
HAL Id: hal-00342162
https://hal.science/hal-00342162v1

Submitted on 14 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Adaptation-based Approach to Incrementally Build
Component Systems

Pascal Poizat, Gwen Salaün, Massimo Tivoli

To cite this version:
Pascal Poizat, Gwen Salaün, Massimo Tivoli. An Adaptation-based Approach to Incrementally Build
Component Systems. Proceedings of the International Workshop on Formal Aspects of Component
Software (FACS 06), Sep 2006, Praha, Czech Republic. pp.155–170, �10.1016/j.entcs.2006.09.037�.
�hal-00342162�

https://hal.science/hal-00342162v1
https://hal.archives-ouvertes.fr

An Adaptation-based Approach to
Incrementally Build Component Systems

Pascal Poizat

IBISC FRE 2873 CNRS - Université d’Évry, France
ARLES Project, INRIA Rocquencourt, France

Email: Pascal.Poizat@inria.fr

Gwen Salaün

VASY Project, INRIA Rhône-Alpes, France
Email: Gwen.Salaun@inria.fr

Massimo Tivoli

POPART Project, INRIA Rhône-Alpes, France
Università degli Studi dell’Aquila, Italy

Email: tivoli@di.univaq.it

Abstract

Software components are now widely used in the development of systems. However,
incompatibilities between their behavioural interfaces may make their composition
impossible. The objective of software adaptation is to compensate such incompat-
ibilities building as automatically as possible corrective connectors or components.
Constructing component-based systems from scratch is difficult, in particular when
components cannot be used directly since they have to be adjusted with respect to
their mates. Incremental construction methods are therefore essential because they
make it possible to build systems step by step and therefore to master the complex-
ity of their adaptation. In this paper, we propose an incremental approach to build
component-based systems which relies on the generation of adaptors to overcome
behavioural incompatibilities. The adaptation stage can be automated being given
an abstract mapping formalising the properties of the system to be adapted.

Key words: Software Components, Behavioural Mismatch,
Adaptation, Incremental Construction.

1 Introduction

Software components are now widely used in the development of systems, in-
cluding embedded systems, Web services and distributed applications. The

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Poizat, Salaün, Tivoli

main challenges of Component-Based Software Engineering are composition,
adaptation and verification of component applications. Software adapta-
tion [16,7] aims at generating as automatically as possible component adap-
tors. Their role is to compensate incompatibilities appearing in a system
constituted of communicating entities. It is now being accepted that compo-
nents, and in particular their public interfaces – most of the time the only
observable parts of components due to their black-box nature – have to take
into account dynamic behaviours. In this paper, we deal with adaptors fixing
incompatibilities at this behavioural level, e.g., message name mismatch or
deadlocking protocols.

Building a software system from scratch is a difficult task even if one of the
promises of the component-based approach is to make the reuse of existing
software entities easier. Moreover, composing components is a task which must
take also into account adaptation of incompatible components. We propose
an approach to build incrementally component-based systems, and where the
generation of adaptors is fully automated if the software architect gives an
abstract description of the properties of the system to be adapted, i.e., an
adaptation mapping.

In this context, the notion of Software Architecture assumes a key role since
it represents the reference skeleton used to compose components and let them
interact. The architecture proposed in our approach associates an adaptor to
each component. If the component does not require adaptation, the adaptor
(called a no-op adaptor) will reproduce from an external point of view exactly
the same behaviour as the component. We build incrementally a system in
such a way that it is able to evolve to architectural changes such as component
addition or suppression. This architecture is very close to distributed systems
and can be implemented using adaptive middlewares [1,12]. However our
objective here is the automatic retrieval of the needed behavioural adaptor
protocols, and not their implementation.

Our adaptor generation process is based on a former work using an expres-
sive notation for the mapping (regular expressions of synchronous vectors),
algorithms and tools [8]. Our focus here is on the incremental construction
of a system made up of components and adaptors when the architect adds
or removes one component. Our approach is interactive and the architect
is informed on the state of the system-to-be before applying a modification
(stable, addition of a new service, suppression of a service, etc). Most of
the steps are completely automated, for instance to check the compatibility
of interfaces, generate the adaptor, evaluate the correctness of the adaptor.
Moreover, global approaches [16,13,5,15,8] which generate a global adaptor for
the whole system have a main drawback being that recomputing the global
adaptor every time something changes costs a lot. Accordingly incremental
construction of adaptor-based systems is a solution to work them out.

