
HAL Id: hal-00342163
https://hal.science/hal-00342163v1

Submitted on 1 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Dynamic Reconfiguration of Behavioural Adaptation
Pascal Poizat, Gwen Salaün, Massimo Tivoli

To cite this version:
Pascal Poizat, Gwen Salaün, Massimo Tivoli. On Dynamic Reconfiguration of Behavioural Adapta-
tion. Proceedings of the third International Workshop on Coordination and Adaptation Techniques
for Software Entities (WCAT 06), Jul 2006, Nantes, France. pp.61–69. �hal-00342163�

https://hal.science/hal-00342163v1
https://hal.archives-ouvertes.fr


On Dynamic Reconfiguration of Behavioural

Adaptations

Pascal Poizat1, Gwen Salaün2, and Massimo Tivoli3

1 IBISC FRE 2873 CNRS – University of Évry Val d’Essonne, Genopole
Tour Évry 2, 523 place des terrasses de l’Agora, 91000 Évry, France

Pascal.Poizat@ibisc.univ-evry.fr
2 VASY project, INRIA Rhône-Alpes, France

655 avenue de l’Europe, 38330 Montbonnot Saint-Martin, France
Gwen.Salaun@inrialpes.fr

3 POPART project, INRIA Rhône-Alpes, France
655 avenue de l’Europe, 38330 Montbonnot Saint-Martin, France

Massimo.Tivoli@inrialpes.fr

Abstract. Software components are now widely used in the develop-
ment of systems. However, incompatibilities between their observable in-
terfaces may happen and then make their composition impossible. Soft-
ware adaptation aims at generating as automatically as possible new
components called adaptors whose role is to compensate such incompat-
ibilities. Since development of adaptors is costly, it is crucial to make
their reconfiguration possible when one wants to modify or update some
parts of a running system involving adaptors. In this first attempt, we
present the problem of dynamically reconfiguring adaptors and we sketch
some ideas of solution on an example. Finally, we end with a list of open
issues to be worked out.

1 Introduction

Software components are now widely used in the development of systems, in-
cluding embedded systems, web services or distributed applications. This area
known as Component-Based Software Engineering has still many issues to be
solved. Main challenges focus on composition, adaptation and verification of
these applications. Software adaptation aims at generating as automatically as
possible new adaptors whose role is to compensate incompatibilities appearing
in a system constituted of communicating entities.

It is now becoming accepted that entities and in particular their public in-

terfaces, most of the time the only observable part of a component due to its
black-box feature, have to be represented using dynamic behaviours [22, 10, 3,
19, 7]. In this paper, we deal with adaptors fixing incompatibilities in their be-
havioural interfaces.

The construction of adaptors can be costly, in particular when built from
scratch. Consequently, when one wants to update or modify some parts of a
running system, add some new functionalities or needs, suppress out-of-date



2 Pascal Poizat, Gwen Salaün, and Massimo Tivoli

services, we should propose automated techniques to reconfigure the running
adaptors without stopping the whole system.

Reconfiguration can be performed off-line or dynamically at run-time. Dy-
namic reconfiguration seems more realistic because it is applied while the system
is running. On the other hand, it is more difficult in this case to practically take
changes into account since modifications have to be made without interrupting
parts of the system which are not affected by them. Several possible changes are
upgrade, addition or removal of components, and reconfiguration of the archi-
tecture such as addition or suppression of connections.

Dynamic reconfiguration [18] is not a new topic and many solutions have
already been proposed dealing with distributed systems and software architec-
tures [15, 16], graph transformation [1, 21] or metamodelling [14, 17]. However,
to the best of our knowledge, nobody has already worked on the reconfiguration
of systems involving adaptors which raises specificities since any change induces
modification of the adaptor.

In this work, we consider open systems, that are systems where the number of
connectors and components is not fixed, and then can vary. Additionally, systems
we handle can be made up of several components and several adaptors, even if
we modify only one adaptor at a certain moment. Therefore, the other adaptors
involved in the system to be reconfigured are viewed as any other component.

