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1  Introduction 

Biological systems are one of the most fascinating aspects in biology. They control such 
diverse dynamics phenomena as temperature control in warm-blooded animals; differentiation 
of a zygote into the various specialized organs, tissues and cells of the mature organism; the 
fate of certain viruses, called temperate bacteriophages, which upon infection of a bacterial 
population can behave in two extremely different ways. Most of these infected cells display a 
response called lytic: virus multiplies and kills cells. But, a fraction of the cells become 
lysogenic bacteria and carry the viral genome in a dormant form making the host immune 
towards infection of other virus. 

Computational systems biology tries to establish methods and techniques that enable us to 
understand such systems as systems, including their robustness, design and manipulation. It 
means to understand : the structures and the dynamics of systems, methods to control, design 
and modify systems to cope with desired properties. The modelling contributes in a major 
way to reach these aims by introducing methods for understanding, simulating and predicting 
the behaviour of the systems. However, the modelling of biological systems is currently 
subject to two major difficulties: the biochemical reaction mechanisms underlying the 
interactions of systems are usually not or incompletely known and quantitative information on 
kinetic parameters or molecular concentration is rarely available. Thus the modelling activity 
needs an interaction with the experimental biology to confront models to biological objects. 
Consequently as in the design of large computing systems, two activities can be distinguished 
in the modelling step: 

1. build a rigorous model of the system satisfying the assumed behaviour corresponding 
to biological knowledge, 

2. design experiments to verify a posteriori the model predictions. 

Here we would like to show that some methods from computer science can be reused in the 
context of system biology, as, for example, formal methods for validation and verification 
used for the design of large computing systems. For designing experiments, we just mention 
that the test methods via test generation from model theories may be an efficient way to 
propose experiments permitting biologists to validate or refute models. For building a 
rigorous model, the model checking verification tool is particularly suited. In this chapter we 
present an application of this formal method to build qualitative models of biological 
regulatory networks. 

A biological regulatory network describes interactions between the biological entities, 
often macromolecules or genes, of a given system. It is statically represented by an interaction 
graph whose vertices abstract biological entities and arcs their interactions. For describing the 
evolution of the system, the concentration level of each entity is represented by a value 
associated to the corresponding vertex. The temporal evolution of these levels constitutes the 
dynamics of the system. 

Ordinary differential equation systems have been first used for describing the dynamics of 
networks. They are powerful tools particularly to model metabolic processes [33]. However, 
due to the non-linearity of biological regulations, these differential equation systems cannot 
often be solved analytically. They can be solved numerically to any desired precision, but this 
precision itself may be misleading because the values of the parameters and the shape of 
interactions often have to be guessed for lack of experimental data. This remark led Thomas 
to simplify the models: he introduced in the 70's a Boolean approach to capture the qualitative 
nature of the dynamics and he proved its usefulness in the context of immunity in 
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bacteriophages [30, 27]. Later on, he generalized his formalism to multi-valued levels of 
concentration (the so called multi-valued logic or ``generalized logical approach'' [32]) since 
the Boolean idealization may be too caricatured to correctly model biological systems. It has 
been proved that this qualitative description allows the representation of the essential 
qualitative features of an ordinary differential equation system provided that the differential 
equations are piece-wise linear [22]. The underlying parameters of the qualitative description 
can be deduced from the kinetic parameters of the continuous system but can take only a 
finite number of values. Consequently, all possible qualitative features of the system can be 
reduced to a finite number of models i.e. parameterisations. 

Certainly the most important concepts of the generalized logical analysis are those of 
positive and negative feedback circuits. If an entity tends to favour (resp. decrease) its own 
production via the feedback circuit, the circuit is said positive (resp. negative). It has been 
conjectured by Thomas [28] and then proved in different contexts [18, 23, 6, 5, 25] that at 
least one positive circuit is necessary to generate multi-stationarity whereas at least one 
negative circuit is necessary to obtain a stable oscillatory behaviour. These concepts are 
especially important since when modelling biological systems, differentiation and 
homeostasis have often to be taken into consideration. In such cases, these biological 
constraints can reduce drastically the set of models to consider. These properties can be 
reinforced by introducing some more complex properties on the dynamics of the system 
extracted from the biological knowledge or hypotheses. It becomes necessary to construct 
models which are coherent not only with the previous conditions of multi-
stationarity/homeostatis but also with the additional ones. Formal methods from computer 
science should be able to help modeller to automatically perform this verification [17, 3] and 
to select exhaustively all suitable models. 

 
The chapter is organized as follows. Section 2 introduces the formalism due to Thomas for 

modelling the dynamics of a biological regulatory network. The resulting dynamics 
corresponds to a Kripke structure which can be deduced easily from the interaction graph. 
Section 3 describes the link between this transition system and the dynamics obtained with the 
classical modelling using piece-wise linear ordinary differential equation systems. Section 4 
explains how formal methods can improve the modelling process of regulatory networks. The 
temporal properties have first to be translated into a temporal specification language. Then 
one has to answer automatically the question: does a given model satisfy the given temporal 
specifications ? Model checking makes this stage automatic and its principle is also presented 
in this section. Section 5 illustrates the use of model checking to model the well studied 
genetic regulatory network of temperate bacteriophage lambda rapidly described before. A 
model of this system has already been proposed by Thieffry and Thomas in [26]. We show 
that our approach, using model checking, automatically selects this model as well as other 
models satisfying the same criteria of validation. 
 

2  Qualitative dynamics of biological regulatory networks 

The multi-valued modelling of Thomas is able to represent the qualitative dynamics of 
biological regulatory networks whose entities can be molecules, macromolecules, cells, 
organs, or organisms, if no societies. In fact, all systems whose regulations have a sigmoid 
shape can be modelled in this formalism. The regulations of genetic regulatory networks have 
almost always a sigmoidal nature, that explains why this formalism has been introduced in 
this context and why its main application domain remains the genetic regulatory networks. In 
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such systems, the concentration of a protein encoded by a gene u may activate or inhibit the 
synthesis of proteins encoded by other genes or itself (figure 1). 

 

Figure 1: A genetic regulatory network. The gene u synthesizes a protein 
which activates the expression of gene v and itself by binding the promoters Pv 
and Pu respectively. In turn, the protein of gene v inhibits the expression of 
gene u when it binds Pu. Then, the arrow from a gene to its protein represents 
the transcription and translation processes and the arrow from a protein to a 
promoter abstracts the diffusion and the fixation of the protein on the promoter. 

 

If the protein of u activates (resp. inhibits) the expression of a gene v, we said that u is a 
positive (resp. negative) regulator of v. In such situation an increasing of the concentration of 
the protein encoded by u induces an increasing of the rate of synthesis of the protein encoded 
by v. Generally, the relation between the concentration of a regulator and the rate of synthesis 
of its target is, as we have seen before, sigmoidal. When the sigmoid is steep, as in figure 2-
(a), u has a little effect on v if it is below the concentration threshold θuv and at higher 
concentration a plateau is reached representing the maximal rate of synthesis of v under the 
effect of u. Naturally, for an negative regulator, the sigmoid is decreasing. 

 

Figure 2: (a) Sigmoid relations between the concentration of u and the rate of 
synthesis of v and itself. As u is an activator of v and itself, see figure 1, both 
sigmoids are increasing. (b) Resulting qualitative levels of u. 
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This section presents successively how the regulations can be summarized into a regulatory 
graph corresponding to the static part of the modelling, then introduces the parameters which 
encode the effects of regulators on their targets in all possible situations, and finally presents 
how the dynamics can be deduced from these parameters. 
 

2.1  Biological regulatory graphs 

To formally define the static part of biological regulatory networks, we use labelled directed 
graphs. Vertices represent the biological entities of the network and arcs their regulations. 
 
Definition 1  [Biological regulatory graph]   A biological regulatory graph is a labelled 
directed graph G=(V,E) where 

• each vertex v of V, called variable, is provided with a boundary bv∈ IN less or equal to 
the out-degree of v in G.  

• each arc  u → v of E is labelled with a couple (tuv,αuv) where tuv is an integer between 
1 and bv , called qualitative threshold and where αuv∈ {+,−}  is the sign of the 
regulation. 

Moreover it is required that for any variable u with bu > 0, ∀  i∈ {1,2,...,bu} , there exists a 
successor v of u such that tuv = i. 
 
In a biological regulatory graph G, the set of the regulators of a variable v corresponds to the 
set of its predecessors in G, denoted by G−(v), and the set of its targets corresponds to the set 
of its successors in G, denoted by G+(v). Each regulation u → v is labelled by a sign αuv which 
indicates if u is an activator or an inhibitor of v, and by a qualitative threshold tuv. Thresholds t 
are integers and do not correspond to biological thresholds θ∈ IR, most often difficult to 
measure, but they give the order of the continuous thresholds: if tuv = i then the corresponding 
continuous threshold θuv is the i th lowest threshold among {θuv | v∈ G+(u)}. That explains the 
requirement on qualitative thresholds of the previous definition which implies that bv is the 
number of different thresholds “outgoing” from v.  
Figure 3-(a) gives an example of biological regulatory graph which can be deduced from the 
genetic regulatory networks described in figure 1. Figure 2 assumes that θuv< θuu, and 
consequently tuv = 1 and tuu = 2. 

