupléegrdntial equation system whose
solution inD(q), starting a&’0D(q), is given by

x(t) = Kv0O) = (K,0O) - X9 e ¥, for allviV,

with ky(x) = f(X)/A, for all xIQ . Functionk, is also reduced to a constakt g, () Kuv)/Av

in D(q), denotedk,(q) by abuse of notation. The stat@) = (k.(q))vov acts as an attractor in
D(q). Indeed, it is easy to verify that (q), x(t) has the following properties:

1. if k(q)ODy(qy) then,x,(t) monotonically converges fromf towardsk,(q) and reaches
Ky(Q) in infinite time. Thus, ik(q)JD(q), x(t) does not leav®(q) and the statg(q) is
the unique stable steady statéifg).

2. if k(q)ODW(qy), then, ifx} < ky(Q) (resp.x. > K«(q)), x(t) monotonically increases
(resp. decreases) fronf until to reach the threshold val@d'*™ (resp.6Y). The
threshold is reached in a finite time K{(q) is different from it. Throughout this
section, we suppose that the parameteanid A are taken such that(q)[@ for all
gUQ. Consequently, ik(g)ID(q), x(t) leaves in a finite timéd(q) by reaching a
threshold hyperplane.

If kK\(Q)UDy(qv), Xu(t) reaches its corresponding threshold at tinggven by

=——In Kv (@) -84 H
Ao Hee@-x0 H

with a = 1 if x) <k(q) anda = 0 if x > k(). If at least two componenkg(t) andx,(t) reach
their thresholds simultaneously, one can deduce xfhabelongs to an at mostV[}1)-
dimensional surface of zero Lebesgue measuil@(q). Therefore, we do not consider this
case and reason now as for almost ex&fp(q).

Suppose that is the smallest value int | Ky,(q)CIDy(qu)}, in other words, suppose that
is the variable whose concentration first leaves dbmain. The componeng(t) reaches

B3 *® at the singular staté given by
xe = 0% and xi=x(t) forall uzv.
At this time, the trajectory exits from the dom&ifq) and enters int®(q’) defined by:

«  Du(q'v) =Dy(qu) for all u # v, since only reached its threshold,
« D«q\) =Dygs+1) if a =1 andD(q\) =Dy(q,-1) if a = 0.

But at the singular staté, the differential equation system is not definedvadl ask.(x").
The linear differential equation system D) is then extended by continuity to the

hyperplanes, = 83 . Thusk(x") is defined, and the trajectory is extended wih golution
of the differential system dd(q') from the new starting poirxt.
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3.4 Discrete and differential modellings ar e coher ent

Let M(G) be a model of a biological regulatory graph(V,E). The UDSs of5 such that :

du(ku(a)) =Kyw(q forallviVandqlQ

are calledunderlying differential systems of M(@Y modelM(G) has UDSs if and only if it
satisfies the Snoussi's constraints (equdt)aince we have:

dy %\, + Z kuv%)\ VE: Ky, for allvlV and w0 G (v)
ullo

and thuswld " implies Y yg, Kuv < Y um * Kuv Which impliesKy < Ky . For example the UDS
of figure6 is an UDS of the model described in Tabld he following propositions show the
coherence between the asynchronous dynamig§®j and the dynamics of its UDSs.

Proposition 1
« Ifthere is an UDS of M(G) such thdflR(q) is a stable steady state, then g is a stable
state of the asynchronous state graph S of M(G).
« Conversely, if q is a stable state of S then, folUdlSs of M(G), there is a stable
steady state in the domair(dp.

Proof. A statex(1D(q) is a stable steady state Xf= k,(q) for all v(IV. That impliesd,(x,) =
d(ky(a)) O av=Kye,q for all vV and thusq is a stable state & Conversely, ig0Q is a

stable state, theq, = Ky, = dlkv(q)) for all vOIV. Thus,k(q)D\(q,) for all vV and
consequentlyk(q)ID(q) is a stable steady state.

We define now théoundaryof a domain as the set of singular states whosendiste the
domain is null.

Proposition 2
« If there is an UDS of M(G) for which there is aj&etory starting in [g) which
reaches directly from (@) the hyperplane separating(§) and an adjacent domain
D(q), then g- @' is a transition of the asynchronous state gr&opbf M(G).
« Conversely, there exist UDSs of M(G) such thatefmrh successor g' of g in S, there
is a trajectory starting in Q) which reaches directly from (§) the hyperplane

separating [g) and Q).

Proof. We have seen in sectich3 that if a trajectory starting alD(q) reaches the
hyperplane separatifig(q) and an adjacent domdbd{(q’), then there is a unique variapieVv
such thatg, # g, and we havey, = g+1 if X) < ky(q) or qv =q~1 if . > Ky(q). Moreover,

k(@) ODW(qy) thusx? < k() iff d(x0) <dy(ky(q)) which is equivalent ta,< Kv,m(q)- Similarly

x> Ky(q) iff d(x0) >dy(k(q)) which is equivalent to, > Kv,my(g)- According to definitiorb, q
- (' Is a transition of.

Now, we prove the second part of the proposition.sitter the UDSs ofM(G) such that
A=A for alluDV and an initial stat&’0D(q). The trajectory starting af describes the part of
the segment connecting to k(g) which belongs td(q).
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Let g be a successor af in S We havek(q)D(q). Let us choose a point of the
boundary ofD(q) belonging to the hyperplane separatid) from the domairD(q’) and
whose only one component equals a threshold. Thectoaies starting at a point of the line
connecting< andk(q) which belongs t®(q), reachx".

We deduce from the previous propositions that allréigeilar stable steady states of an UDS
of M(G) are represented in its asynchronous state dsalgloreover if a trajectory of an UDS
of M(G) passes successively through the domBi(d), D(q'), ..., D(Q") then® - q- — ...