A related problem is incremental adaptation [5] which argues for the con-
struction of adaptors step by step by successive refinements. Such successive
steps can be viewed as several reconfigurations, then the reconfiguration issue is
more general and subsumes incremental adaptation.

The rest of this paper is organized as follows. Section 2 presents our formal
model to describe component interfaces and adaptors. In Section 3, we show
possible changes that can be performed on a system with several components and
an adaptor. This section also sketches some solutions to the reconfiguration issue
through an example. Section 4 ends with concluding remarks and perspectives.

2 Component Interfaces and Adaptors

Component interfaces are given using a signature and a behavioural interface.
A signature Σ is a set of operation profiles. This set is a disjoint union of

provided operations and required operations. An operation profile is simply the
name of an operation, together with its argument types, its return type and the
exceptions it raises.

We also take into account behavioural interfaces through the use of la-
belled transition systems (LTS). A Labelled Transition System (LTS) is a tuple
(A, S, I, F, T ) where: A is an alphabet (set of event labels), S is a set of states,
I ∈ S is the initial state, F ⊆ S are final states, and T ⊆ S × A × S is the
transition function.

The alphabet of the LTS is built on the signature. This means that for each
provided operation p in the signature, there is an element p? in the alphabet, and
for each required operation r, an element r!. Communication between two LTSs



On Dynamic Reconfiguration of Behavioural Adaptations 3

involves one event with complementary actions p?/p!. Higher-level behavioural
languages such as process algebras can be used to define behavioural interfaces
in a more concise way.

We point out that our communication model is synchronous: two components
synchronize on one event (rendez-vous) and then continue their own evolution.
Asynchronous communication can be modelled adding components representing
the message queues and interacting with the other components in a synchronous
way.

To check if a system made up of several components presents behavioural
mismatch, its synchronous product is computed and then the absence of dead-
locks is checked on it [8]. An abstract description of an adaptor is given by an
LTS which, put into a non-deadlock-free system yields a deadlock-free one. For
this to work, the adaptor has to preempt all the component communications.
Therefore, prior to the adaptation process, component message names may have
to be renamed prefixing them by the component name, e.g., c:message!.

3 Adaptor Reconfiguration

3.1 Preliminaries

Changes. First of all, let us summarize the possible changes [18] that can be
applied to a system made up of a set of incompatible components and an adaptor
making all the entities work correctly together. We distinguish three main classes
of changes: (i) upgrade of a component, (ii) addition of a new component, (iii)
suppression of a component belonging to the system. Note that an upgrade is
a specific case which could be computed as a suppression and an addition of a
new component.

In the real world, such changes may appear in many cases. For example, let
us imagine two components which can respectively receive orders of books and
CDs; a third component could be added to handle DVDs. Another example could
be an invoice component in charge of generating invoices for a french electricity
company which would be updated to handle only prices in euros and abandon
the double printing in euros and francs.

Substitution. As far as component upgrade is concerned, a first case is when
the new component has exactly the same behaviour as the one before. Formally,
it means that both behaviours are strongly equivalent and it can be checked
automatically using Bisimulator [6], a tool of the CADP toolbox [11] which
allows to verify the most common notions of behavioural equivalences (trace,
tau*.a, safety, observational, branching, strong). Equivalences are relations which
are preserved on the structure of two behaviours described as automaton. A
strong equivalence can be preserved instead of a weak one because our model
does not take into account τ actions that are internal actions unobservable from
the environment.

If components are not equivalent, several changes can take place in the new
component interface. Operations can be removed or added in the signature.



4 Pascal Poizat, Gwen Salaün, and Massimo Tivoli

More important are possible modifications of the behaviour where it can con-
cern minimal changes such as renaming of events, addition of an interaction (a
new transition) in the automaton, removal of an interaction (suppression of a
transition), or bigger changes such as addition or removal of several interactions
that are modifications of pieces of behaviour.