 

Figure 3: (a) Biological regulatory graph deduced from the genetic regulatory 
network of figure 1. (b) States of the biological regulatory graph. 
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Obviously concentration levels are associated to variables. For describing the evolution of the 
concentration level of each variable, it is necessary to know which regulators have an effect 
on the variable. Only the position of the regulator concentration with regard to their thresholds 
is sufficient. The concentrations are then discretized according to thresholds and each variable 
can take a finite number of values called abstract qualitative levels. For example, in figure 2-
(b), the variable u has three different behaviours with regard to its targets: 

• In the first region (the concentration of u is less than θuv), u acts neither on v nor on 
itself. 

• In the second region (the concentration of u is between θuv and θuu), u acts on v but it 
still not act on itself. 

• In the last region (the concentration of u is greater than θuu), u acts both on v and on 
itself. 

Three qualitative levels emerge, 0, 1 and 2, corresponding to the three previous regions and 
constitute the only relevant information from a qualitative point of view. More generally, a 
variable v can take bv+1 qualitative levels, from 0 to bv, and the qualitative level q means that 
v acts on all targets v' such that tvv' ≤ q. A state of the system is then defined as a vector 
constituted by qualitative levels of variables. 
 
Definition 2  [Qualitative state]   Let G=(V,E) be a biological regulatory graph. A qualitative 
state of G is a vector q=(qv)v∈ V such that for all v∈ V, qv∈ {0,1,…,bv} . The set Q of states of G 

is then defined by Q=∏v∈ V {0,1,...,bv} . 
 
In the sequel, we write v = l for denoting qv = l if it does not cause confusion. Figure 3-(b) 
shows the possible states of the biological regulatory graph of figure 3-(a). 
 

2.2  Models of biological regulatory graphs 

Remember that the sigmoid nature of a regulation u → v leads to distinguish two different 
situations: if u ≥ tuv, then the regulation is active and if u < tuv, it is not. We said that u is a 
resource of v when u induces an increasing of v: 

• if the regulation u→v is positive, u is a resource of v when the regulation is active, 
• if the regulation u→v is negative, u is a resource of v when the regulation is not active. 

From the point of view of resources, the absence of an inhibitor acts as the presence of an 
activator. 
 
Definition 3  [Resources]   Let G=(V,E) be a biological regulatory graph, v∈ V and q∈ Q. The 
set ωv(q) of resources of v at the state q is the subset of G−(v) defined by: 

ωv(q)={ u∈ G−(v) | (qu ≥ tuv and αuv = + ) or (qu < tuv and αuv = −)} . 
 
At the state q, the evolution of variable v depends on its resources ωv(q). It remains to define 

in which direction evolves v at the state q. The parameter Kv,ωv(q), called the attractor of v 

when the resources are ωv(q), denotes the level towards which v is attracted: 

• if qv < Kv,ωv(q)  then v tends to increase, 
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• if qv = Kv,ωv(q)  then v does not evolve and 

• if qv > Kv,ωv(q)  then of v tends to decrease. 

Different values for these parameters are possible and we call model of a biological regulatory 
graph, a possible instantiation of these parameters. 
 
Definition 4  [Model of a biological regulatory graph]   Let G=(V,E) be a regulatory graph. A 
model of G, denoted M(G) by abuse of notation, is a family of natural numbers Kv,ω indexed 
by the set of couples (v,ω) such that 

• v∈ V, 
• ω ⊆ G−(v), 
• Kv,ω ≤ bv. 

 
It is often additionally required that: 

Kv,ω ≤ Kv,ω'  for all  v∈ V,  and  for all   ω,ω' ⊆  G−(v) such that ω ⊆ ω '.           (1) 

These constraints, called Snoussi's constraints in the remainder, mean that the more a variable 
has resources the greater is the level towards which it is attracted. In other words, neither the 
presence of an activator nor the absence of an inhibitor can induce a decrease of the 
considered target (see the following section for the mathematical grounds of these 
constraints). This property, as well as signs of regulations, can often be deduced from 
biological knowledge and when it can be used, the number of models to consider for a given 
biological regulatory graph decreases drastically. 
 

Model 

Ku,{}  = 0 

Ku,{u}  = 2 

Ku,{v}  = 0 

Ku,{u,v}  = 2 

Kv,{}  = 0 

Kv,{u}  = 1  

 

u v Attractors Tendencies 

0 0 Ku,{v}  = 2 Kv,{}  = 0   

0 1 Ku,{}  = 0 Kv,{}  = 0   

1 0 Ku,{v}  = 2 Kv,{u}  = 1   

1 1 Ku,{}  = 0 Kv,{u}  = 1   

2 0 Ku,{u,v}  = 2 Kv,{u}  = 1   

2 1 Ku,{u}  = 2 Kv,{u}  = 1    

Table 1: One possible model for the biological regulatory graph of figure 3. 
The table gives for each state the corresponding attractors and tendencies 
deduced from the model. 

 

Models M(G) of the biological regulatory graph G of figure 3 are all possible instantiations of 
six parameters: Ku,{} , Ku,{v} , Kv,{} , Kv,{u} , Kv,{v} , Kv,{u,v} . Because bu = 1 (resp. bv = 2) each 
Ku,… (resp. Kv,…) can take 2 (resp. 3) different values. So 22× 34=324 different models can be 
a priori associated to G, but only 60 of them respect the Snoussi's constraints. Table 1 gives 
the tendencies of variables resulting from such a model. 

More generally there are ∏v∈ V (bv+1)2
|G−(v)|

 models associated to a biological regulatory 
graph G. This number increases exponentially with the number of predecessors of each 
variable and even if static constraints on parameters are used, as the Snoussi's constraints, it 
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remains huge. Moreover, since parameters K are most often not measurable in vivo, additional 
properties deduced from biological experiments are needed to eliminate the models whose 
dynamics do not satisfy them.  

2.3  Dynamics of models 

The classical approach to describe the dynamics of models is to define the state of the system 
at time t +1 from its state at time t. One possibility is to consider that the next state is directly 
the attractor of the current state: if q is the current state then q' = (Kv,ωv(q))v∈ V is the next one 

and we said that there is a transition from q to q' (figure 5-(a)). This description raises serious 
problems for its application to biological systems: 

1. From any initial state, the system will follow a well-defined path, without any 
branching or possibility of choice whereas biological systems typically include choices 
among several pathways (as illustrated for example by the numerous different 
pathways leading to various cell lines from a zygote during embryonic development). 

2. Suppose that v is a gene which can take two values (bv = 1) and that the current state is 
q. If qv = 0, then Kv,ωv(q) = 1 means that resources of v induce the production of the 

corresponding protein. This protein will appear after a time delay corresponding, for 
example, to the time of diffusion of its regulators (figure 4). Similarly the same 
phenomenon is observed when qv = 1 and Kv,ωv(q) = 0 with an a priori different delay. 

However, when q differs from q' = (Kv,ωv(q))v∈ V by at least two components, the 

corresponding variables change simultaneously (dashed arrow in figure 5-(a)). This 
synchronous description thus assumes that time delays are equal which is unlikely. 

 

 

 

Figure 4: Time delays. Gene v has a unique regulator u which is an 
activator. Initially, both u and v are absent. Then, protein u appears and 
stimulates the expression of v (Kv,ωv(qu) = Kv,{u}  = 1). The resulting 

protein appears after the delay vt∆ . Finally, the protein u disappears, 

the gene v is no more stimulated (Kv,ωv(qu) = Kv,{}  = 0), and the protein v 

disappears after the different delay vt∆ . 
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3. If the attractor of a variable is sufficiently away from its current value, one can have 
|qv − Kv,ωv(q)| > 1. In such cases the qualitative level increases abruptly and jumps 

several thresholds (dotted arrow in figure 5-(a)). Since the dynamics of the model 
abstracts a continuous phenomenon, during a transition, each variable can pass 
through at most one threshold. 

These points lead us to introduce the following asynchronous description. 
 
Definition 5  [Asynchronous state graph]   Let G=(V,E) be a biological regulatory graph and 
M(G) be a model of G. The asynchronous state graph of M(G) is a directed graph whose set of 
vertices is the set Q of states of G, and such that there is an edge from q to q' if: 

• for all variables v∈ V, qv = q'v = Kv,ωv(q) or 

• there exist a variable v∈ V such that: 
o for any variable u ≠  v, qu =q' u and 

o qv < Kv,ωv(q)  and  q'v = qv+1     or     qv > Kv,ωv(q) and q'v = qv −1. 

In this definition, a state q which has itself as successor, is a stable steady state of the 
asynchronous state graph: qv = Kv,ωv(q) for all v∈ V. Otherwise, if q is a state for which n 

variables tend to evolve (n variables v such that qv ≠ Kv,ωv(q)), q has n successors and each of 

them differs from q by only one component corresponding to one of these n variables. Thus, 
when time delays are unknown, the asynchronous state graph contains all the a priori possible 
transitions. Some of them can be removed when time delays are taken into consideration. 

Figure 5 shows the synchronous and asynchronous dynamics of the model of table 1. The 
attractors are the same in both descriptions but paths differ: the asynchronous state graph 
contains a circuit (0,0) → (1,0) → (1,1) → (0,1) → (0,0) which is absent in the synchronous 
description. 