~ q"is a path oS8 Butifq’ -~ g* - ... -~ d"is a path o, it does not mean that there is a
trajectory passing successively through the domaits), D(qY), ..., D(q"). Using the
terminology of [L4], the qualitative modelling is said sound. A graphaanparison between
the asynchronous dynamics of a model and a trajeofane of its UDS is given in figui@

(ﬁ) 1 (b} Xq
K(1,1] “ 51,00 (2.1) ‘
; O L & 1 h‘.<2..[:|’l
f'—'L"u- 1 1{ A|r 6-};71 \ — ) _-;_”_'_ . ..
() : f oL _'_-_/ v g (0,0)
U ol . Ly,
{-] t'{l’.'f_,' 1 f:'l.l;'l'.i. 2 {‘Ju?f {‘Juu

Figure 8: (a) The asynchronous state graph of théehiM(G) of Tablel. (b)
A trajectory of an UDS oM(G). The dotted arrows represent the extensions of
solutions towards the attractors.

Any UDS of a biological regulatory grap@ is an UDS of a model ofs satisfying the
Snoussi's constraints. Thus the trajectories of thatem set of UDSs ofs are summarized by
a finite set of asynchronous state graphs (for tbéogical regulatory graph of figurg we
have 42 different state graphs deduced from thdif€rent models satisfying the Snoussi's
constraints).

3.5 Feedback circuit functionality

Feedback circuits play a major role for the dynarpicsystems since they can generate multi-
stationarity or homeostasis. A positive (resp. nggatircuit is saidunctionalif it generates
multi-stationarity (resp. homeostasis). The functibyaf circuits is strongly related to the
the stationarity of particular singular states amdliscontinuities of the UDS. To deal with
them, we first introduce the differential inclusiorsems.

3.5.1 Differential inclusion systems
To deal with ordinary differential equation systemghwdiscontinuous right-hand sides,

Filippov [9] proposed to extend them to systems of differemmtiglusions. For the regulatory
networks, the UDSs can be extended to the followliffgrential inclusions systems:
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x[OHW(x), for allvOlV, (3)
whereH, is a set-valued function, defined as follow:

« for all regular state, H(X) = {f/(X) — Ay X,}. For all x(OD(q), sincef,(X)/A,= K\(q),
H\(X) can be rewritten ad,(x) = {A,(KW(Q) — X,)}.

« for all singular state,

Hy(x) = co ({AkW(@) —x.) | aIN(Y).

- whereco(E) designs the smallest closed convex set of & gétich is the intersection
of all closed convex sets containiig and whereN(x) is the set of qualitative states
which correspond to domains whose boundary consains

O
, If %,0Q
N(x)= 0Q Dumv,qu=§j“(x“) Xl _ )
0 uv —1ortyy if x4 =8y with vVOIG™ (u)

0

O

«  Obviously we have
H
Hy(x) = Fmin )\v(Kv(Q)—Xv) , max ?\v(KV(Q)‘Xv)E
IN(X) HN(x)

Consider the example of figui For x such thatx, = 8 = 0, andx, > 03, we haveN(x) =
{(1,1), (2,1)} and for these states,(1,1) = {} is included inwy(2,1) = {u} and w,(1,1) =
w(2,1) = {u}. We deduce thaH,(X) = [Au(Ku(1,1) —Xu), Au(Ku(2,1) - x)] and H(X) =
{A(ku(1,1) - xy)}. Intuitively, at the singular state, the regulatioru — v is clearly defined:
S'(Xw,Buw) = 1. This is why the sd#,(x) of the possible derivatives of is single-valued.
However, asx, = 0y, the self regulation ofi remains undefined anid,(x) is a priori not
single-valued: the derivative of, is comprised between the derivatives obtained with
S"(Byu,0uu) = 0 ands’(8,,,0,y) = 1.

An absolutely continuous functior(t) is solution of the system3) in the sense of
Filippov if %, (t) OH\(x(t)) for all vCOV and for almost alt = 0. The qualification "~“for almost
all t = 0" means that the set time-points for which the timmddoes not holds if of measure 0.
In particular, the condition is not satisfied at typ@ints when the solution arrives or leaves a
threshold hyperplane.

We do not analyse the solutions in the sense gigaV in this section (sed], 7] for a
detailed analysis), but the previous formalism willuseful for analysis of the steadiness of
singular states.

3.5.2 Steadiness of singular states

It is not surprising that a staxeregular or singular, is an equilibrium point (in tlemse that
there is a solutiom(t) such thak(t) = x for all t > 0) when @IH,(x) for all v(IV. For a regular
statex(1D(q), we have, as for differential equation systems:

O0H,(x) O OL{ A(ku(a) =x) } O %= K«(Q).

In this casex is a regular stable steady state. For a singular stat@clusion can be written
as an inequality:
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0OHy(X) = min Mke(@-x)<0< max Avlko(@—x)

dIN(X) dIN(X)
< min Kv(Q) £ X < max Kv(0)
GIN(x) IN(X)

and ifx,[Q , the inequality becomes strict:
OOHv(X) = min Kv(d) <X < max Kv(0Q)
AIN(x) GIN(x)
because,(q)[Q , for all gqCIN(X). Among all singular equilibrium points, those fohiash we
have migony KW(d) = X = Maxon) KAL) for x, O Q,, aresingular steady statg24, 7].
Figure 9 shows a graphical representation of the conditfonghe steadiness of singular
states.

Proposition 3 Let x be a singular state and v a variable. If &Ir uJG (v) x, # 6y, then
Ky(Q) is constant for all QIN(X).

Proof. For alluJG (v) we havex,[@  or x, = 8y # 8y with VOG'(u). In the first case, it is
evident thaty, = g\, for all g andq' in N(x). In the second case, for glandq' in N(x), g, and
gy belong to {uw-1ltw} and ty # t,. Thenq, and q, are on the same side af.
Consequently, for atf andq' in N(x) we havew,(q)=w\/(q’) which impliesk(q)=k(q).