The rest of the paper is organized as follows. Section 2 presents the formal
model of components, and the architectural style we rely on. Section 3 focuses

2

Poizat, Salaün, Tivoli

on adaptation, and presents mechanisms to check if adaptation is needed, to
compute adaptors, and to assess them. In Section 4, our approach for in-
cremental construction involving components and adaptors is presented. We
describe how the system is updated as automatically as possible when one
component is added or removed. Section 5 illustrates our incremental ap-
proach on several case studies. We end in Section 6 with concluding remarks.

2 Component Systems

2.1 Component Interfaces

Component interfaces are given using a signature and a behavioural interface.
A signature Σ is a set of operation profiles. This set is a disjoint union of
provided operations and required operations. Behavioural interfaces are also
taken into account through the use of Labelled Transition Systems (LTSs). A
LTS is a tuple (A, S, I, F, T) where: A is an alphabet (set of event labels),
S is a set of states, I ∈ S is the initial state, F ⊆ S are final states, and
T ⊆ S ×A×S is the transition function. The alphabet of the LTS is built on
the signature. This means that for each provided operation p in the signature,
there is an element p? in the alphabet, and for each required operation r,
an element r!. Communication between two LTSs involves one event with
complementary actions p?/p!.

Expressive behavioural languages such as process algebras can be used to
define behavioural interfaces in a more concise way. For instance, the part of
the CCS notation restricted to sequential processes is adequate to describe be-
havioural interfaces 1 : P ::= 0 | a?.P | a!.P | τ.P | P1+P2 | A, where
0 denotes a correct termination state, a?.P a process which receives a and
then behaves as P, a!.P a process which sends a and then behaves as P, τ.P
a process which evolves with the internal action τ and behaves as P, P1+P2
a process which may act either as P1 or P2, and A denotes the call to a pro-
cess defined by an agent definition equation A = P. As process algebras do
not enable to define initial and final states, we extend this CCS notation to
tag processes with initial [i] and final [f] attributes. 0 and 0[f] being
equivalent, we only use 0 in such a case.

2.2 Architectural Style

Components communicate by message passing in a peer-to-peer style. Con-
nectors between components are simple communication channels defining a
required and provided signature interface too. The required (resp., provided)
interface of a component may be connected to the provided (resp., required)
interface of one or more connectors.

1 CCS descriptions can be translated into LTS models, which is especially necessary for
computation purposes (see Section 3.2 about automatic generation of adaptors).

3

Poizat, Salaün, Tivoli

We will also distinguish between two kinds of entities: components and
adaptors. Components implement the system’s functionality, and are the pri-
mary computational constituents of a system. Adaptors, on the other hand,
route messages by following different coordination policies that depend on the
adaptation to be performed whose properties are specified in an abstract way
by the software architect.

Our architectural style considers systems in which distributed adaptors
appear: it is referred as Distributed Adaptor-Based Architecture (DABA). A
system is defined as a set of components each of them directly connected to
its local adaptor; each adaptor is connected to other adaptors (one or many),
through connectors, in a peer-to-peer fashion. Obviously a DABA may include
the extreme case of an empty architecture where no component and, hence, no
adaptor and connector are present. Such an empty architecture is the starting
point of our incremental approach for building component-based systems.

We point out that connectors, and then the underlying communication
model, are synchronous: two components synchronize on one event (rendez-
vous) and then continue their own evolution. This notion is slightly different
from the one existing in certain component-based development frameworks,
such as COM/DCOM architectures [15] or BPEL for Web services [2]. In
such models which inherit their communication features from object-oriented
programming, communication is basically a method call or a remote procedure
call (RPC). Therefore, the caller is waiting for the callee to terminate the
required processing before continuing its own evolution. This is described in
our model with two explicit messages, one for the request and another one
corresponding to the acknowledgement. Asynchronous communication can
be modelled describing message queues using additional components which
interact synchronously with the components they represent.

3 Adaptation

Before defining methods to add and remove components, we present mecha-
nisms to automatically check if a system needs adaptation (behavioural mis-
match), the adaptor generation process, and means to evaluate the impact of
the adaptation performed on the system.

3.1 Behavioural Mismatch

Various definitions of behavioural mismatch have been proposed in the field
of software adaptation and Software Architecture analysis. We build on the
most commonly accepted one, namely deadlock-freedom. Intuitively, a system
made up of several identified components is deadlock-free, and therefore does
not need any adaptation, if its synchronous product has no deadlock.

In a DABA style, components are viewed through their adaptors, conse-
quently behavioural mismatch is computed taking adaptors as input instead of

4

Poizat, Salaün, Tivoli

components. It is not necessary in case of addition to consider the added com-
ponent since interactions between this component and its adaptor are ensured
correct by the algorithm used to build this adaptor.