 

Figure 5: Synchronous and asynchronous dynamics for the model, given in 
table 1, of the biological regulatory graph of figure 3. 

3  Differential modelling 

We have seen that the asynchronous dynamics is more suited than the synchronous one for 
describing biological regulatory networks. This section proves how this asynchronous 
description can be deduced from a discretization of a particular class of ordinary differential 
equation systems classically used for describing biological regulatory networks. 
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3.1  Ordinary differential equation systems 

Classically, the dynamic of a biological regulatory graph G=(V,E) is modelled by ordinary 
differential equation systems [10, 22, 29], called here underlying differential systems (UDSs 
for short) of G, whose form is  

vx  = fv(x) - ?v xv,     for all v∈ V, 

where x = (xv)v∈ V is a vector, whose components xv∈ IR+ give the concentrations of variables v. 
The vector x is called the quantitative state of G. The previous equations define the rate of 
change of each concentration xv as the difference of the synthesis rate fv(x) and the degradation 
rate λvxv of v. The function fv expresses how the synthesis rate of v depends on the 
concentrations xu of its regulators u∈ G−(v). It can be defined as,      

fv(x) = kv +
α ∑ 

u∈ G−(v)  
kuv s

αuv(xu,θuv),    

where: 
• kv∈ IR+ and kuv∈ IR+* are kinetic parameters, 
• the function sαuv gives the effect of a regulator u and its target v. This function is 

usually a sigmoid depending on the sign αuv and on the quantitative threshold θuv∈ IR+* 
of the interaction. 

Since the qualitative thresholds t of G give the order of the continuous thresholds θ (see the 
section 2.1), it is required that for all targets v'∈ G+(u) of u different than v, θuv < θuv' if tuv < tuv' 
and θuv > θuv' if tuv > tuv'. By denoting  θu

l      the threshold(s) θuv such that v∈  G+(u) and tuv=l we 
then have: 
 

θu
1  < θu

2  <  . . . < θu
1   < θu

b u 
 
The sigmoidal function sαuv is often approximated by a step function in order to make possible 
the analytical analysis of the system. sαuv is then defined as a Boolean function which 
indicates if u is or not a resource of v: 

),(1  ),(  and   
 if  ,0

 if  ,1
  ),( uvuuvu

uvu

uvu
uvu xsxs

x

x
xs θ−=θ

θ<
θ>





=θ +−+      

Notice that these functions are not defined for xu = θuv and that the system becomes a 
piecewise linear equation system. Figure 6 gives an example of an UDS of the biological 
regulatory graph of figure 3.  







××=
××+×+=

+

+−

 
 2)16(25

 5)20(  40)10(  35  20

vuv

uuvu

 x - ,x s x

 x - ,xs  ,xsx
 

Figure 6: Example of UDS of the biological regulatory graph of figure 3. 
Parameters are: ku = 20, kvu = 35, kuu = 40, θvu = 10, θuu = 20, λu = 5 for the first 
equation and kv = 0, kuv = 25, θuv = 16, and λv = 2 for the second. Notice that 
θuv < θuu since 1 = tuv < tuu = 2. 
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3.2  Discretization map and domains 

Since the step functions sαuv are not defined for xu = θuv, the differential equation system is not 
defined for the states x for which at least one component xv equals a threshold θvv', v'∈ G+(v). 
Such states are called singular states. Consequently, the properties of the system can be 
analysed in the |V|-dimensional phase space Ω defined by 

Ω = ∏ 
v∈ V  

Ωv    with    Ωv= IR+ \{θvv'  | v'∈ G+(v)} for all v∈ V. 

 
Ω corresponds to the set of regular states. We are now in position to define the discretization 

map d : Ω → Q  by d(x) = (dv(xv))v∈ V with, for every v∈ V, dv : Ωv → Qv defined by 

dv(xv) = |{θvv' | v'∈ G+(v) and θvv' < xv}|. 

This discretization map gives directly the cardinal of the set of thresholds less than the 
concentration of v. If dv(xv) = l, then xv is greater than the l smallest thresholds and less than 
others. For all v∈ G+(u) we have xu > θuv ⇒  du(xu) ≥ tuv and xu < θuv ⇒  du(xu) < tuv. 
Consequently, for all state x∈  Ω: 

sαuv(xu,θuv) = 1 ⇒  u∈ω v(d(x)). 

Then, for all x∈Ω , fv can be rewritten as 

 fv(x) = kv + 
∑ 

u∈ω v 

(d(x))  

kuv.                                                     (2) 

The infinite set of continuous states whose discretization gives q∈ Q is an hyper-rectangular 
region D(q) of Ω, called domain, defined by: 

D(q) = ∏ 
v∈ V  

Dv(qv)      with      Dv(qv)= {xv∈  Ωv | dv(xv) = qv} for all v∈ V. 

A domain D(q) is bounded by hyperplanes corresponding to thresholds: for all variable v, if 
qv>0 then θv

q v is the lower bound of Dv(qv) and if qv < bv then θv
q v +1 is the upper bound of Dv(qv) 

(see the figure 7). 

 

Figure 7: Domains of the phase space Ω of the UDS of figure 6 (θu
1  = θuv and θu

2  
= θuv). 
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3.3  Dynamics of differential equation systems 

In a domain D(q), each function fv reduces to the constant kv+∑u∈ω v(q) kuv (see equation 2). 
The system thus simplifies to a linear and uncoupled differential equation system whose 
solution in D(q), starting at x0  ∈ D(q), is given by 

xv(t) = κv(x
0  ) − (κv(x

0  ) −  xv
0  ) e

−λvt,     for all v∈ V, 

with κv(x) = fv(x)/λv for all x∈Ω . Function κv is also reduced to a constant (kv+∑u∈ω v(q) kuv)/λv 

in D(q), denoted κv(q) by abuse of notation. The state κ(q) = (κv(q))v∈ V acts as an attractor in 
D(q). Indeed, it is easy to verify that in D(q), x(t) has the following properties: 

1. if κv(q)∈ Dv(qv) then, xv(t) monotonically converges from xv
0   towards κv(q) and reaches 

κv(q) in infinite time. Thus, if κ(q)∈ D(q), x(t) does not leave D(q) and the state κ(q) is 
the unique stable steady state in D(q). 

2. if κv(q)∉ Dv(qv), then, if xv
0  < κv(q) (resp. xv

0   > κv(q)), xv(t) monotonically increases 
(resp. decreases) from xv

0  until to reach the threshold value θv
q v +1 (resp. θv

q v). The 
threshold is reached in a finite time iff κv(q) is different from it. Throughout this 
section, we suppose that the parameters k and λ are taken such that κ(q)∈Ω  for all 
q∈ Q. Consequently, if κ(q)∉ D(q), x(t) leaves in a finite time D(q) by reaching a 
threshold hyperplane. 

If κv(q)∉ Dv(qv), xv(t) reaches its corresponding threshold at time tv given by 












−κ
θ−κ

λ
−=

α+

0
   )(

  )(
 ln  

1
   

vv

q
vv

v
v

xq

q
t

v

 

with α = 1 if xv
0   < κv(q) and α = 0 if xv

0   > κv(q). If at least two components xu(t) and xv(t) reach 
their thresholds simultaneously, one can deduce that x0  belongs to an at most (|V|−1)-
dimensional surface of zero Lebesgue measure in D(q). Therefore, we do not consider this 
case and reason now as for almost every x0  ∈ D(q). 

Suppose that tv is the smallest value in {tu | κu(q)∉ Du(qu)}, in other words, suppose that v 
is the variable whose concentration first leaves the domain. The component xv(t) reaches 

α+θ vq
v  at the singular state x1 given by 

xv
1        = α+θ vq

v      and      xu
1        = xu(tv)   for all   u ≠ v. 

At this time, the trajectory exits from the domain D(q) and enters into D(q') defined by: 

• Du(q'u) = Du(qu) for all u ≠ v, since only v reached its threshold, 
• Dv(q'v) = Dv(qv+1) if α = 1 and Dv(q'v) = Dv(qv−1) if α = 0. 

But at the singular state x1,  the differential equation system is not defined as well as κv(x
1).  

The linear differential equation system of D(q') is then extended by continuity to the 

hyperplane xv = α+θ vq
v . Thus κv(x

1)  is defined, and the trajectory is extended with the solution 
of the differential system of D(q') from the new starting point x1.  
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3.4  Discrete and differential modellings are coherent 

Let M(G) be a model of a biological regulatory graph G=(V,E). The UDSs of G such that : 

dv(κv(q)) = Kv,ωv(q)    for all v∈ V and q∈ Q 

are called underlying differential systems of M(G). A model M(G) has UDSs if and only if it 
satisfies the Snoussi's constraints (equation 1) since we have: 
 

)(    and     allfor   ,/ , vGVvKkkd vv

u

uvvv
−

ω∈
⊆ω∈=










λ





+ ω∑  

and thus ω⊆ω ' implies ∑u∈ω  kuv ≤ ∑u∈ω ' kuv which implies Kv,ω≤ Kv,ω'. For example the UDS 
of figure 6 is an UDS of the model described in Table 1. The following propositions show the 
coherence between the asynchronous dynamics of M(G) and the dynamics of its UDSs. 
 
Proposition 1 

• If there is an UDS of M(G) such that x∈ D(q) is a stable steady state, then q is a stable 
state of the asynchronous state graph S of M(G). 