&y Iy
w({1,11 _(LOJw(2,1) wi1,1) rR(1L,0)s(2,1)
PR A I 4620 "/\\ A -t (2,0)
B |- £ D
O?:‘u = e _,_'___,-r"’ 0?:’;‘1 \\ .______..-- - "
= .“-"'"""""' !f.f_ﬂ_ﬂ:l ¥ ) ) _'____,_/
" ri0.1) -
Loy sl
(&] !:‘)'r.r.'r: '9 T4 (b } E)'u. ir ﬂu T

Figure 9: Equilibrium points and their steadinesseyaegions, a rectangle in
(a) and a segment in (b), correspond to the Cantgsaduct¥(X)= [Minginey)
Ku(d), Mmaxyone K u(@)] % [Mingone KW(d), MaXone KW(d)] for a singular state.

In (@) x = (Buv,6\vy) is an equilibrium point(@ (x)) and since all variables are
singular, it is steady. In (b) the singular statsush thatx, > 8,, andx, = 6y,
and it is not an equilibrium poink@ (x)).

3.5.3 Circuit characteristic states

Definition 6 [Circuit] Let G=(V,E) be a biological regulatory graph. A aiit of G is a
finite sequence of distinct elements of V, denotedv(\,,...,\, such that y - v;[JE and y
- VisnJE for all iti{1,...,n—1}.

In the sequel, €} denotes the set of variables of a circGitandi+1 (resp.i-1) is always
computed modulo: vi+; (resp.vi-1) denotes the successor (resp. predecessuor)ro€C. Two
circuits C and C' are disjointed if they have no variable in common.alrpedagogical
objective, we focus here on the properties of glsinircuit, but all results can be extended to
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a union of disjointed circuit2f]. Moreover we take into consideration only regubator
graphs where for any variable the out-thresholdslstenct @, = |G"(v)|, O vOV).

A singular statex is saidcharacteristicof a circuitC = vy,va,... v, if the concentratiomy, of
each variable; of the circuit is equal to the threshdlg,,., and if the concentrations of other
variables are regulax,[@ , (0 uCl{ C}.

Proposition 4 A singular steady state is a characteristic stata aircuit of the biological
regulatory graph G.

Proof. Letx be a singular state and=f{v | x,[Q } be the set of variables equal to a threshold
at the state. If x is steady, we have for alllS :

min Kv(Q) < X% < max Kv(Q).
dIN(X) IN(x)

According to the propositioR, if for all uJG (v) we havex, # 6y, then migony Kv(q) =

maxgon) Kv(d) andx is not steady. Thug has at least one predecessa@uch thatx, = 6y,

which implies thauJS. Moreover, becausky # 8,, for all vVOG'(u), the successor of u is

the only one such thag = 6,,. Each variable of S has then a unique predecessan S such
thatx, = O,

Now, we prove that all the steady singular stagashe identified in the qualitative modelling.

Proposition 5 Let G be a biological regulatory graph containing mcait C = vy,...,\.
Consider a UDS of a model M(G) and a characteristate x of C. Let[dN(X). If x is steady,
then M(G) is such that

Kv,eafq) = Qv for all vOJ{ C}

Proof. Let vOJ{C}. Since x is characteristic ofC, we havex,[[Q ,. If x is steady, then
MiNgon KW(d) = % = MaXone KW(g). That means that,(q) is constant for alCIN(x) and we

haved,(x,) = d\(k\(q)) which is equivalent ta, = Ky (-

Let vi{ C}. As x is characteristic oF, vi-; is the unique predecessonpbuch thak,,_, =
Byv,_vi- Thus,wy(q) \ wy(d) equals {} or {v-1} for all g andq' in N(X). Moreover there is at
least one statgIN(x) such that,,_, = t,,_;; and another one such thgt , =ty,_,,—1. Thus,
there is a statg"0N(x) such thawi1[® ;(q") and a state with vi4[d (q"). We deduce that
for all gON(), (@)T{Vi-1} = wy(q") andw(@\{vi-1} = wy(q). SO Maxne Ky(@) = Ky(d")
and miRonw Ky (9) = Ky(d). Sincexy; = By, 4, if X is steady, we have for &lIN(x):

Ky(d) <Oy, < Kvi(q+) = dy(Ky(q)) <Byy,, < dvi(Kvi(q+))
K@) < tivier Ky oy @)
Kviay@\vi-t < tivier < Ky @) 0 {vi-g)
Definition 7 [Quasi-characteristic qualitative statespt G=(V,E) be a biological regulatory

graph containing a circuit G v,...,\. A state gIQ is quasi-characteristic of C if,0= tyy,,
for all viJ{C}.
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The quasi-characteristic states are useful to lodaesingular characteristic states of the
uUDS.

Proposition 6 Let G be a biological regulatory graph containingiecuit C = vy,...,\, and a
qguasi-qualitative characteristic state g of C. If aodel M(G) satisfies the Snoussi's
constraints and if

{Kv‘w(q) =q for all vO{ C} @)

Kv.a@\vi-g < twvina < Kvoy@ogv-gp  forallit{l,...,n}
then, for all the UDSs of M(G), there exists a unigteady characteristic state x of C such
that d,(x,) = qu for all uZ{C}.

As the proof is quite similar to the previous one, tnsitted.

The previous proposition makes easy the determinatioall steady singular states
underlying of a qualitative model. Let us consider ifstance the modé¥(G) of Tablel.
The corresponding biological regulatory graplifFigure3-(a)) contains two circuit = u,v
andC? = u. The unique quasi-characteristic stat€bfs (tu,tw). It satisfies

Kuau(tustv)\vp < tov = 1S Ky oy(tywtvy) 0 (v and  Kyg <tw=1sKygy.

Indeed the first inequality is verified becausgtu,tv) = {}, Kug = 0 andKy;y = 2, the
second is also verified sindg,; = 0 andK,;,; = 1. Consequently, the characteristic state
(Buv,6u) is steady in all the UDSs 84(G).