Silent portion. We emphasize that if the architecture has already changed,
we should have an update (abstract) description of the adaptor since a system
can be targeted by several successive changes. As regards adaptor updates wrt.

component changes, there are two ways to take them into consideration: either
modifying the current adaptor, or adding a new adaptor in-between the new
component and the previous adaptor [4]. Note that if the adaptor is dynamically
updated, modifications have to apply on a silent portion of the behaviour, that is
a portion not currently engaged in interactions with components to be updated.

Correctness guarantee. Another point concerns the reliability of the up-
dated adaptor wrt. the former one. Indeed, checking the absence of deadlocks
is required but is not enough to ensure that the system is left in a consistent
state after modification. Therefore, the adaptor-to-be must be validated (invari-
ant? checking properties?) off-line before really modifying its running version.
Another approach is to build a correct-by-construction adaptor, but in this case
our reconfiguration techniques have to be proven as respecting such a claim.

3.2 An example

In this section, we present an example with three components: C1 communicates
with C2 to send it as arguments a set of documents to store; C2 receives docu-
ments, stores them in a repository, and alerts another component C3 in charge
of counting the number of handled requests. These components cannot interact
correctly together because their interfaces are incompatible. Indeed, a deadlock
exists at the beginning because no matching of messages is possible. This can be
worked out with a simple reordering of events in components C1 or C2. The LTSs
for these three components and an abstract description of the adaptor are given
in Figure 1 with initial and final states respectively emphasized using an input
arrow or a black circle. The adaptor is built following the method proposed in
[8] with the three vectors 〈comm!, comm?, ε〉, 〈args?, args!, ε〉, 〈ε, inc!, inc?〉 as
an abstract description of the mapping specifying how components C1, C2, C3
have to interact.

In the following, we show issues and sketches of solutions on this example for
several changes that might be applied to components involved in this system. In
this example, we chose to modify the adaptor at hand instead of developing new
adaptors in-between as in [4].

A first simple modification is the renaming of a message. That induces the
renaming of all the instances of this message in the adaptor.

Suppression of a message implies its suppression in the adaptor. It can be
automatically computed using CADP tools [11] hidding the concerned message
and applying a tau*.a reduction. For instance, if the message inc! is removed
in C2, messages C2:inc? and C2:inc! are removed in the adaptor. In this case,



On Dynamic Reconfiguration of Behavioural Adaptations 5

args? inc?inc!args! comm?

C2:comm!

A

C3C2C1

C1:args!C2:args?

C1:args!C2:args?C1:comm?

C2:comm!C1:comm? C1:args! C1:args!

C3:inc!

C3:inc!C2:inc?

C2:inc?

comm!

Fig. 1. Three components and an adaptor

the system is not deadlock-free anymore, since C3 communicates on inc too.
Let us solve this situation removing the component C3. In case of a component
suppression, all the messages involved in this component have to be removed
from the adaptor, that are C3:inc? and C3:inc!. We show in Figure 2 all the
transitions concerned by these suppressions (red and bold font).

comm!

C2:comm!

args? args! comm?

C2:inc?

C2:inc?

inc?inc!

A

C3C2C1

C1:args!C2:args?

C1:args!C2:args?C1:comm?

C2:comm!C1:comm? C1:args! C1:args!

C3:inc!

C3:inc!

Fig. 2. Suppression of message and component

The adaptor obtained after suppression of these transitions (Fig. 3) is deadlock-
free. We emphasize that when components or messages are removed, some ser-
vices (the ones implemented in the suppressed parts) can be lost. Therefore, the
designer has to be informed of that before changes to be effectively taken into
account.

The last case focuses on addition of message and component. Now, let us
add (again) the message inc! in C2. The resulting updated adaptor can be
computed in two ways: (i) computing the new adaptor off-line, and then apply-
ing the adequate insertions into the running adaptor wrt. it, (ii) traversing the



6 Pascal Poizat, Gwen Salaün, and Massimo Tivoli

comm?args!args?

C2:comm!

comm!

C1:args!C1:comm? C2:comm!

C1:comm? C2:args? C1:args!

C2:args?