• Conversely, if q is a stable state of S then, for all UDSs of M(G), there is a stable 
steady state in the domain D(q). 

Proof. A state x∈ D(q) is a stable steady state iff xv = κv(q) for all v∈ V. That implies dv(xv) = 

dv(κv(q)) ⇒  qv = Kv,ωv(q) for all v∈ V and thus, q is a stable state of S. Conversely, if q∈ Q is a 

stable state, then qv = Kv,ωv(q) = dv(κv(q)) for all v∈ V. Thus, κv(q)∈ Dv(qv) for all v∈ V and 

consequently, κ(q)∈ D(q) is a stable steady state. 
 
We define now the boundary of a domain as the set of singular states whose distance to the 
domain is null. 
 
Proposition 2 

• If there is an UDS of M(G) for which there is a trajectory starting in D(q) which 
reaches directly from D(q) the hyperplane separating D(q) and an adjacent domain 
D(q'), then q → q' is a transition of the asynchronous state graph S of M(G). 

• Conversely, there exist UDSs of M(G) such that, for each successor q' of q in S, there 
is a trajectory starting in D(q) which reaches directly from D(q) the hyperplane 
separating D(q) and D(q'). 

Proof. We have seen in section 3.3 that if a trajectory starting at x0∈ D(q) reaches the 
hyperplane separating D(q) and an adjacent domain D(q'), then there is a unique variable v∈ V 
such that q'v ≠ qv and we have q'v = qv+1 if xv

0  < κv(q) or q'v =qv−1 if xv
0  > κv(q). Moreover, 

κv(q)∉ Dv(qv) thus xv
0   < κv(q) iff dv(xv

0  ) < dv(κv(q)) which is equivalent to qv < Kv,ωv(q). Similarly 

xv
0 > κv(q) iff dv(xv

0  ) > dv(κv(q)) which is equivalent to qv > Kv,ωv(q). According to definition 5, q 
→ q' is a transition of S. 

Now, we prove the second part of the proposition. Consider the UDSs of M(G) such that 
λu=λ for all u∈ V and an initial state x0∈ D(q). The trajectory starting at x0 describes the part of 
the segment connecting x0 to κ(q) which belongs to D(q). 
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Let q' be a successor of q in S. We have κ(q)∉ D(q). Let us choose a point x1 of the 
boundary of D(q) belonging to the hyperplane separating D(q) from the domain D(q') and 
whose only one component equals a threshold. The trajectories starting at a point of the line 
connecting x1 and κ(q) which belongs to D(q), reach x1.              

 
We deduce from the previous propositions that all the regular stable steady states of an UDS 
of M(G) are represented in its asynchronous state graph S. Moreover if a trajectory of an UDS 
of M(G) passes successively through the domains D(q0), D(q1), ..., D(qn) then q0 → q1 → ... 
→ qn is a path of S. But if q0 → q1 → ... → qn is a path of S, it does not mean that there is a 
trajectory passing successively through the domains D(q0), D(q1), ..., D(qn). Using the 
terminology of [14], the qualitative modelling is said sound. A graphical comparison between 
the asynchronous dynamics of a model and a trajectory of one of its UDS is given in figure 8. 

 

Figure 8: (a) The asynchronous state graph of the model M(G) of Table 1. (b) 
A trajectory of an UDS of M(G). The dotted arrows represent the extensions of 
solutions towards the attractors. 

 

Any UDS of a biological regulatory graph G is an UDS of a model of G satisfying the 
Snoussi's constraints. Thus the trajectories of the infinite set of UDSs of G are summarized by 
a finite set of asynchronous state graphs (for the biological regulatory graph of figure 3, we 
have 42 different state graphs deduced from the 60 different models satisfying the Snoussi's 
constraints). 

3.5  Feedback circuit functionality 

Feedback circuits play a major role for the dynamics of systems since they can generate multi-
stationarity or homeostasis. A positive (resp. negative) circuit is said functional if it generates 
multi-stationarity (resp. homeostasis). The functionality of circuits is strongly related to the 
the stationarity of particular singular states and to discontinuities of the UDS. To deal with 
them, we first introduce the differential inclusion systems. 

3.5.1  Differential inclusion systems 

To deal with ordinary differential equation systems with discontinuous right-hand sides, 
Filippov [9] proposed to extend them to systems of differential inclusions. For the regulatory 
networks, the UDSs can be extended to the following differential inclusions systems: 
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xv∈ Hv(x),  for all v∈ V,          (3) 

where Hv is a set-valued function, defined as follow: 

• for all regular state x, Hv(x) = { fv(x) − λv xv}. For all x∈ D(q), since fv(x)/λv= κv(q), 
Hv(x) can be rewritten as Hv(x) = {λv (κv(q) − xv)}. 

• for all singular state x, 

Hv(x) = 
___

co ({λv(κv(q) − xv) | q∈ N(x)}). 

• where 
___

co(E) designs the smallest closed convex set of a set E which is the intersection 
of all closed convex sets containing E, and where N(x) is the set of qualitative states 
which correspond to domains whose boundary contains x: 

.
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vvv
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vvv

xNq
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)()(
 

Consider the example of figure 7. For x such that xu = θu
2  = θuu and xv > θu

2 , we have N(x) = 
{(1,1), (2,1)} and for these states, ωu(1,1) = {} is included in ωu(2,1) = {u} and ωv(1,1) = 
ωv(2,1) = {u}. We deduce that Hu(x) = [λu(κu(1,1) − xu), λu(κu(2,1) − xu)] and Hv(x) = 
{ λv(κv(1,1) − xv)}. Intuitively, at the singular state x, the regulation u → v is clearly defined: 
s+(xu,θuv) = 1. This is why the set Hv(x) of the possible derivatives of xv is single-valued. 
However, as xu = θuu the self regulation of u remains undefined and Hu(x) is a priori not 
single-valued: the derivative of xu is comprised between the derivatives obtained with 
s+(θuu,θuu) = 0 and s+(θuu,θuu) = 1. 

An absolutely continuous function x(t) is solution of the system (3) in the sense of 

Filippov if )(txv ∈ Hv(x(t)) for all v∈ V and for almost all t ≥ 0. The qualification ``for almost 
all t ≥ 0'' means that the set time-points for which the condition does not holds if of measure 0. 
In particular, the condition is not satisfied at time-points when the solution arrives or leaves a 
threshold hyperplane. 

We do not analyse the solutions in the sense of Filippov in this section (see [11, 7] for a 
detailed analysis), but the previous formalism will be useful for analysis of the steadiness of 
singular states. 

 

3.5.2  Steadiness of singular states 

It is not surprising that a state x, regular or singular, is an equilibrium point (in the sense that 
there is a solution x(t) such that x(t) = x for all t ≥ 0) when 0∈ Hv(x) for all v∈ V. For a regular 
state x∈ D(q), we have, as for differential equation systems: 

0∈ Hv(x)  ⇒    0∈ { λv(κv(q) − xv) }  ⇒   xv = κv(q). 

In this case, x is a regular stable steady state. For a singular state, the inclusion can be written 
as an inequality: 



Formal methods for regulatory networks  A. Richard, J.-P. Comet and G. Bernot 

 17 

( ) ( )
)(max)(min

)(max0)(min 0

)()(

)()(

qxq

xqxqxH

v
xNq

vv
xNq

vvv
xNq

vvv
xNq

v

κ≤≤κ⇔

−κλ≤≤−κλ⇔)( ∈

∈∈

∈∈  

and if xv∉Ω v the inequality becomes strict: 
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because κv(q)∈Ω v for all q∈ N(x). Among all singular equilibrium points, those for which we 
have minq∈ N(x) κv(q)  = xv = maxq∈ N(x) κv(q) for xv ∈  Ωv, are singular steady states [24, 7]. 
Figure 9 shows a graphical representation of the conditions for the steadiness of singular 
states. 
 
Proposition 3   Let x be a singular state and v a variable. If for all u∈ G−(v) xu ≠ θuv, then 
κv(q) is constant for all q∈ N(x). 
 
Proof. For all u∈ G−(v) we have xu∈Ω u or xu = θuv' ≠ θuv with v'∈ G+(u). In the first case, it is 
evident that qu = q'u for all q and q' in N(x). In the second case, for all q and q' in N(x), qu and 
q'u belong to {tuv'−1,tuv'} and tuv' ≠ tuv. Then qu and q'u are on the same side of tuv. 
Consequently, for all q and q' in N(x) we have ωv(q)=ωv(q') which implies κv(q)=κv(q').         

 

Figure 9: Equilibrium points and their steadiness. Grey regions, a rectangle in 
(a) and a segment in (b), correspond to the Cartesian product Ψ(x)= [minq∈ N(x) 

κu(q), maxq∈ N(x) κ u(q)] × [minq∈ N(x) κv(q), maxq∈ N(x) κv(q)] for a singular state x. 
In (a) x = (θuv,θvu) is an equilibrium point (x∈Ψ (x)) and since all variables are 
singular, it is steady. In (b) the singular state is such that xu > θuu and xv = θvu 
and it is not an equilibrium point (x∉Ψ (x)). 