For circuitC?, there are two quasi-characteristic statieg0j and (., 1).

« The first one, t(,,,0), does not satisfy
KU‘(Du(tuu,O)\{ up < tw=2s< KU,Q}u(tuva) O {u} and KvaW(tuuyO) =0.

sincew,(2,1) = {u} and K = 1. Thus there is not any steady characteristic sfate
C? such thak, < 6,,.

+ The second quasi-characteristic statg,1(), satisfies
Kuaytuu i < tuu= 2= Kyayty,1) 0 {up @ndKy 1) = 1.

sincew/(2,1) = {u}, Kyqy = 1,(2,1) = {u}, Kug = 0 andKy¢y = 2. For all UDSs of
M(G) there is a unique steady characteristic stateC? such thak, > 6,..

The detected singular states are represented insymclaonous state graph 8f(G) in
figure 10.

19



Formal methods for regulatory networks A. Richard? .JComet and G. Bernot

| 4= | O
R
0
0 fuo 1w 2 “

Figure 10: Representation of the steady singuléesta model of Tablé.

3.5.4 Circuit functionality

Each variable of a feedback circuit has an influesrcés target but also an indirect effect on
all following variables including itself. A circuit isagl positive (resp. negative) if each
variable has a positive (resp. negative) influencetself. The sign of a circuit is determined
by the number of inhibitions: if it is odd, the cirtis negative and otherwise, the circuit is
positive. Negative and positive circuits have differtgpical behaviours.

« In a negative circuit, a high level of a variable temolsmake decrease itself and
conversely. Thus the circuit makes the level of eazmimable to tend to (or oscillate
around) an equilibrium concentration. It generatedlesteaoscillation behaviour
corresponding to homeostasis in biology.

- In a positive circuit, a high (resp. low) level ofvariable tends to make it increase
(resp. decrease). Thus each variable stays eitlzeloav or high concentration and the
positive circuit generates multi-stationarity cor@sging to differentiation in biology.

A circuit which presents a typical behaviour is saidctional. Several authors have proved
that at least one positive circuit is necessary tegde multi-stationarity whereas at least one
negative circuit is necessary to obtain a stablelatmiy behaviour18, 23, 6, 5, 25]. Snoussi
and Thomas realized that when a characteristic satteady, the corresponding circuit is
functional R4]. In the qualitative formalism, the circuit funatiality is then defined as
follow.

Definition 8 [Functional circuit] Let M(G) be a model of a biological regulatory gra@
containing a circuit C. If there is a quasi-charaagtic state g of C satisfying the constraint
(4) then C is functional.

We deduce from the propositi@that if a circuitC is functional, there is, for all underlying
differential systems, a steady characteristic stateC such thak, = dy(qy) for all ut{ C}. In

the model of Tabléd, both circuitsu - u andu - v - u are functional. As a result, multi-
stationarity and homeostasis are present in the pameéng asynchronous state graph (figure
10).

Summing up, homeostasis and/or multi-stationarity dyeamical properties almost
always present in biological systems. Circuit functiityas then useful for modelling such
systems. For example, it has been used to model inynoontrol in lambda phage],
pattern formation during the embryonic developmehtDoosophilae[20, 19] and flower
morphogenesis iArabidopsis thaliand16].
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4 Formal methods

To study the behaviour of the genetic regulatory oétwthe ordinary differential equation
systems are well adapted if all the parameters aliekwewn. Unfortunately they are most
often unknown and are difficultly measuralmhevivo. The discrete approach of Thomas and
co-workers simplifies the problem of determining guitable parameters since the number of
possible models is finite. Indeed finding suitable clasdethose parameters constitutes a
major issue of the modelling activity. Even if theo88si's constraints on parameters are used,
the number of remaining models is too large to anatheen by hand. Then biological
knowledge or hypotheses on the behaviour of the systa be used as an indirect criterion
to constrain the parameters. For example homesstég@sp. multi-stationarity) is
experimentally observable and it indicates that a tneggéresp. positive) feedback circuit is
functional, this functionality leading to some consti®ion the parameters (see sec8hn

To go further, conditions of multi-stationarity andnimeostasis can be reinforced by
introducing other conditions on the dynamics of slgetem. The available knowledge on the
evolution of the system, as temporal properties, bantaken into consideration for
constraining the values of parameters. Among dthbkle models only a part of them are
coherent with these temporal properties. Since numemmeels have to be checked against
those properties, a formal language is needed forpeautomatically these checkings.

4.1 Temporal logic

The properties as the deadlock can be easily chelbkeexploring the transition system,
calledasynchronous state graph section2. For more complex properties on the dynamics
of the system it is necessary to use a well adafaedal language: a temporal language
which allows the specification of properties alohg execution paths of the transition system.
The step of the specification of the propertiestb@m be distinguished from the specification
of the system since it is not necessary to knowd§eamic structure of the system to be
checked for specifying the properties.

Expressing temporal properties on a transition systeeeds to define the atomic
propositions which depends of the considered regylapaphG=(V,E). Generally the set of
atomic propositions is denoted BY. The subset oAP containing all the atomic propositions
which are true in a statg is given by the labelling functido

L@={(v=a) | vOV}

where v = q,) signifies that the variable has the concentration levgl The pair composed
of a transition system and a labelling function isechl Kripke structure.

Execution traces of the transition system model intplia discrete time: if an execution
passes from the statgy to s;, the instant associated to the statefollows the one
corresponding to the statg The temporal logics allow one to specify dynammalperties
referring to this discrete tim@&][ The Linear Temporal Logic, LTL, is used to spgci
properties on an execution of the system. If theesyst determinist, from any initial state
there is a unique execution, LTL is appropriated pec#y properties of the system.
Nevertheless the qualitative behaviour of a bioldgiegulatory network is represented by an
asynchronous state graph which is non determimistctirrent state can have several possible
futures. Since time has a tree structure, we preéeComputation Tree Logic, CTL, in which
it is possible to express properties of the fortns'possible in the future that...
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Definition 9 [Syntax of CTL] A CTL formula on the set of atomic propositions &P
inductively defined by:

« , 1 and any atomic proposition of AP are formulae
- if ¢ and g are formulae, thern(-@), (W), (eM), (W ), (@=U), AXp, EXe,
A[@UY], E[eUY], AGy, EGy, AFg, EFRp are formulae.