Definition 3.1 [Synchronous Product] The synchronous product of n LTSs
Li = (Ai, Si, Ii, Fi, Ti), i ∈ {1, . . . , n}, is the LTS (A, S, I, F, T) such that:

• A ⊆ Πi∈{1,...,n}Ai, S ⊆ Πi∈{1,...,n}Si, I = (I1, . . . , In),

• F ⊆ {(s1, . . . , sn) ∈ S |
∧

i∈{1,...,n} si ∈ Fi},

• T is defined using the following rule:
∀(s1, . . . , sn) ∈ S, ∀i, j ∈ {1, . . . , n}, i < j such that
∃(si, a, s′i) ∈ Ti, ∃(sj, ā, s′j) ∈ Tj , then
(x1, . . . , xn) ∈ S and ((s1, . . . , sn), (l1, . . . , ln), (x1, . . . , xn)) ∈ T , where
∀k ∈ {1, . . . , n}, lk = { a if k = i, ā if k = j, ε otherwise }
xk = { s′i if k = i, s′j if k = j, sk otherwise }

The overline function on labels is defined as: e? = e!, and e! = e?.

Definition 3.2 [Behavioural Mismatch] An LTS L = (A, S, I, F, T) presents
a behavioural mismatch if there is a deadlock state s, i.e., a state s in S, not
in F and without outgoing transitions.

In practice, behavioural mismatch can be computed (i) encoding the set
of LTSs in the EXP.OPEN input format [11], (ii) computing the product, and
(iii) checking the absence of deadlocks on the resulting automaton. Note
that to distinguish final states and real deadlocks within EXP.OPEN LTSs,
we first add specific loop transitions labelled with accept over final states.
Point (i) has been encoded in ADAPTOR, a prototype tool under development
dedicated to the adaptation of software components. Points (ii) and (iii) are
computed automatically calling CADP [9] which is a toolbox to validate and
verify concurrent systems.

Example 3.3 Let us suppose three simple components: a client posting re-
quests, a server receiving these requests and interacting with a counter every
time a request is managed.

Client[i,f] = req!.args!.ack?.Client

Server[i,f] = req?.ack!.count!.Server

Adder[i,f] = add?.Adder

The product is computed and a deadlock is found out after the first transi-
tion (req!,req?,ε) because the client wants to send arguments whereas the
server wants to send him an acknowledgement.

3.2 Adaptors

In this section, we follow the adaptor generation process proposed in [8]. To
check if a system made up of several components presents behavioural mis-
match, the synchronous product [3] of their LTS behavioural interfaces is

5

Poizat, Salaün, Tivoli

computed and then the absence of deadlocks is checked on it. The protocol
of an adaptor is given by an LTS which, put into a non-deadlock-free system
yields a deadlock-free one. For this to work, the adaptor has to preempt all
the component communications. Therefore, prior to the adaptation process,
component message names may have to be renamed prefixing them by the
component name, e.g., c:message!.

In [8], we have proposed a mapping notation based on regular expressions
of synchronous vectors as an abstract and simple description of the adaptor to
be generated. Synchronous vectors express not only synchronization between
processes on the same event names, but more general correspondences between
the events of the process involved. A synchronous vector (or vector for short)
for a set of n components LTSs Li = (Ai, Si, Ii, Fi, Ti), i ∈ {1, . . . , n}, is a
tuple <e1, . . . , en> with ∀j ∈ {1, . . . , n} ej ∈ Aj ∪ {ε}; ε meaning that a
component does not participate in a synchronization. Given n LTSs Li =
(Ai, Si, Ii, Fi, Ti), and a set of vectors V , a (vector) regex for these LTSs can
be generated by the following syntax: R ::= v (vector) | R1.R2 (sequence)
| R1+R2 (choice) | R* (iteration), where R, R1, R2 are regex, and v is a
vector in V .

Using such a mapping and a list of component behavioural interfaces,
an adaptor can be generated automatically using algorithms presented in [8]
where we propose two kinds of adaptation, namely adaptation with or without
reordering. Reordering (changing the order of events) is needed to ensure a
correct interaction when two communicating entities have protocol messages
which are not ordered as required. We emphasize that other algorithms can
be used for adaptor generation purposes such as [5,13,15].

In case of adaptation without reordering, a synchronous product is com-
puted from the LTS encoding the mapping regular expression (an LTS with
vectors on transitions which recognizes the regex language) and component
interfaces. Then, paths leading to deadlocks are removed [15], messages are
mirrored (inputs in place of outputs, and vice-versa) to make communications
with the adaptor possible, and finally, all the possible interleavings (starting
by receptions then emissions) for every synchronisation described by a vector
are generated to obtain the final LTS constituting the adaptor.