3.5.3  Circuit characteristic states 

Definition 6  [Circuit]   Let G=(V,E) be a biological regulatory graph. A circuit of G is a 
finite sequence of distinct elements of V, denoted C = v1,v2,...,vn, such that vn → v1∈ E and vi 
→ vi+1∈ E for all i∈ {1,...,n−1} . 
 
In the sequel, {C} denotes the set of variables of a circuit C and i+1 (resp. i−1) is always 
computed modulo n: vi+1 (resp. vi−1) denotes the successor (resp. predecessor) of vi in C. Two 
circuits C and C' are disjointed if they have no variable in common. In a pedagogical 
objective, we focus here on the properties of a single circuit, but all results can be extended to 
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a union of disjointed circuits [24]. Moreover we take into consideration only regulatory 
graphs where for any variable the out-thresholds are distinct (bv = |G+(v)|, ∀ v∈ V).  

A singular state x is said characteristic of a circuit C = v1,v2,...,vn if the concentration xvi of 

each variable vi of the circuit is equal to the threshold θvivi+1 and if the concentrations of other 
variables are regular: xu∈Ω u, ∀  u∉ { C}. 
 
Proposition 4   A singular steady state is a characteristic state of a circuit of the biological 
regulatory graph G. 
 
Proof. Let x be a singular state and S = {v | xv∉Ω v} be the set of variables equal to a threshold 
at the state x. If x is steady, we have for all v∈ S : 

)(max)(min
)()(

qxq v
xNq

vv
xNq

κ<<κ
∈∈

. 

According to the proposition 3, if for all u∈ G−(v) we have xu ≠ θuv then minq∈ N(x) κv(q) = 
maxq∈ N(x) κv(q) and x is not steady. Thus v has at least one predecessor u such that xu = θuv, 
which implies that u∈ S. Moreover, because θuv' ≠ θuv for all v'∈ G+(u), the successor v of u is 
the only one such that xu = θuv. Each variable v of S has then a unique predecessor u in S such 
that xu = θuv.                   
 
Now, we prove that all the steady singular states can be identified in the qualitative modelling. 
 
Proposition 5   Let G be a biological regulatory graph containing a circuit C = v1,...,vn. 
Consider a UDS of a model M(G) and a characteristic state x of C. Let q∈ N(x). If x is steady, 
then M(G) is such that 

Kv,ωv(q) = qv   for all v∉ { C} 

Kvi,ωvi(q)\{ vi−1}  <  tvivi+1 ≤  Kvi,ωvi(q) ∪  {vi−1} for all i∈ {1,…,n} 

 
Proof. Let v∉ { C}. Since x is characteristic of C, we have xv∈Ω v. If x is steady, then 
minq∈ N(x) κv(q) = xv = maxq∈ N(x) κv(q). That means that κv(q) is constant for all q∈ N(x) and we 

have dv(xv) = dv(κv(q)) which is equivalent to qv = Kv,ωv(q).  

Let vi∈ { C}. As x is characteristic of C, vi−1 is the unique predecessor of vi such that xvi−1 = 

θvi−1vi. Thus, ωvi(q) \ ωvi(q') equals {} or {vi−1} for all q and q' in N(x). Moreover there is at 

least one state q∈ N(x) such that qvi−1 = tvi−1vi and another one such that qvi−1 = tvi−1vi−1. Thus, 

there is a state q+∈ N(x) such that vi−1∈ω vi(q
+) and a state q− with vi−1∉ω vi(q

−). We deduce that 

for all q∈ N(x), ωv(q)∪ { vi−1} = ωvi(q
+) and ωv(q)\{ vi−1} = ωvi(q

−). So maxq∈ N(x) κvi(q) = κvi(q
+) 

and minq∈ N(x) κvi(q) = κvi(q
−). Since xvi = θvivi+ 1, if x is steady, we have for all q∈ N(x): 

 
κvi(q

−) < θvivi+ 1 < κvi(q
+) ⇔ dvi(κvi(q

−)) < θvivi+ 1 < dvi(κvi(q
+)) 

 ⇔ Kvi,ωvi(q−) <  tvivi+1 ≤  Kvi,ωvi(q+) 

 ⇔ Kvi,ωvi(q)\{ vi−1}  <  tvivi+1 ≤  Kvi,ωvi(q) ∪  {vi−1}  

 
Definition 7  [Quasi-characteristic qualitative states]   Let G=(V,E) be a biological regulatory 
graph containing a circuit C = v1,...,vn. A state q∈ Q is quasi-characteristic of C if qvi = tvivi+1 
for all vi∈ { C} . 
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The quasi-characteristic states are useful to locate the singular characteristic states of the 
UDS. 
 
Proposition 6   Let G be a biological regulatory graph containing a circuit C = v1,...,vn and a 
quasi-qualitative characteristic state q of C. If a model M(G) satisfies the Snoussi's 
constraints and if 

Kv,ωv(q) = qv  for all v∉ { C} 

Kvi,ωvi(q)\{ vi−1}  <  tvivi+1 ≤  Kvi,ωvi(q) ∪  {vi−1}  for all i∈ {1,…,n} 

then, for all the UDSs of M(G), there exists a unique steady characteristic state x of C such 
that du(xu) = qu  for all u∉ { C} . 
 
As the proof is quite similar to the previous one, it is omitted.  
 

The previous proposition makes easy the determination of all steady singular states 
underlying of a qualitative model. Let us consider for instance the model M(G) of Table 1. 
The corresponding biological regulatory graph G (Figure 3-(a)) contains two circuits, C1 = u,v 
and C2 = u. The unique quasi-characteristic state of C1 is (tuv,tvu). It satisfies 

Ku,ωu(tuv,tvu)\{ v}  < tuv = 1 ≤ Ku,ωu(tuv,tvu) ∪ { v}         and         Kv,{}  < tvu = 1 ≤ Kv,{u} . 

Indeed the first inequality is verified because ωu(tuv,tvu) = {}, Ku,{}  = 0 and Ku,{v}  = 2, the 
second is also verified since Kv,{}  = 0 and Kv,{u}  = 1. Consequently, the characteristic state 
(θuv,θuv) is steady in all the UDSs of M(G).  
For circuit C2, there are two quasi-characteristic states: (tuu,0) and (tuu,1). 

• The first one, (tuu,0), does not satisfy 

Ku,ωu(tuu,0)\{ u}  < tuu = 2 ≤ Ku,ωu(tuv,0) ∪ { u}    and    Kv,ωv(tuu,0) = 0. 

since ωv(2,1) = {u} and Kv,{u}  = 1. Thus there is not any steady characteristic state of 
C2 such that xv < θvu. 

• The second quasi-characteristic state, (tuu,1), satisfies 

Ku,ωu(tuu,1)\{ u}  < tuu = 2 ≤ Ku,ωu(tuv,1) ∪ { u}  and Kv,ωv(tuu,1) = 1. 

since ωv(2,1) = {u}, Kv,{u}  = 1, ωu(2,1) = {u}, Ku,{}  = 0 and Ku,{u}  = 2. For all UDSs of 
M(G) there is a unique steady characteristic state x of C2 such that xv > θvu. 

The detected singular states are represented in the asynchronous state graph of M(G) in 
figure 10. 

(4) 
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Figure 10: Representation of the steady singular states of model of Table 1. 

 

3.5.4  Circuit functionality 

Each variable of a feedback circuit has an influence on its target but also an indirect effect on 
all following variables including itself. A circuit is said positive (resp. negative) if each 
variable has a positive (resp. negative) influence on itself. The sign of a circuit is determined 
by the number of inhibitions: if it is odd, the circuit is negative and otherwise, the circuit is 
positive. Negative and positive circuits have different typical behaviours. 

• In a negative circuit, a high level of a variable tends to make decrease itself and 
conversely. Thus the circuit makes the level of each variable to tend to (or oscillate 
around) an equilibrium concentration. It generates stable oscillation behaviour 
corresponding to homeostasis in biology. 

• In a positive circuit, a high (resp. low) level of a variable tends to make it increase 
(resp. decrease). Thus each variable stays either at a low or high concentration and the 
positive circuit generates multi-stationarity corresponding to differentiation in biology. 

A circuit which presents a typical behaviour is said functional. Several authors have proved 
that at least one positive circuit is necessary to generate multi-stationarity whereas at least one 
negative circuit is necessary to obtain a stable oscillatory behaviour [18, 23, 6, 5, 25]. Snoussi 
and Thomas realized that when a characteristic state is steady, the corresponding circuit is 
functional [24]. In the qualitative formalism, the circuit functionality is then defined as 
follow. 
 
Definition 8  [Functional circuit]   Let M(G) be a model of a biological regulatory graph G 
containing a circuit C. If there is a quasi-characteristic state q of C satisfying the constraint 
(4) then C is functional. 
 
We deduce from the proposition 6 that if a circuit C is functional, there is, for all underlying 
differential systems, a steady characteristic state x of C such that xu = du(qu) for all u∉ { C}. In 
the model of Table 1, both circuits u → u and u → v → u are functional. As a result, multi-
stationarity and homeostasis are present in the corresponding asynchronous state graph (figure 
10). 