The semantics of CTL is defined on the executiorstref the transition system which are
completely defined by their initial state and the tiéms relation. The semantics is given by
the definition of the satisfaction relatier= @ meaning that the formulais satisfied on the
execution tree starting at

Definition 10 [Semantics of CTL]Let $ be a state. The semantics of CTL is defined
inductively by:

- = and skl

« [OpUOAP, 9 =p iff dlL(s),

- =0 iff 9K,

© So=0:9 2 iff 9=¢1and s =y,

© So=01¢ 2 iff o=d10r =y

« S=010 ; iff K EP1OrH=10o,

« So=01=02 iff 5=(91ld 2)T(P2AD 1),

« S=AX¢ iff for all successors,®f $, we have s= ¢,

« S = EX¢ iff for any successoy 8f $, we have 5= ¢,

« S =AG¢ iff for all paths gs...s..., and for all salong the path we have= ¢,

« s =EGo) iff for a particular path gs;...S... we have for all;salong the pathi= ¢,

« S =AF¢ iff for all paths g5...S..., there exists slong the path such that= ¢,

« S =EFRp iff for a particular path §s:...S..., there exists; @long the path such that
s=¢,

« S =A[p1Ud,] iff for all paths g5...S..., there exists; @long the path such that=
¢, and for each j<i we havg = ¢,

« S = E[0p,Ud,] iff for a particular path gs...s..., there exists; @long the path such
that s = ¢, and for each j<i we havg = ¢;.

~ is the always true formuldl. is the always false formula; a statsatisfies all the atomic
formulae ofL(s); -, [0, [ O, < are the usual connectives (respectivaly, and or,
implication equivalencg All the temporal connectives are pairs of symbtbis:first element
is A or E followed by X, F, G or U whose meanings given in the next table and illustrated
in Figurell
A for All paths choices XeXt state
E for at least one path choiceéxXist) F someFuture state
Gall future statesGlobally)
U Until

Consider the example of Figusgb) where variables areandv. The atomic proposition are
AP={(u=0),u=1),u=2),/=0),¢=12)} AX(v=1) means that in all next states accessible
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from the current state in the asynchronous statehgthe concentration level gfis 1. This
formula is true iff the current state is (1,1), (20 (2,1). EG{ (u = 2)) means that there exists
at least one path starting from the current state evtiner concentration level afis constantly
strictly less than 2. In Figurg-(b), all states for whichu is strictly less than 2 satisfy the
formula. Then—(u=2)0 EGG(u = 2)) is satisfied for all states. A[E 1)U = 0)] means
that for any possible path from the current stateetlegists a future state where= O and in
betweenv remains equal to 1. Note that (2,1) is the only stdtech does not satisfy the
formula. And so on for other temporal connectives.

It is now possible to translate a biological tempopabperty into a CTL formula.
Classically a biological system can have severahdstestates corresponding to distinct
phenotypes. Let us suppose that two distinct stsaleesss andss, are possible and that
formulaey; andy), characterize the stateg andss respectively. If the system is able to go
from statesy, characterized by the formufm, either to states or to statess, these temporal
properties can be translate into formulae:

YO0 AG Yy stability of statess
WO AG 2 stability of statess
(b0 O ERYY) (b0 O ERYY) reachability ofss andss from sy

Such formulae are used in the concrete example dfoséc for expressing biological
knowledge on the immunity control in bacteriophageldm
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Figure 11: Semantics of temporal connectives of CTL.

4.2 Model checking

The model checking is a verification method thatvpsoautomatically if a Kripke structure
satisfies a temporal formulda3]. We briefly present the basic algorithm of modeéaiing
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for a CTL formula. Since the connectives(] and - can be rewritten in term of and
and since we have the following equivalence:

AX¢d = -EX(-9)
EGY = ~AF(-9)
EF = E(" U9)
AGo = -EF(-¢)
AldU0] = = (EF62U(-0:5¢ 2] TEGG2))

we consider in the sequel formulae containing onlydbenectives=, [, EX, AF and EU.
Obviously any CTL formula can be transformed inteemantically equivalent CTL formula
which uses only those connectives.

The model checking for a CTL formutaconsists in labelling each statef the transition
system with sub-formulae af which are satisfied at the state These sub-formulae are
added toL(s) containing initially the atomic propositions truesnSuppose thap is a sub-
formula of$ and that states satisfying all the immediate sub-faenaf have already been
labelled. The labelling algorithm far uses a case analysis to label states wuith

- if YOAP, then the labelling is given directly lhys)
« if Y =plq, thenL(s) =L(s) T {plig} for all ssuch thap, qCIL(s)
« if Y =-p, thenL(s) =L(s) O {-p} for all ssuch thaplL(s)
« if Y = EXq, thenL(s) = L(s) O {EXq} for all predecessors of a statet such that
quL(t)
- if Y = AFq, then
1. L(s) =L(s) O {AFq} for all ssuch thagIL(s)
2. RepeatL(s) = L(s) O {AFq} for all statess such that all successors are
labelled with AFq, until there is no change.
- if Y = E[qUr], then
1. L(s) =L(s) O{E[qUr] } for all ssuch that[L(s),
2. Repeati(s) = L(s) O {E[qUr]} for all statess such thatg[L(s) and which
have a successor labelled witlgBf], until there is no change.

It can be proved that this labelling algorithm ends #rad states are labelled with all sub-
formulae of¢ that they satisfy. Thus=¢ if the states is labelled withd¢. By extension if all
states are labelled with we say that the considered Kripke structure sasigfi

The model checking algorithm is linear with the sizettef system and the size of the
formula. Unfortunately, practical applications leadttansition systems with an enormous
number of states, and the previous algorithm isnoitefficient. To push back these limits,
symbolicmodel checkingl5] has been developed. It consists in computationsyombolic
representation of subspaces of states.