In case of adaptation with reordering, the idea is to encode, into a Petri
net, mirrored component interfaces and correspondences between messages
described in vectors as well as restrictions on the application order of vectors
induced by the mapping regular expression. Then, the LTS of the adaptor is
computed from the Petri net marking graph (non-recursive adaptors) or from
its cover graph (recursive adaptors). Finally, paths to deadlock are removed,
and the τ actions added during the Petri net encoding are suppressed using
behavioural reductions.

Note that our algorithms are completely automated into a tool, ADAPTOR,
which is under development. This tool relies on external tools, namely TINA

[4] for marking and cover graph computation, and CADP [9] for synchronous

6

Poizat, Salaün, Tivoli

product computation and behavioural reductions.

Example 3.4 The behavioural mismatch detected in our simple client/server
example is worked out by the mapping (v1.v2.v3.v4)* where

v1=<c:req!,s:req?,a:ε> v2=<c:args!,s:ε,a:ε>

v3=<c:ack?,s:ack!, a:ε> v4=<c:ε,s:count!,a:add?>

The resulting adaptor computed using the algorithm without reordering
sketched above is:

A[i,f] = c:req?.s:req!.c:args?.s:ack?.c:ack!.s:count?.a:add!.A

3.3 Assessment

Once a new adaptor is generated, we propose different means to assess the
new system and make the architect sure that this system still contains all the
expected services. Being given a set of components and their adaptors, the
synchronous product is computed. Then, we propose several techniques to
assess the adapted system.

First, the architect can check the system for services that have been
achieved (internal, synchronised) or are still available (external, observable).
Achieved services are deduced from labels (l1, . . . , ln) where there are at least
two li different of ε. Available services are deduced from labels (l1, . . . , ln)
where there is only one li different of ε.

Deadlock freedom can be checked on the adapted system as well. Let
us recall that the generated adaptor is deadlock-free by construction. How-
ever, deadlock-freeness is preserved only with respect to the components with
which the adaptor interacts, whereas the full system can still contain dead-
locks. Consequently, when the last adaptor is computed using only a part of
the components involved in the system, it is worth checking the absence of
deadlocks on the full system (see Section 5 for illustration purposes).

4 Incremental Construction of Systems

In this section, we focus on the two main cases appearing while building a
system, namely addition and suppression of components.

4.1 Addition of a Component

The method we propose can be viewed as an interactive assistant for the
architect since it helps him step by step as a guide to build the system-to-be.

A first remark concerns both checks (behavioural mismatch and system
assessment). They are not mandatory and are computed only if requested
by the architect. The deadlock check may give back to the architect some
blocking paths computed by CADP to help him to understand the problem
and then write down the adaptation mapping needed to correct it.

7

Poizat, Salaün, Tivoli

Algorithm 1 (Add) Inputs: system S = 〈C1, . . . , Cn, A1, . . . , An〉, compo-
nent C to be added

(i) check behavioural mismatch on 〈C, A1, . . . , An〉
(a) no deadlock → generate a no-op adaptor, and go to step (iv)
(b) deadlock → adaptation needed, go to step (ii)

(ii) get mapping M

(iii) compute adaptor A from mapping M, component C and connected adap-
tors Aj∈I,I⊆{1,...,n}

(iv) assess system S ′ = 〈C1, . . . , Cn, C, A1, . . . , An, A〉
(a) validated → go to step (v)
(b) erroneous → return to step (ii)

(v) add C and A in S, and connect A to C and connected adaptors Aj

The addition of a component does not always need protocol adaptation,
e.g., when adding the first component or when the test of mismatch does
not detect a deadlock. However, our approach associates an automatically
generated no-op adaptor to every component as in [15]. Such an adaptor ba-
sically reproduces from an external point of view the same behaviour as its
component, and then routes messages from other adaptors to the component
and vice-versa. More formally, the no-op adaptor construction for a pro-
cess referred by p transforms respectively receptions and emissions as follows:
a? ❀ p:a?.a!, a! ❀ a?.p:a!.

Step (iv)(b) takes into account two slightly different cases, since an er-
roneous system can be worked out either proposing a new mapping instead
of the former one and then replacing the last adaptor, or keeping the last
adaptor and proposing an additional mapping to build another adaptor to be
connected on top of the previous one. We will illustrate such a situation in
Section 5.2. Last, mappings have to be kept while building the system since in
case of suppression, they may be modified and their corresponding adaptors
updated.

4.2 Suppression of a Component

Removing a component induces the suppression of its corresponding adaptor,
but also the possible update of all the components and adaptors interacting
with it. Note that, in the worst case, this corresponds to recompute all adap-
tors which is as costly as the regular case in a non incremental approach where
the centralized adaptor is recomputed for all components.