Summing up, homeostasis and/or multi-stationarity are dynamical properties almost 
always present in biological systems. Circuit functionality is then useful for modelling such 
systems. For example, it has been used to model immunity control in lambda phage [26], 
pattern formation during the embryonic development of Drosophilae [20, 19] and flower 
morphogenesis in Arabidopsis thaliana [16]. 
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4  Formal methods 

To study the behaviour of the genetic regulatory network, the ordinary differential equation 
systems are well adapted if all the parameters are well known. Unfortunately they are most 
often unknown and are difficultly measurable in vivo. The discrete approach of Thomas and 
co-workers simplifies the problem of determining the suitable parameters since the number of 
possible models is finite. Indeed finding suitable classes of those parameters constitutes a 
major issue of the modelling activity. Even if the Snoussi's constraints on parameters are used, 
the number of remaining models is too large to analyse them by hand. Then biological 
knowledge or hypotheses on the behaviour of the system can be used as an indirect criterion 
to constrain the parameters. For example homeostasis (resp. multi-stationarity) is 
experimentally observable and it indicates that a negative (resp. positive) feedback circuit is 
functional, this functionality leading to some constraints on the parameters (see section 3). 

To go further, conditions of multi-stationarity and homeostasis can be reinforced by 
introducing other conditions on the dynamics of the system. The available knowledge on the 
evolution of the system, as temporal properties, can be taken into consideration for 
constraining the values of parameters. Among all suitable models only a part of them are 
coherent with these temporal properties. Since numerous models have to be checked against 
those properties, a formal language is needed to perform automatically these checkings.  

4.1  Temporal logic 

The properties as the deadlock can be easily checked by exploring the transition system, 
called asynchronous state graph in section 2. For more complex properties on the dynamics 
of the system it is necessary to use a well adapted formal language: a temporal language 
which allows the specification of properties along the execution paths of the transition system. 
The step of the specification of the properties can then be distinguished from the specification 
of the system since it is not necessary to know the dynamic structure of the system to be 
checked for specifying the properties. 

Expressing temporal properties on a transition system needs to define the atomic 
propositions which depends of the considered regulatory graph G=(V,E). Generally the set of 
atomic propositions is denoted by AP. The subset of AP containing all the atomic propositions 
which are true in a state q, is given by the labelling function L: 

L(q) = { (v = qv)  |  v ∈  V  } 

where (v = qv) signifies that the variable v has the concentration level qv. The pair composed 
of a transition system and a labelling function is called a Kripke structure. 

Execution traces of the transition system model implicitly a discrete time: if an execution 
passes from the state s0 to s1, the instant associated to the state s1 follows the one 
corresponding to the state s0. The temporal logics allow one to specify dynamical properties 
referring to this discrete time [8]. The Linear Temporal Logic, LTL, is used to specify 
properties on an execution of the system. If the system is determinist, from any initial state 
there is a unique execution, LTL is appropriated to specify properties of the system. 
Nevertheless the qualitative behaviour of a biological regulatory network is represented by an 
asynchronous state graph which is non determinist: the current state can have several possible 
futures. Since time has a tree structure, we prefer the Computation Tree Logic, CTL, in which 
it is possible to express properties of the form ''it is possible in the future that...''. 
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Definition 9  [Syntax of CTL] A CTL formula on the set of atomic propositions AP is 
inductively defined by: 

•  and any atomic proposition of AP are formulae 
• if φ and ψ are formulae, then (¬φ), (φ∧ψ ), (φ∨ψ ), (φ⇒ψ ), (φ⇔ψ), AXφ, EXφ, 

A[φUψ], E[φUψ], AGφ, EGφ, AFφ, EFφ are formulae. 

The semantics of CTL is defined on the execution trees of the transition system which are 
completely defined by their initial state and the transition relation. The semantics is given by 
the definition of the satisfaction relation s  φ meaning that the formula φ is satisfied on the 
execution tree starting at s. 
 
Definition 10  [Semantics of CTL] Let s0 be a state. The semantics of CTL is defined 
inductively by: 

• s0  and  s0  , 
• ∀  p∈ AP, s0  p  iff   p∈ L(s0), 
• s0  ¬ϕ   iff    s0  ϕ, 
• s0  ϕ1∧ϕ 2  iff  s0  ϕ1 and s0  ϕ2, 
• s0  ϕ1∨ϕ 2  iff s0  ϕ1 or s0  ϕ2, 
• s0  ϕ1⇒ϕ 2  iff  s0  ϕ1 or s0  ϕ2, 
• s0  ϕ1⇔ϕ2  iff  s0  (ϕ1⇒ϕ 2)∧ (ϕ2⇒ϕ 1), 
• s0  AXϕ  iff  for all successors s1 of s0, we have s1  ϕ, 
• s0  EXϕ  iff  for any successor s1 of s0, we have s1  ϕ, 
• s0  AGϕ  iff  for all paths s0,s1...si..., and for all si along the path we have si  ϕ, 
• s0  EGϕ  iff  for a particular path s0,s1...si... we have for all si along the path si  ϕ, 
• s0  AFϕ  iff  for all paths s0,s1...si..., there exists si along the path such that si  ϕ, 
• s0  EFϕ  iff  for a particular path s0,s1...si..., there exists si along the path such that 

si ϕ, 
• s0  A[ϕ1Uϕ2]  iff  for all paths s0,s1...si..., there exists si along the path such that si  

ϕ2 and for each j<i we have sj  ϕ1, 
• s0  E[ϕ1Uϕ2]  iff  for a particular path s0,s1...si..., there exists si along the path such 

that si  ϕ2 and for each j<i we have sj  ϕ1. 

is the always true formula;  is the always false formula; a state s satisfies all the atomic 
formulae of L(s); ¬, ∧ , ∨ , ⇒ , ⇔ are the usual connectives (respectively not, and, or, 
implication, equivalence). All the temporal connectives are pairs of symbols: the first element 
is A or E followed by X, F, G or U whose meanings are given in the next table and illustrated 
in Figure 11. 

A for All paths choices X neXt state 

E for at least one path choice (Exist) F some Future state 

  G all future states (Globally) 

  U Until 
 
Consider the example of Figure 5-(b) where variables are u and v. The atomic proposition are 
AP={(u = 0),(u = 1),(u = 2),(v = 0),(v = 1)}. AX(v = 1) means that in all next states accessible 
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from the current state in the asynchronous state graph, the concentration level of v is 1. This 
formula is true iff the current state is (1,1), (2,0) or (2,1). EG(¬ (u = 2)) means that there exists 
at least one path starting from the current state where the concentration level of u is constantly 
strictly less than 2. In Figure 5-(b), all states for which u is strictly less than 2 satisfy the 
formula. Then ¬ (u = 2) ⇒  EG(¬ (u = 2)) is satisfied for all states. A[(v = 1)U(v = 0)] means 
that for any possible path from the current state there exists a future state where v = 0 and in 
between v remains equal to 1. Note that (2,1) is the only state which does not satisfy the 
formula. And so on for other temporal connectives. 

It is now possible to translate a biological temporal property into a CTL formula. 
Classically a biological system can have several steady states corresponding to distinct 
phenotypes. Let us suppose that two distinct stable states, ss1 and ss2, are possible and that 
formulae ψ1 and ψ2 characterize the states ss1 and ss2 respectively. If the system is able to go 
from state s0, characterized by the formula ϕ0, either to state ss1 or to state ss2, these temporal 
properties can be translate into formulae: 

ψ1 ⇒  AG ψ1 stability of state ss1 

ψ2 ⇒  AG ψ2 stability of state ss2 

(ϕ0 ⇒  EFψ1) (ϕ0 ⇒  EFψ2) reachability of ss1 and ss2 from s0  
Such formulae are used in the concrete example of section 5 for expressing biological 
knowledge on the immunity control in bacteriophage lambda. 

 

Figure 11: Semantics of temporal connectives of CTL. 

 

4.2  Model checking 

The model checking is a verification method that proves automatically if a Kripke structure 
satisfies a temporal formula [13]. We briefly present the basic algorithm of model checking 
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for a CTL formula. Since the connectives ∨ , ⇒  and ⇔ can be rewritten in term of ¬  and ∧ , 
and since we have the following equivalence: 

AXϕ ≡ ¬EX(¬ϕ ) 
EGϕ ≡ ¬AF(¬ϕ ) 
EFϕ ≡ E( U ϕ) 
AGϕ ≡ ¬EF(¬ϕ ) 
A[ϕ1Uϕ2] ≡ ¬  ( E[¬ϕ 2U(¬ϕ 1∧¬ϕ 2)] ∨  EG(¬ϕ 2) ) 

we consider in the sequel formulae containing only the connectives: ¬ , ∧ , EX, AF and EU. 
Obviously any CTL formula can be transformed into a semantically equivalent CTL formula 
which uses only those connectives.  