To sketch the symbolic model checking, let us intredile operatolPre. Let S be the set
of states and be a subset & Pre(x) gives the set of states which have a successofTine
setsaf(¢) of states satisfying) can then be defined inductively:

- if 9OAP, safd) = {sOS|p0OL(s)}
- saif-¢) =S\satd)

- saf(¢ Jy) =saf9) U safy)

« sa(op ) =safdp) n saiy)

« safEX¢) = Pre(sal(d))
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« saiAX¢) = S\ Pre(S\ sai(d))
« The connectives A¢-and Efp1Ud,] are more difficult to define. Let us remark thag w
have the following equivalence:

AF ¢ = ¢ O(AX (AF9))
E[0:Ud2] = ¢20(d1 DEX(E[D1UP2]) ).
Then safAF¢) and satE[p,Ud,]) can be defined as the smallest fixed points of

equations:
f1(x) = sai(¢) [ safAX X)
f2(x) = sai(¢,) O (saf¢p,) n saf{EXXx)).

Since functiond; andf, are monotone and that the set of states is finieejtgnative
computation of the smallest fixed point ends.

The Binary Decision Diagrams or BDD for short, are data structures allowing the
representation of Boolean expressions in a very estryway. Then subsets of states can be
coded with such Boolean expressions and necessamatmms for computingat can be
defined on these structures. Numerous works detédaiion of BDDs for the verification of
systems, see for examplEs] 13)].

4.3 A tool for the selection of models: SM BioNet

We have designed a software for a computer aidetkehvog based on the previous described
formal methods3]. This software, SMBioNét helps the biologist and/or the modeller to
verify systematically the coherence of models dafieen biological system, and to select
suitable models which satisfy the temporal properteedgracted from knowledge or
hypothesis. More precisely inputs of SMBioNet conisist

« a biological regulatory graph representing the axteons of the biological system and
+ a CTL formula expressing its known or hypotheticat@mical properties.

Then it generates all the models of the biologicgulatory graph and gives as output those
satisfying the CTL formula. For each generated mo8kIBioNet calls the model checker
NuSMV [4] and selects it if the formula is satisfied. For easdlected model, the
asynchronous state graph and the steady statesafregul singular) are given. Depending on
the available biological knowledge, the user can

+ reduce the domain of variation of some parameters,

- apply general constraints on parameters as, for deantpe Snoussi's and
observability constraints,

+ specify a set of steady states (regular and singaitel a set of functional circuits.

These direct constraints on parameters decreasdicagtly the number of models to
generate and consequently increase the efficienaefselection. However, one can test
directly the coherence of the regulatory grapé. {s there at least one suitable model ?),
without enumeration of models by using a symbolicdpson of the set of all models.

! Selection of Models for Biological Networks, et p: / / snbi onet . | ani . uni v-evry. fr
2 Presented in the next section.
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In the next section, we shows how SMBioNet can lasl disr modelling the immunity control
in bacteriophage lambda.

5 Immunity control in bacteriophage lambda

One of the most studied genetic regulatory netwaksaobably the one controlling immunity
in temperate bacteriophage lambda which is a temperate s described in figurg2, after
infection of a bacterial population, many bacteriarslyse and produce new phages but some
survive and carry lambda genome in a dormant form. firbt response is calldgtic and the
secondlysogenic In the lysogenic bacteria, viral DNA has integratatb the bacterial
chromosome and will be faithfully transmitted to theeterial progeny. In this condition, the
viral gene cl, produces a repressor which blocks#pression of all the other genes of the
phage, thus making the viral genome harmless forbteterium. Moreover, cl makes
lysogenic bacteriammunetowards other infections. Lysogenization necesstai® events,
integration of the viral DNA into the bacterial chrosome and development of immunity due
to the expression of the repressor. The choice daivihe lytic and lysogenic pathways is
very similar to cell differentiation, in the senseattha given virus, infecting apparently
identical cells, can behave in two extremely differgays.

T,
|: -l.u
Bacterial cell (\:Ei"-ér\,’
lambda
virus f i
o L1
o “f}l’ ,H-? Atachment to the host and
injection of lamda [DNA
g g
" Q%ﬁag\} Circularisation
2 of lambda DNA
LYTIC PATHW 31/ \VbDLL\lL PATHWAY
. _.-,’ ‘\1 y
Synthesis of —. ; %&;& £ L‘j;& T‘m‘.gw?rmn_nf.
lamhda proteins LRt lambda DNA into
N \ host chromosome

INDUCTION

¥ '5@}@\? " EVENT

Rapid replication of | 'O ¥ J
lambda DNA and its ,L
packaging mnto T, e,

completa virnses ._"l?"jn ) ’1-*2%;\'53"-7
- 1
l .,/J\ Cell division ,.-"1"-1
-
b T | NN P "
Cell lyses and releases a lambda DNA replicates along
lurge number of new viruses with host chromosome

Figure 12: The life cycle of bacteriophage lambda.
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It is actually in the context of this biological systemttifomas started to develop his
formalism. Although he proposed various models ef thmunity control 30, 29, 26], we
focus in this section on the model developed by fityieand Thomas in 46], which is
denotedMI(G) in the sequel. We will show that SMBioNet allows doeselect, automatically
and with very few biological knowledge, a set of milsdcontainingi(G) and satisfying the
validation criteria given by Thieffry. All models ofighset have to be considered since they
havea priori the same prediction capacity thisiiG).