Step (i) is computed traversing all the mappings and detecting from the
vectors the adaptors with which the component/adaptor to remove interacts.
The two solutions proposed in step (ii) are complementary: in a first step, ε
replace all the concerned labels in mappings, then the architect can update
these mappings.

8

Poizat, Salaün, Tivoli

Algorithm 2 (Remove) Inputs: system S = 〈C1, . . . , Cn, A1, . . . , An〉, com-
ponent Ck,k∈{1,...,n} to be removed

(i) detect all the adaptors Aj∈I,I⊆{1,...,n} connected to the adaptor Ak of com-
ponent Ck

(ii) update the mappings Mj of connected adaptors Aj: suppress all Ck labels
into vectors and modify mappings Mj

(iii) generate new adaptors A′
j off-line

(iv) assess system S ′ = 〈C1, . . . , Ci,i6=k, . . . , Cn, A1, . . . , Ai,i6=k, . . . , An〉[A
′
j/Aj]:

(a) validated → go to step (v)
(b) erroneous → return to step (ii)

(v) remove Ck, Ak, and replace Aj by A′
j

As regards complexity results, the most costly step in both previous algo-
rithms is the computation of the adaptor which is exponential [8]. However,
our approach can be applied to non-trivial systems as shown in Section 5.

5 Application

In this section we show our approach at work on three examples concerning
respectively a Video-on-Demand system, the Dining Philosophers problem and
a Music Player system.

5.1 The Video-on-Demand System

Our first example is a simplified version of the component-based Video-on-
Demand (VOD) system described in [6]. We consider a client-server system
formed by two kinds of components, one server component, called VOD, and
one or more clients of VOD. The server VOD offers services to watch movies. If
a client has not registered before, he can only preview movies. If a client has
registered, he can view movies. In case of registered clients, the movie can
be played directly or recorded (i.e., the movie is first stored and played later
on). Our objective, here, is to use adaptors to take into account the differences
between registered and unregistered clients. The behavioural interfaces of VOD
and its clients are the following:

VOD[i,f] = search?.list!.VOD + preview?.stream!.VOD

+ view?.(play?.stream!.VOD + record?.stream!.VOD)

Client[i,f] = menu!.info?.(watch!.data?.Client+store!.data?.Client)

Now, let us show how to build the VOD system incrementally by starting
from an empty architecture (i.e., no component and connector) and adding
step by step new components. In Figure 1 we show the three steps of the
incremental construction process that the architect wants to perform in order
to incrementally build a VOD system formed by one VOD server and two clients.
In the following we discuss each step in detail.

9

Poizat, Salaün, Tivoli

Step2: addition
of the C1 client

Step1: addition of
the VOD server

EMPTY
ARCHITECTURE

A_VOD

...

...

VOD

A_VOD

...
VOD

...
VOD

A_VOD

A_C1 A_C2A_C1

C1 C1

...
Step3: addition
of the C2 client

...

C2

Fig. 1. Incremental construction of the VOD system

Initially, the system has no component and, hence, no connector. Let us
suppose that the architect of the VOD system decides to add the VOD server.
At this stage, no test of behavioural mismatch is required since the system is
formed by a single component and, hence, a no-op adaptor is automatically
generated. Let us denote this adaptor by A VOD. It is worth mentioning that
A VOD has a strictly sequential input-output behaviour, i.e., each input is fol-
lowed by the corresponding output. Moreover, we recall that it will reproduce
from an external point of view exactly the same behaviour as the component.
In the following we show a portion of the A VOD behavioural interface:

A VOD[i,f] = vod:search?.search!.list?.vod:list!.A VOD

+ vod:preview?.preview! ...

The adaptation evaluation (see Section 3.3) is skipped since there is only
one component.

Let us suppose that an unregistered client is added, C1. It has the same
behavioural interface as Client (shown above), i.e., C1 = Client. In this
situation, VOD and C1 are incompatible since they use different action names
(e.g., search and menu actions do not match). Thus, the architect provides
the following mapping that is used to generate A C1, i.e., the adaptor for C1:

M1 = (<c1:menu!,vod:search?> + <c1:info?,vod:list!> +

<c1:watch!,vod:preview?> + <c1:store!,vod:preview?> +

<c1:data?,vod:stream!>)*

By referring to Section 3.2, the mapping M1 is a regular expression of
synchronized vectors. It defines correspondences between the names of the
actions performed by C1 (i.e., the ones with “c1:” as prefix) and by A VOD.
The actions vod:view?, vod:play? and vod:record? have no counterpart
in the mapping, consequently no correspondence is specified for them. M1 is a
regular expression describing only a non-deterministic choice of vectors since
there is no message ordering to be performed. From A VOD, C1 and M1 the
adaptor A C1 is automatically synthesized (using Section 3.2 mechanisms):

A C1[i,f] = c1:menu?.vod:search!.vod:list?.c1:info!.