The model checking for a CTL formula ϕ consists in labelling each state s of the transition 
system with sub-formulae of ϕ which are satisfied at the state s. These sub-formulae are 
added to L(s) containing initially the atomic propositions true in s. Suppose that ψ is a sub-
formula of ϕ and that states satisfying all the immediate sub-formulae of ψ have already been 
labelled. The labelling algorithm for ψ uses a case analysis to label states with ψ: 

• if ψ∈ AP, then the labelling is given directly by L(s) 
• if ψ = p∧ q, then L(s) = L(s) ∪  {p∧ q} for all s such that p, q∈ L(s) 
• if ψ = ¬p, then L(s) = L(s) ∪  {¬p} for all s such that p∉ L(s) 
• if ψ = EXq, then L(s) = L(s) ∪  {EXq} for all predecessors s of a state t such that 

q∈ L(t) 
• if ψ = AFq, then 

1. L(s) = L(s) ∪  {AFq} for all s such that q∈ L(s) 
2. Repeat: L(s) = L(s) ∪  {AFq} for all states s such that all successors are 

labelled with AF q, until there is no change. 
• if ψ = E[qUr], then 

1. L(s) = L(s) ∪  {E[qUr] } for all s such that r∈ L(s), 
2. Repeat: L(s) = L(s) ∪  {E[qUr]} for all states s such that q∈ L(s) and which 

have a successor labelled with E[qUr], until there is no change. 

It can be proved that this labelling algorithm ends and that states are labelled with all sub-
formulae of ϕ that they satisfy. Thus s ϕ if the state s is labelled with ϕ. By extension if all 
states are labelled with ϕ, we say that the considered Kripke structure satisfies ϕ. 

The model checking algorithm is linear with the size of the system and the size of the 
formula. Unfortunately, practical applications lead to transition systems with an enormous 
number of states, and the previous algorithm is often inefficient. To push back these limits, 
symbolic model checking [15] has been developed. It consists in computations on symbolic 
representation of subspaces of states.  

To sketch the symbolic model checking, let us introduce the operator Pre. Let S be the set 
of states and x be a subset of S. Pre(x) gives the set of states which have a successor in x. The 
set sat(ϕ) of states satisfying ϕ can then be defined inductively: 

• if ϕ∈ AP, sat(ϕ) = {s∈ S | ϕ∈ L(s)} 
• sat(¬ϕ ) = S \ sat(ϕ) 
• sat(ϕ ∨  ψ) = sat(ϕ) ∪  sat(ψ) 
• sat(ϕ∧ψ ) = sat(ϕ) ∩ sat(ψ) 
• sat(EXϕ) = Pre(sat(ϕ)) 
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• sat(AXϕ) = S \ Pre(S \ sat(ϕ)) 
• The connectives AFϕ and E[ϕ1Uϕ2] are more difficult to define. Let us remark that we 

have the following equivalence: 

AF ϕ ≡ ϕ ∨  (AX (AFϕ)) 
E[ϕ1Uϕ2] ≡ ϕ2 ∨  ( ϕ1 ∧  EX(E[ϕ1Uϕ2]) ). 

Then sat(AFϕ) and sat(E[ϕ1Uϕ2]) can be defined as the smallest fixed points of 
equations: 

 
f1(x) = sat(ϕ) ∪  sat(AX x) 

f2(x) = sat(ϕ2) ∪  (sat(ϕ1) ∩ sat(EX x )).  
 

Since functions f1 and f2 are monotone and that the set of states is finite, the iterative 
computation of the smallest fixed point ends. 

The Binary Decision Diagrams, or BDD for short, are data structures allowing the 
representation of Boolean expressions in a very compact way. Then subsets of states can be 
coded with such Boolean expressions and necessary operations for computing sat can be 
defined on these structures. Numerous works detail utilization of BDDs for the verification of 
systems, see for example [15, 13]. 

4.3  A tool for the selection of models: SMBioNet 

We have designed a software for a computer aided modelling based on the previous described 
formal methods [3]. This software, SMBioNet1, helps the biologist and/or the modeller to 
verify systematically the coherence of models of a given biological system, and to select 
suitable models which satisfy the temporal properties extracted from knowledge or 
hypothesis. More precisely inputs of SMBioNet consist in 

• a biological regulatory graph representing the interactions of the biological system and 
• a CTL formula expressing its known or hypothetical dynamical properties. 

Then it generates all the models of the biological regulatory graph and gives as output those 
satisfying the CTL formula. For each generated model, SMBioNet calls the model checker 
NuSMV [4] and selects it if the formula is satisfied. For each selected model, the 
asynchronous state graph and the steady states (regular and singular) are given. Depending on 
the available biological knowledge, the user can 

• reduce the domain of variation of some parameters, 
• apply general constraints on parameters as, for example, the Snoussi's and 

observability2 constraints, 
• specify a set of steady states (regular and singular) and a set of functional circuits. 

These direct constraints on parameters decrease significantly the number of models to 
generate and consequently increase the efficiency of the selection. However, one can test 
directly the coherence of the regulatory graph (i.e. is there at least one suitable model ?), 
without enumeration of models by using a symbolic description of the set of all models. 
 

                                                 
1 Selection of Models for Biological Networks, see http://smbionet.lami.univ-evry.fr 
2 Presented in the next section. 
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In the next section, we shows how SMBioNet can be used for modelling the immunity control 
in bacteriophage lambda.  

5  Immunity control in bacteriophage lambda 

One of the most studied genetic regulatory networks is probably the one controlling immunity 
in temperate bacteriophage lambda which is a temperate virus. As described in figure 12, after 
infection of a bacterial population, many bacteria soon lyse and produce new phages but some 
survive and carry lambda genome in a dormant form. The first response is called lytic and the 
second lysogenic. In the lysogenic bacteria, viral DNA has integrated into the bacterial 
chromosome and will be faithfully transmitted to the bacterial progeny. In this condition, the 
viral gene cI, produces a repressor which blocks the expression of all the other genes of the 
phage, thus making the viral genome harmless for the bacterium. Moreover, cI makes 
lysogenic bacteria immune towards other infections. Lysogenization necessitates two events, 
integration of the viral DNA into the bacterial chromosome and development of immunity due 
to the expression of the repressor. The choice between the lytic and lysogenic pathways is 
very similar to cell differentiation, in the sense that a given virus, infecting apparently 
identical cells, can behave in two extremely different ways. 

 

Figure 12: The life cycle of bacteriophage lambda. 
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It is actually in the context of this biological system that Thomas started to develop his 
formalism. Although he proposed various models of the immunity control [30, 29, 26], we 
focus in this section on the model developed by Thieffry and Thomas in [26], which is 
denoted M(G) in the sequel. We will show that SMBioNet allows one to select, automatically 
and with very few biological knowledge, a set of models containing M(G) and satisfying the 
validation criteria given by Thieffry. All models of this set have to be considered since they 
have a priori the same prediction capacity than M(G). 

5.1  Biological regulatory graph 

The biological regulatory graph G summarizes the main regulations of the immunity control 
(Figure 13). Obviously it contains gene cI, but also three others (cro, cII, and N) which play a 
predominant role. Gene cI is activated by cII. Once on, gene cI remains on because its product 
activates its own synthesis, but at the same time, gene cI switches off the other lambda genes, 
including cII which had just switched it on. In addition gene cro exerts a negative control on 
cI, directly and indirectly, by repressing gene cII. Finally, gene N exerts a positive control on 
cII and is itself under negative control of cI and cII. According to the thresholds fixed by 
Thieffry, variables cI, cro, cII and N are 3-,4-,2- and 2-valued respectively, leading to 48 
possible states. In the remainder, the state of the system is represented by the vector 
(cI,cro,cII,N). 

 

Figure 13: Biological regulatory graph G for immunity control. 

5.2  Temporal properties 

When the viral genome integrates a cell, all the viral proteins are initially absent. Thus 
(0,0,0,0) corresponds to the initial state of the system. The existence of both responses, lytic 
and lysogenic, implies that there exist two paths starting from the initial state leading 
respectively to the lytic state and to the immune one. The lytic state is known to be 
characterized by high concentration of cro and a low concentration of cI, cII and N whereas 
immune state is characterized by high concentration of cI and low concentration of cro, cII 
and N. In [26], both states (0,2,0,0) and (0,3,0,0) correspond to the lytic state and (2,0,0,0) is 
the only state corresponding to the immunity. Without change of the environment, the choice 
between the lytic and the lysogenic pathways is irreversible, thus the lytic and immune states 
are steady. Then if the system reaches one state of the sets A={(0,2,0,0),(0,3,0,0)} or 
B={(2,0,0,0)}, then it will never leave it. These sets of states are said steady sets.   

Summing up, dynamics of models to consider have to contain paths from (0,0,0,0) to the 
steady sets of states A and B. These properties are translated into the CTL formula Φ as 
follow: 
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init = ((cI = 0) ∧  (cro = 0) ∧  (cII = 0) ∧  (N = 0)) 

lytic = ((cI = 0) ∧  (cro ≥ 2) ∧  (cII = 0) ∧  (N = 0)) 

immune = ((cI = 2) ∧  (cro = 0) ∧  (cII = 0) ∧  (N = 0)) 

ΦA = lytic ⇒  AG(lytic) 

ΦB = immune ⇒  AG(immune) 

Φr = init ⇒  ( EF(lytic) ∧  EF(immune) ) 

Φ = ΦA ∧  ΦB ∧  Φr 

The sub-formulae init, lytic and immune characterize the initial state, and the sets A and B. 
The steadiness of A and B is translated by ΦA and ΦB. The formula Φr expresses reachability 
of A and B from the initial state and Φ represents the temporal properties to use for the 
selection of models.  