5.1 Biological regulatory graph

The biological regulatory grapB summarizes the main regulations of the immunitytrcbn
(Figure13). Obviously it contains gene cl, but also thrdeeos (cro, cll, and N) which play a
predominant role. Gene cl is activated by cll. Oorggene cl remains on because its product
activates its own synthesis, but at the same timee geswitches off the other lambda genes,
including cll which had just switched it on. In adalit gene cro exerts a negative control on
cl, directly and indirectly, by repressing gene Elhally, gene N exerts a positive control on
cll and is itself under negative control of cl acidl According to the thresholds fixed by
Thieffry, variables cl, cro, cll and N are 3-,4-@nd 2-valued respectively, leading to 48
possible states. In the remainder, the state of thterayss represented by the vector
(cl,cro,cll,N).

2+ C cl

eIl =——7 N

Figure 13: Biological regulatory graghfor immunity control.

5.2 Temporal properties

When the viral genome integrates a cell, all thelvproteins are initially absent. Thus
(0,0,0,0) corresponds to the initial state of thetey. The existence of both responses, lytic
and lysogenic, implies that there exist two paths starfrom the initial state leading
respectively to the lytic state and to the immumee.oThe lytic state is known to be
characterized by high concentration of cro andvadoncentration of cl, cll and N whereas
immune state is characterized by high concentratfori and low concentration of cro, cll
and N. In 6], both states (0,2,0,0) and (0,3,0,0) corresporitig¢dytic state and (2,0,0,0) is
the only state corresponding to the immunity. Withchdnge of the environment, the choice
between the lytic and the lysogenic pathways is @rgble, thus the lytic and immune states
are steady. Then if the system reaches one statieofsetsA={(0,2,0,0),(0,3,0,0)} or
B={(2,0,0,0)}, then it will never leave it. These seif states are said steady sets.

Summing up, dynamics of models to consider have mvago paths from (0,0,0,0) to the
steady sets of state’s and B. These properties are translated into the CTL foandulas
follow:
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init =((cl =0)d(cro=0)"(cll=0)T(N =0))
lytic  =((cl=0)0(cro=2)0(cll =0)T(N =0))
immune= ((cl =2)0(cro = 0)d(cll =0)T (N = 0))

®p =lytic 0 AG(lytic)

®p = immuned AG(immuné

®, =init 0 (EF(lytic) OEF(immung )
® =P OPg 0D,

The sub-formulaenit, lytic andimmunecharacterize the initial state, and the FetsndB.
The steadiness & andB is translated by, and®g. The formula®, expresses reachability
of A andB from the initial state an® represents the temporal properties to use for the

selection of models.

5.3 Selected models

There is near 7 thousands of millions of model®aased toG leading to about 3 millions of
different asynchronous state graphs. If we consigerSnoussi's constraints (equatijnas
Thieffry and Thomas did, it remains 151200 modeé¥#oreover, we use the activity

constraints 2):

for each regulatioru - v there is a se&bJG (v) such thaK,,, # Ky uofu

which stands for the observability of any regulatifru — v does not satisfy the constraints,
the attractor o¥ does not depend on the levelwoift seems then quite obvious that any model
should satisfy this property in order that all regola play a role in the dynamics. Taking
into account these constraints, SMBioNet selectsngmihe 882 remaining models, 88
models satisfying the formut@. The modeM(G) proposed by Thieffry and Thomas is one of
them. Table2 shows the possible values of parameters for thetedlawodels. 17 parameters
among 24 are fixed by formuth (in particular, all the parameters associated to N).

KC|’{} =0
Kcl,{cl} =lor?2
KCI,{CI’O} =0,1o0r2
Kel {ciiy =0,10r2
Kel {cl,cro} =2
Kegereny — =1o0r2
Kel,{cro} =2

Kel{cl,crocy = 2

Kero,{ =0
Kero {cl} =2
Kero,{cro} =0

Kerofcl,croy = 20r3

Keiig =0
Keigeny =0
Kell,{cro} =0
Keiigny =0
Kenfel,crop = Oorl
Kengany  =0o0rl

KeilfcroNy = Oorl
Kell {cl,croN} = 1

KN,{} =0
KN.{cl} =0
KN, {cro} =0
KNjclero} = 1

Table 2: Possible values of parameters for the selentalels. Bold numbers

correspond to the modkl(G).
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5.4 Validation of models

Thieffry and Thomas exhibited one model whose cotmreis analysed through the
likelihood of some paths of the asynchronous statehgedtM(G) and through the pertinence
of predictions on the dynamics of some mutants. &@aproach leads to select 88 models
which have to be evaluated with the same biologid#dria of validation.

« Although 4 positive feedback circuits are presenthe regulatory graph, the 88
selected models present only two steady states (regutargular): (2,0,0,0) is always
steady and the other one is either (0,2,0,0) engukar state adjacent to (0,2,0,0) and
(0,3,0,0). These steady states correspond to theagtlammune states, and no other
stable behaviour (phenotype) can be observed.

« Even if several pathways are possible from the Ingtate to immune state, all
selected models present the most likely pathwaW (@) from initial state toA (see
Figurel4).

_(0,00.0)__

0,10,00— (0,1,0,1)<— 0,0.0.1)  (2.0,1,1)—= (2,0,1,0)

}

0200~ (©020.)  (0.0,L.)—(1.0.L1) (2,0.0.0)

v \ ()
(0,3,0,0) <— (0,3,0,1) .

Figure 14: Likely paths from the initial state to thgc and immune states (in
bold). The dotted arrow is absent for the 44 modath thatKcrg (cro.cy = 3,
M(G) included, whereas the dashed ones are absent &ssoth

Similarly the pattern of dynamics presentMi{G) allowing the system to evolve from
initial state to lytic state, is also present in alesedd models.

- Biological knowledge on mutants is available and lsarused for validating models.
The considered mutations correspond to the inactivatfadifferent combinations of
genes. Then simulations of the behaviour of thestamisi can be performed and
confronted to the biological knowledge. For examfile,dynamics of the mutaig-
a0, Where genes cl and cro are inactivated, is obthfromM(G) by setting to O all
parameters associated to cro or cl. Consequentiy, &n initial state where cl and cro
are absent, they will never appear. The dynamid¢kisfmutant is given in Figurkb.