(c1:watch?.vod:preview!.vod:stream?.c1:data!.A C1

10

Poizat, Salaün, Tivoli

+ c1:store?.vod:preview!.vod:stream?.c1:data!.A C1)

Next, the architect performs the external behaviour comparison between
A VOD and (A C1 | A VOD), where “|” stands for the synchronous product
of LTSs, and can observe that only actions vod:view?, vod:play? and
vod:record? remain externally observable. Therefore, the architect confirms
the addition of C1 (and its adaptor) in the system.

Let us suppose, now, that a C2 = Client registered client is added. Anal-
ogously to the addition of C1, the architect can observe that C2 is incompatible
with respect to VOD and, hence, the test of behavioral mismatch is skipped.
The architect gives the following mapping to either match watch and play or
store and record:

M2 = (v1.v2.(v3.v5.v7 + v4.v6.v7))*

with vectors:

v1=<c2:menu!,vod:search?> v2=<c2:info?,vod:list!>

v3=<c2:watch!,vod:view?> v4=<c2:store!,vod:view?>

v5=<c2:ε,vod:play?> v6=<c2:ε,vod:record?>

v7=<c2:data?,vod:stream!>

From A VOD, C2 and M2, an adaptor is automatically synthesized:

A C2[i,f] = c2:menu?.vod:search!.vod:list?.c2:info!.

(c2:watch?.(vod:view!.vod:play!.A C2’ + vod:play!.vod:view!.A C2’)

+ c2:store?.vod:view!.vod:record!.vod:stream?.c2:data!.A C2)

A C2’ = vod:stream?.c2:data!.A C2

By referring to the behavioural interface of A C2, shown above, it is worth
noticing that an adaptor does not always correspond to the specified mapping.
In fact the mapping represents an abstract description of the adaptor that,
once synthesized, can result in a more complex behaviour due to message inter-
leaving (see, for instance, the two message sequences vod:view!.vod:play!

and vod:play!.vod:view!). For this reason, the adaptor synthesis process
deserves dedicated algorithms and tools such as the ones described in [8]. The
architect performs again the external behaviour comparison between A VOD

and (A C2 | A VOD), and can see that the single action visible from an external
point of view is vod:preview? which is correct. By referring to Section 3.3, we
recall that when the adaptor is computed using only a part of the components
involved in the system, the adaptation evaluation process should also verify
the presence of possible deadlocks in the full system. Thus, before adding C2

and its adaptor, the deadlock check on (A VOD | A C1 | A C2) is performed.
Since no deadlock is detected, C2 is added and A C2 is connected to the other
components. Note that for this example component suppression is meaning-
less: either the architect removes a client (hence its corresponding adaptor)
and it does not have any consequence on the system, or he/she removes the
server and nothing works anymore.

11

Poizat, Salaün, Tivoli

5.2 The Dining Philosophers Problem

In this section, we consider a component-based system simulating the classical
dining philosophers problem instantiated to the case of two philosophers and
two forks. In order to eat, each philosopher needs both forks. In our model, we
consider three kinds of components: Fork, Phil1 and Phil2. The behavioural
interface of Fork is the following:

Fork[i,f] = fork?.ok!.release?.Fork

Phil1 and Phil2 have different behavioural interfaces (they are given be-
low). In the classical formulation of this problem, philosophers share the same
behaviour which may cause a deadlock when they both interact to access the
two forks. In this example we have simplified the classical formulation by
isolating only the behaviour of each philosopher that may cause a deadlock,
when both of them are present. The behavioural specifications of Phil1 and
Phil2 are the following:

Phil1[i,f] = fo1!.ok1?.fo2!.ok2?.rel1!.rel2!.Phil1

Phil2[i,f] = fo2!.ok2?.fo1!.ok1?.rel2!.rel1!.Phil2

Without an adaptor the system (f1:Fork | f2:Fork | Phil1 | Phil2)

deadlocks because action names do not match. Although an adaptor matching
the different names can be inserted into the system, the two philosophers have
also a mismatching interaction protocol. The system deadlocks whenever, e.g.,
Phil1 asks for and obtains the access to the first fork and then, Phil2 asks
for and obtains the access to the second fork. At this stage, both philosophers
are blocked waiting for their complementary fork that will never be assigned
to them.

The addition of the two Fork components F1 = f1:Fork and F2 =

f2:Fork is done analogously to what we have done in Section 5.1 for the
addition of the VOD server. The no-op adaptors of F1 and F2 are A F1 and
A F2, respectively.