5.3  Selected models 

There is near 7 thousands of millions of models associated to G leading to about 3 millions of 
different asynchronous state graphs. If we consider the Snoussi's constraints (equation 1) as 
Thieffry and Thomas did, it remains 151200 models. Moreover, we use the activity 
constraints [2]: 

for each regulation  u → v  there is a set ω⊂ G−(v) such that Kv,ω ≠ Kv,ω∪ { u}  

which stands for the observability of any regulation. If u → v does not satisfy the constraints, 
the attractor of v does not depend on the level of u. It seems then quite obvious that any model 
should satisfy this property in order that all regulations play a role in the dynamics. Taking 
into account these constraints, SMBioNet selects among the 882 remaining models, 88 
models satisfying the formula Φ. The model M(G) proposed by Thieffry and Thomas is one of 
them. Table 2 shows the possible values of parameters for the selected models. 17 parameters 
among 24 are fixed by formula Φ (in particular, all the parameters associated to N). 
 

KcI,{}  = 0 

KcI,{cI}  = 1 or 2 

KcI,{cro}  = 0,1 or 2 

KcI,{cII}  = 0,1 or 2 

KcI,{cI,cro} = 2 

KcI,{cI,cII}  = 1 or 2 

KcI,{cro}  = 2 

KcI,{cI,cro,cII}  = 2 

  

Kcro,{}  = 0 

Kcro,{cI}  = 2 

Kcro,{cro} = 0 

Kcro,{cI,cro } = 2 or 3  

 

KcII,{}  = 0 

KcII,{cI}  = 0 

KcII,{cro}  = 0 

KcII,{N}  = 0 

KcII,{cI,cro}  = 0 or 1 

KcII,{cI,N}  = 0 or 1 

KcII,{cro,N}  = 0 or 1 

KcII,{cI,cro,N}  = 1 

  

KN,{}  = 0 

KN,{cI}  = 0 

KN,{cro}  = 0 

KN,{cI,cro } = 1  

Table 2: Possible values of parameters for the selected models. Bold numbers 
correspond to the model M(G). 
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5.4  Validation of models 

Thieffry and Thomas exhibited one model whose coherence is analysed through the 
likelihood of some paths of the asynchronous state graph of M(G) and through the pertinence 
of predictions on the dynamics of some mutants. Our approach leads to select 88 models 
which have to be evaluated with the same biological criteria of validation. 

• Although 4 positive feedback circuits are present in the regulatory graph, the 88 
selected models present only two steady states (regular or singular): (2,0,0,0) is always 
steady and the other one is either (0,2,0,0) or a singular state adjacent to (0,2,0,0) and 
(0,3,0,0). These steady states correspond to the lytic and immune states, and no other 
stable behaviour (phenotype) can be observed. 

• Even if several pathways are possible from the initial state to immune state, all 
selected models present the most likely pathway in M(G) from initial state to A (see 
Figure 14). 

 

Figure 14: Likely paths from the initial state to the lytic and immune states (in 
bold). The dotted arrow is absent for the 44 models such that Kcro,{cro,cI} = 3, 
M(G) included, whereas the dashed ones are absent for others. 

Similarly the pattern of dynamics present in M(G) allowing the system to evolve from 
initial state to lytic state, is also present in all selected models. 

• Biological knowledge on mutants is available and can be used for validating models. 
The considered mutations correspond to the inactivation of different combinations of 
genes. Then simulations of the behaviour of these mutants can be performed and 
confronted to the biological knowledge. For example, the dynamics of the mutant λcI-
cro-, where genes cI and cro are inactivated, is obtained from M(G) by setting to 0 all 
parameters associated to cro or cI. Consequently, from an initial state where cI and cro 
are absent, they will never appear. The dynamics of this mutant is given in Figure 15. 

 

Figure 15: Dynamics of the mutant λcI-cro- obtained from M(G). 
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The dynamics of mutants obtained from M(G) are coherent from a biological point of 
view, since the remaining basins of attraction allow the prediction of the behaviour of 
mutants. For any selected model, results are the same and are given in table 3. 

Among the 88 selected models, some differences can be highlighted. For example, 2 states are 
unreachable from the initial state in M(G) whereas for some selected models 15 states are 
unreachable. In such models, all states with cI = 2 and cro = 3 are not reachable, which is 
reasonable because high concentration of cI and cro is rarely observed. Moreover, such 
models do not contain the path (0,0,0,0) → (1,0,0,0) → (2,0,0,0) present in the dynamics of 
M(G) and which is unlikely in view of the low expression of cI when cII is absent. 

 

Mutants Basins of attraction 
λcI- A 
λcro- B 
λcII- A and B 
λN- A and B 
λcI-cro- {(0,0,1,1)} 
λcII-N- A and B 
λcro-N- A 
λcro-cII- A 
λcro-cII-N- A 

Table 3: Basins of attraction for a collection of mutants. 

 

In conclusion, these 88 selected models satisfy the same criteria of validation that M(G) and 
have also to be considered. These models have been selected using a formula Φ expressing 
the well known properties of the system. Thieffry and Thomas have exhibited their model 
with the circuit functionality and some hypothesis. We can notice that the used constraints for 
functionality are not necessary to reproduce the biological properties (expressed by Φ) 
because some of the models selected by Φ do not satisfy these functionality constraints. 
Moreover some parameters are valuated according to hypotheses (KcII,{cI,N}  = 2 for example) 
which have to be slacken since some models selected by Φ propose different values for these 
parameters.  

6  Conclusion 

We have defined a formal description of biological regulatory networks which allows a 
computer aided manipulation of the semantics of the discrete modelling of Thomas, this 
manipulation being proved correct by construction. Our approach allows biology to take 
advantage of the whole corpus of formal methods from computer science. Model checking is 
a first powerful tool offered by the formalization of biological regulatory networks. In 
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particular, temporal properties can be added into the specifications of the system, and the 
modelling task consists in exhibiting one or more generally all models that are coherent with 
the previous specifications expressing a part of the biological knowledge concerning the 
dynamics of the system. All potential models have to be checked against temporal formulae, 
and this task can be done automatically using model checking. This brute force approach 
permits one to exhibit exhaustively all suitable models, i.e. all models satisfying the temporal 
formulae. Information provided by a new experiment or a new theoretical point of view will 
refine the set of selected models.  

The available temporal properties concern generally the homeostasis, the multi-
stationarity, stable steady states and the accessibility of some stable steady states from a 
partially specified initial state. Unfortunately the stable steady states are some time singular 
and not formally represented in the asynchronous state graph of Thomas. Then the 
specifications cannot easily contain temporal properties concerning such singular states. This 
would necessitate to rewrite these temporal properties with only atomic propositions of 
regular states, and this task is generally difficult.  

De Jong et al. [7] introduced the singular states into their qualitative dynamics. Their 
qualitative modelling of genetic regulatory networks is also based on piecewise-linear 
differential equations. Authors propose a mathematically well founded method to deal with 
singular states using differential inclusions [9, 11]. Our approach consisting in adding 
temporal properties into the specifications for determining the suitable parameter values, 
would allows in this context to treat regular states as well as singular states. 

More generally the formal methods can be applied in the field of biological regulatory 
networks and systems biology in order to explicit some behaviours or to take into account 
biological knowledge which have been ignored for the moment. The cooperation between 
biology and formal methods from computer science opens a large horizon of research 
perspectives. 

• The introduction of transitions in the regulatory graph could help to specify how the 
different regulators cooperate for inducing or repressing their common target [1]. One 
can also separate inhibitors from activators [2] to increase the expressivity of the 
approach, or take into account time delays [31] between the beginning of the 
activation order and the synthesis of the product and conversely for the turn-off 
delays. 

• Automatic generation of experiment schema from suitable models. In order to reduce 
again the set of suitable models, we would like to propose the biologist to perform an 
determining experiment. The result is then confronted to each model and only those 
which are coherent with the experiment, have to be kept. An experiment often consists 
to put the system in a particular state (partially specified) and to observe after a while 
if one or several gene products are present or not. This implies to extract the 
specificities of the biological application domain in order to define patterns of 
formulae expressing feasible experiments. 

• The modelling of a regulatory network concerns generally only a small part of the 
global regulatory network of the cell. It becomes crucial to prove that the dynamical 
properties of this sub-network are preserved when it is embedded into the global 
network. This is correlated to the treatment of knock-out mutants, identification of 
functional patterns [21] as well as the structure of huge regulatory networks. 

To achieve such development several directions have to be considered. High-level Petri nets 
are graphical oriented languages for design, specification, simulation and verification of 
systems. They are in particular well-suited for systems in which communication, 
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synchronization and resource sharing are important. Clearly, biological systems present these 
characteristics, and modelling by such nets would allows us to take advantage of all results 
and tools in the field of high-level Petri nets. 

Hybrid automata can take into account the continuous aspects of a regulatory network: it 
is a mathematical model for hybrid systems, which combines, in a single formalism, 
automaton transitions for capturing discrete changes with differential equations for capturing 
continuous changes. Symbolic model checkers, as HyTech [12], have been developed for the 
subclass of linear hybrid automata. It becomes possible to perform parametric analysis, i.e. to 
determine the values of parameters for which a linear hybrid automaton satisfies a temporal-
logic requirement. 

These research perspectives aim to link modelling and experiments together, by furnishing 
to biologists model structuring methods and model validation tools from current researches in 
theoretical computer science. The resulting formal models are not only a posteriori 
explanations of biological results, they are guides for biological experiments whose success 
will be in fine the discriminating criterion. 
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