C1 C2

A

Fig. 3. Adaptor obtained after suppression

adaptor and adding directly into it the new message when it is possible wrt.

updated component interfaces. Note that in case (i) updates are applied only if
the adaptor is deadlock-free whereas in case (ii) the new adaptor can contain
deadlocks. Both approaches are meaningful: (i) ensures that the modified adap-
tor will work, but (ii) can be a first modification followed by another one (the
addition of former component C3). The latter case (ii) takes place when several
modifications should be made successively. These changes have to be applied in
sequence within a same silent portion to avoid the running adaptor to have an
unexpected behaviour and possibly insert deadlocks within the system.

Figure 4 shows the addition of message inc! in C2 following approach (ii).
In a second step, component C3, and the original system of Figure 1 is obtained.

args? args! comm?

C2:comm!

inc!

A

C2C1

C2:args?

C1:args!C2:args?C1:comm?

C2:comm!C1:comm? C1:args!

C2:inc?

C2:inc?

comm!

Fig. 4. Addition of message inc! in C2 and A



On Dynamic Reconfiguration of Behavioural Adaptations 7

3.3 Automatic handling of the reconfiguration process

An interesting aspect of our approach is concerned with its full automation in
handling the reconfiguration process. In other words, to make the reconfiguration
process as automatic as possible, we could develop techniques that allow the
adaptor to automatically detect and react (by triggering the synthesis of the
new adaptor) to changes on the components that it controls.

A possible idea is to enrich (during the automatic synthesis of the adap-
tor’s actual code) the implementation of the adaptor with mechanisms that are
suitable for that.

A solution could be the use of exception handling techniques and in par-
ticular Architectural exceptions [13, 20] that are exceptions that flow between
two components. Fault tolerance is intended to preserve the delivery of correct
services in the presence of active faults. It is generally implemented by error
detection and subsequent system recovery. Error detection originates an error
signal or message within the system.

Coming back to our context, supposing that a component need to be changed,
this activity could be represented as an exception that triggers the component
change. System recovery techniques can be used to bring the system in a consis-
tent state before components replacement. For instance, if the component that
must be replaced is in execution, system recovery techniques can help the system
to reach the state before the component execution.

4 Conclusion

In this paper, we presented the problem of dynamic reconfiguration in the context
of a system involving several incompatible components for which an adaptor
was implemented and deployed. It was illustrated using a simple example based
on a formal model of component interfaces describing signatures and dynamic
behaviours (ordering of messages).

It remains several open issues to be worked out before having a satisfactory
and completely automated solution to this problem:

– ensuring the correctness of a reconfiguration applied on the system (deadlock-
freeness is not enough): correct-by-construction? properties to be checked?;

– applying automatic reconfiguration while the system is running needs to de-
fine a notion of consistent state or silent behaviour: how can it be computed?
how can it be ensured that it can be obtained?;

– studying reconfiguration as a generation of new adaptor in-between the orig-
inal one and the involved updated components;

– formalising a language which can be used by a developer to write out the
changes he wants to make on the system;

– writing down the different algorithms automating the possible changes wrt.

a given formal description of component interfaces and expected reconfigu-
rations;



8 Pascal Poizat, Gwen Salaün, and Massimo Tivoli

– experimenting our approach on existing implementation languages and frame-
works such as COM/DCOM architectures [12], BPEL for web services [2],
the Fractal model and its implementations, e.g., ProActive [9];

– reconfiguration/evolution of the adaptor independently of any change in the
system.

References

1. N. Aguirre and T. Maibaum. A Logical Basis for the Specification of Reconfigurable
Component-Based Systems. In Proc. of FASE’03, volume 2621 of LNCS, pages 37–
51. Springer-Verlag, 2003.

2. T. Andrews et al. Business Process Execution Language for Web Services (WS-
BPEL). BEA Systems, IBM, Microsoft, SAP AG, and Siebel Systems, February
2005.

3. F. Arbab, F. S. de Boer, M. M. Bonsangue, and J. V. Guillen Scholten. A Channel-
based Coordination Model for Components. In Proc. of FOCLASA’02, volume
68(3) of ENTCS, 2002.