0,0,1,0)— (0,0,1,1)__)
l f

(0.0,0,0) — (0,0,0.1)

Figure 15: Dynamics of the mutaky-c;- obtained fronM(G).
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The dynamics of mutants obtained frdv{G) are coherent from a biological point of
view, since the remaining basins of attraction allowgtezliction of the behaviour of
mutants. For any selected model, results are the sachare given in tabg

Among the 88 selected models, some differences caighighted. For example, 2 states are
unreachable from the initial state M(G) whereas for some selected models 15 states are
unreachable. In such models, all states with clan@ cro = 3 are not reachable, which is
reasonable because high concentration of cl and scnarely observed. Moreover, such
models do not contain the path (0,0,0,0)(1,0,0,0)- (2,0,0,0) present in the dynamics of
M(G) and which is unlikely in view of the low expressidrcbwhen cll is absent.

Mutants| Basins of attraction

Acr- A
Acror B
Acii- A and B
AN- A and B
)\cl'cro' {(0,0,1,1)}
Acii-n- Aand B
)\cro'N' A
)\cro‘cll' A
)\cro'cll'N' A

Table 3: Basins of attraction for a collection oftanis.

In conclusion, these 88 selected models satisfy the saiteria of validation that1(G) and
have also to be considered. These models havedsbected using a formul® expressing
the well known properties of the system. Thieffrydafhomas have exhibited their model
with the circuit functionality and some hypothesise Ban notice that the used constraints for
functionality are not necessary to reproduce theobiohl properties (expressed Ioy)
because some of the models selectedbbgo not satisfy these functionality constraints.

Moreover some parameters are valuated accordihgdothesesKc (c1,n; = 2 for example)
which have to be slacken since some models selégtddpropose different values for these
parameters.

6 Conclusion

We have defined d@ormal description of biological regulatory networks whiallows a
computer aided manipulation of the semantics of tiserete modelling of Thomas, this
manipulation being proved correct by constructionr @pproach allows biology to take
advantage of the whole corpus of formal methodsfoomputer science. Model checking is
a first powerful tool offered by the formalization of lmgical regulatory networks. In
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particular, temporal properties can be added intosphexifications of the system, and the
modelling task consists in exhibiting one or more galheall models that are coherent with
the previous specifications expressing a part of dimbogical knowledge concerning the
dynamics of the system. All potential models havedalhecked against temporal formulae,
and this task can be done automatically using motdetking. Thisbrute forceapproach
permits one to exhibit exhaustively all suitable modetsall models satisfying the temporal
formulae. Information provided by a new experimenaaew theoretical point of view will
refine the set of selected models.

The available temporal properties concern generéily homeostasis, the multi-
stationarity, stable steady states and the accessibflisome stable steady states from a
partially specified initial state. Unfortunately tetable steady states are some time singular
and not formally represented in the asynchronous get@h of Thomas. Then the
specifications cannot easily contain temporal proped@ncerning such singular states. This
would necessitate to rewrite these temporal propewtidis only atomic propositions of
regular states, and this task is generally difficult.

De Jong et al.q introduced the singular states into their qualitatiygamics. Their
gualitative modelling of genetic regulatory networks also based on piecewise-linear
differential equations. Authors propose a mathemdyicaell founded method to deal with
singular states using differential inclusioBs [L1]. Our approach consisting in adding
temporal properties into the specifications for datemng the suitable parameter values,
would allows in this context to treat regular statesvall as singular states.

More generally the formal methods can be appliechenfteld of biological regulatory
networks and systems biology in order to explicit sdmehaviours or to take into account
biological knowledge which have been ignored for thement. The cooperation between
biology and formal methods from computer sciencenspa large horizon of research
perspectives.

- The introduction of transitions in the regulatorapin could help to specify how the
different regulators cooperate for inducing or regiresg their common target]. One
can also separate inhibitors from activat@istp increase the expressivity of the
approach, or take into account time del8H [between the beginning of the
activation order and the synthesis of the produwt eonversely for the turn-off
delays.

« Automatic generation of experiment schema from bleétanodels. In order to reduce
again the set of suitable models, we would likertppse the biologist to perform an
determining experiment. The result is then confroritedach model and only those
which are coherent with the experiment, have todp.kKAn experiment often consists
to put the system in a particular state (partially sjgel) and to observe after a while
if one or several gene products are present or nat ihhplies to extract the
specificities of the biological application domain arder to define patterns of
formulae expressing feasible experiments.

« The modelling of a regulatory network concerns gaiheronly a small part of the
global regulatory network of the cell. It becomescalto prove that the dynamical
properties of this sub-network are preserved wheis #mbedded into the global
network. This is correlated to the treatment of knaouk mutants, identification of
functional patternsZ1] as well as the structure of huge regulatory netwo

To achieve such development several directions labe tconsidered. High-level Petri nets

are graphical oriented languages for design, spatifin, simulation and verification of
systems. They are in particular well-suited for systein which communication,
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synchronization and resource sharing are impor@etrly, biological systems present these
characteristics, and modelling by such nets wouldaallas to take advantage of all results
and tools in the field of high-level Petri nets.

Hybrid automata can take into account the continsects of a regulatory network: it
is a mathematical model for hybrid systems, which dosdy in a single formalism,
automaton transitions for capturing discrete chang#s differential equations for capturing
continuous changes. Symbolic model checkers, as Hy[I&} have been developed for the
subclass of linear hybrid automata. It becomesiples® perform parametric analysis. to
determine the values of parameters for which a lihgarid automaton satisfies a temporal-
logic requirement.

These research perspectives aim to link modellnthexperiments together, by furnishing
to biologists model structuring methods and modétaton tools from current researches in
theoretical computer science. The resulting formal ef®dare not onlya posteriori
explanations of biological results, they are guidmshiological experiments whose success
will be in fine the discriminating criterion.
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