4. M. Autili, P. Inverardi, M. Tivoli, and D. Garlan. Synthesis of ”Correct” Adaptors
for Protocol Enhancement in Component-based Systems. In Proc. of Specifica-
tion and Verification of Component-Based Systems (SAVCBS’04), Workshop at
FSE’04, 2004.

5. S. Becker, C. Canal, J.M. Murillo, P. Poizat, and M. Tivoli. Coordination and
Adaptation Techniques for Software Entities. In ECOOP 2005 Workshop Reader,
2005. To appear.

6. D. Bergamini, N. Descoubes, C. Joubert, and R. Mateescu. BISIMULATOR: A
Modular Tool for On-the-Fly Equivalence Checking. In Proc. of TACAS’05, volume
3440 of LNCS, pages 581–585, Scotland, 2005. Springer-Verlag.

7. D. Beyer, A. Chakrabarti, and T. A. Henzinger. Web Service Interfaces. In Proc.
of WWW’05. ACM Press, 2005.

8. C. Canal, P. Poizat, and G. Salaün. Synchronizing Behavioural Mismatch in Soft-
ware Composition. In Proc. of FMOODS’06, Italy, 2006. Springer-Verlag.

9. D. Caromel, W. Klauser, and J. Vayssière. Towards Seamless Computing and
Metacomputing in Java. Concurrency - Practice and Experience, 10(11-13):1043–
1061, 1998.

10. L. de Alfaro and T. A. Henzinger. Interface Automata. In Proc. of ESEC/FSE’01,
pages 109–120. ACM Press, 2001.

11. H. Garavel, F. Lang, and R. Mateescu. An Overview of CADP 2001. EASST
Newsletter, 4:13–24, 2002.

12. P. Inverardi and M. Tivoli. Deadlock Free Software Architectures for COM/DCOM
Applications. Journal of Systems and Software, 65(3):173–183, 2003.

13. V. Issarny and J.-P. Banatre. Architecture-Based Exception Handling. In Proc. of
HICSS’01. IEEE Computer Society Press, 2001.

14. A. Ketfi and N. Belkhatir. A Metamodel-Based Approach for the Dynamic Re-
configuration of Component-Based Software. In Proc. of ICSR’04, volume 3107 of
LNCS, pages 264–273. Springer-Verlag, 2004.

15. J. Kramer and J. Magee. The Evolving Philosophers Problem: Dynamic Change
Management. IEEE Transactions on Software Engineering, 16(11):1293–1306,
1990.



On Dynamic Reconfiguration of Behavioural Adaptations 9

16. J. Kramer and J. Magee. Analysing Dynamic Change in Distributed Software
Architectures. IEE Proceedings - Software, 145(5):146–154, 1998.

17. J. Matevska-Meyer, W. Hasselbring, and R. Reussner. Software Architecture De-
scription Supporting Component Deployment and System Runtime Reconfigura-
tion. In Proc. of WCOP’04, 2004.

18. N. Medvidovic. ADLs and Dynamic Architecture Changes. In SIGSOFT 96 Work-
shop, pages 24–27. ACM Press, 1996.

19. S. Moschoyiannis, M. W. Shields, and P. J. Krause. Modelling Component Be-
haviour with Concurrent Automata. In Proc. of FESCA’05, volume 141(3) of
Electronic Notes in Theoretical Computer Science, pages 199–220, 2005.

20. C. M. F. Rubira, R. de Lemos, G. R. M. Ferreira, and F. Castor Filho. Exception
Handling in the Development of Dependable Component-based Systems. Softw.
Pract. Exper., 35(3):195–236, 2005.

21. M. Wermelinger, A. Lopes, and J. L. Fiadeiro. A Graph Based Architectural
(Re)configuration Language. In Proc. of ESEC / SIGSOFT FSE 2001, pages 21–
32. ACM Press, 2001.

22. D. Yellin and R. Strom. Protocol Specifications and Component Adaptors. ACM
Transactions on Programming Languages and Systems, 19(2):292–333, 1997.