In Figure 2 we show the two steps of the incremental construction pro-
cess that the architect wants to perform in order to incrementally build a
Dining Philosophers system made up of the two already added forks and two
philosophers (i.e., Phil1 and Phil2). In the following we discuss these steps
in detail.

Let us suppose that a Phil1 component is added. Phil1 is incompatible
with respect to F1 and F2. Thus, the following mapping M1 is given:

M1 = (<phil1:fo1!, f1:fork?, f2:ε> + <phil1:ok1?, f1:ok!, f2:ε> +

<phil1:rel1!, f1:release?, f2:ε> + <phil1:fo2!, f1:ε, f2:fork?> +

<phil1:ok2?, f1:ε, f2:ok!> + <phil1:rel2!, f1:ε, f2:release?>)*

From A F1, A F2, Phil1 and M1 an adaptor A Phil1 is computed:

A Phil1[i,f] = phil1:fo1?.f1:fork!.f1:ok?.phil1:ok1!.

phil1:fo2?.f2:fork!.f2:ok?.phil1:ok2!.

phil1:rel1?.f1:release!.phil1:rel2?.f2:release!.A Phil1

12

Poizat, Salaün, Tivoli

...

Phil1

addition of Phil2

2−FORKS
ARCHITECTURE

...

... ...

...

F1 F2

A_Phil1

Phil1

...

......
F1 F1F2 F2

Phil2

A_Phil2

...

...

A_Phil1

A_F2A_F1

addition of Phil1
A_F1 A_F2

...
...

A_F1 A_F2

...

... ...
A

... ...

Fig. 2. Incremental construction of the Dining Philosophers system

Analogously to what we have done in Section 5.1, the adaptor is assessed
and it is stated that the system (A F1 | A F2 | A Phil1 | phil1:Phil1) has
no service lost (wrt. the services provided by F1 and F2). Thus, Phil1 and
its adaptor are added.

Now, Phil2 has to be added. The addition of Phil2 is carried out anal-
ogously to the addition of Phil1 hence giving a mapping M2 and generating
an adaptor A Phil2 connected to Phil2, A F1 and A F2. This example points
out an interesting application scenario of our approach. When the architect
performs the deadlock check on the entire system, it is found out that (A F1

| A F2 | A Phil1 | A Phil2) may deadlock. This deadlock comes from the
mismatching interaction among Phil1 and Phil2 we mentioned in the begin-
ning of this section. In this case the architect, before confirming the addition
of Phil2 (and its adaptor), has to generate a new adaptor on top of both
A Phil1 and A Phil2 in order to solve that deadlock. This adaptor is gener-
ated by taking into account A Phil1, A Phil2, A F1, A F2 and the mapping
M3:

M3 = (<a phil1:phil1:fo1!, a f1:phil1:fo1?, a f2:ε, a phil2:ε> +

<a phil1:phil1:fo2!, a f1:ε, a f2:phil1:fo2?, a phil2:ε> + ...)*

M3 can be automatically generated because the interface signatures of
A Phil1, A Phil2, A F1 and A F2 match and no particular adaptation is re-
quired. In fact, it is only required to prune the traces leading to deadlocks in
the global system (see Section 3.2). Let us denote the last generated adaptor
by A. At this point the deadlock check is not needed since the architect knows
that A is deadlock-free by construction and hence (A F1 | A F2 | A Phil1 |
A Phil2 | A) is deadlock-free as well. The architect confirms the addition of
Phil2 and A Phil2, and A is finally connected to A F1, A F2, A Phil1 and
A Phil2.

5.3 The Music Player System

Last, we consider a component-based Hi-Fi system formed by four compo-
nents: HF, TR, PDA1 and PDA2. HF controls an Hi-Fi station which can be
asked to (i) play mp3 files, i.e., read?, (ii) stop reading, i.e., halt?, (iii)
stop reading temporarily, i.e., pause? and (iv) resume a temporary stop, i.e.,

13

Poizat, Salaün, Tivoli

resume?. Its behavioural interface is defined as follows:

HF[i,f] = read?.HFRead

HFRead = pause?.resume?.HFRead + halt?.HF

TR implements a translator which can (i) read an ogg file, i.e., inogg? and
(ii) convert it into a mp3 file, i.e., outmp3!. Its behavioural interface is defined
as follows:

TR[i,f] = inogg?.outmp3!.TR

PDA1 is a PDA which can, among other possible actions, ask the music
system to (i) play a chosen mp3 file, i.e., play!, (ii) stop playing, i.e., stop!,
(iii) stop the player temporarily, i.e., pause! and (iv) resume a temporary
stop, i.e., resume!. Its behavioural interface is:

PDA1[i,f] = play!.PDA1PLAY

PDA1PLAY = stop!.PDA1 + pause!.resume!.PDA1PLAY

PDA2 is a different PDA which can, among other possible actions, ask the
music system to (i) play a chosen file by means of the suitable player, i.e.,
playmp3! or playogg! and (ii) stop playing, i.e., stop!. We define its
behavioural interface as:

PDA2[i,f] = playmp3!.stop!.PDA2 + playogg!.stop!.PDA2

The architect adds successively HF and TR. Two no-op adaptors, A HF and
A TR, are generated. In Figure 3 we show the two remaining steps of the
incremental construction process that the architect wants to perform in order
to incrementally build a music player system formed by the two already added
servers (i.e., HF and TR) and two PDA clients (i.e., PDA1 and PDA2).

...

......

...

HF TR

TRHF HF TR

A_TRA_HF

PDA2PDA1

...

A_PDA2

...

A_PDA1

addition of PDA2
addition of PDA1

PDA1

A_PDA1

A_TRA_HF

... ...

...

...

A_HF A_TR

2−SERVERS
ARCHITECTURE

......

.........

Fig. 3. Incremental construction of the Music Player system

Let us suppose that PDA1 is added. PDA1 deadlocks when interacting with
HF. Thus, the following mapping is given:

M1 = (v1.(v3.v4)*.v2)*

with vectors:

v1=<pda1:play!,hf:read?> v2=<pda1:stop!,hf:halt?>

v3=<pda1:pause!,hf:pause?> v4=<pda1:resume!,hf:resume?>

From A HF, PDA1 and M1 an adaptor is computed, A PDA1:

14

Poizat, Salaün, Tivoli

A PDA1[i,f] = pda1:play?.hf:read!.A PLAY

A PLAY = pda1:pause?.hf:pause!.pda1:resume?.hf:resume!.A PLAY

+ pda1:stop?.hf:halt!.A PDA1

The adaptation evaluation is performed, the system (A HF | A PDA1) has
no service lost and, hence, the architect confirms the addition of A PDA1 and
PDA1 in the system.

Now, PDA2 is added. In the case of ogg files, TR has to be used to convert
an ogg file into a mp3 file to be played using HF. The addition of PDA2 is
carried out analogously to the addition of PDA1 hence giving a mapping M2

and generating an adaptor A PDA2 connected to PDA2, HF and TR:

M2 = (v1.v4 + v2.v3.v4)*

with vectors:

v1=<pda2:playmp3!, hf:read?, tr:ε>

v2=<pda2:playogg!, hf:ε, tr:inogg?>

v3=<pda2:ε, hf:read?, tr:outmp3!>

v4=<pda2:stop!, hf:halt?, tr:ε>

and adaptor:

A PDA2[i,f] = pda2:playmp3?.PLAY

+ pda2:playogg?.tr:inogg!.tr:outmp3?.PLAY

PLAY = hf:read!.pda2:stop?.hf:halt!.A PDA2

The external behaviour comparison is performed and it indicates that
(A HF | A TR | A PDA2) has as observable actions only hf:pause? and
hf:resume?. The architect confirms the addition of PDA2 and its adaptor.

As regards suppression, if either PDA1 or PDA2 is removed, its suppression is
straightforward since there is no consequence on the system. If HF is removed,
nothing works anymore since both PDA1 and PDA2 need to use it to accomplish
their tasks. The only interesting case is when TR is removed since one required
service of PDA2 will become unprovided by its environment. In this case, PDA2
can only play mp3 files and, hence, its adaptor has to be changed in order to
not receive requests of playing ogg files anymore. This is done by replacing
M2 by a new mapping M2’ that computes an adaptor that does not perform
the playogg action:

M2’ = (v1.v4)*

with vectors

v1=<pda2:playmp3!, hf:read?> v4=<pda2:stop!, hf:halt?>

Let us denote by A PDA2’ the adaptor built by taking into account M2’.
Checking the alphabet difference AA PDA2\AA PDA2′ , the architect is informed that
the playing of ogg files on PDA2 is now observable. Depending on the system
requirements this might be acceptable or not. If it is acceptable the architect
confirms the suppression of TR and its adaptor, if not he/she may consider
disconnecting PDA2 too. The A PDA2 adaptor is replaced by A PDA2’ which

15

Poizat, Salaün, Tivoli

connects PDA2 to HF. Before confirming the A PDA2’ addition the deadlock
check is performed on the system (A HF | A PDA1 | A PDA2’) to be sure that
no deadlock is introduced. A PDA2’ is added since this check succeeds.

6 Concluding Remarks

In this paper, we have presented an interactive method to build incrementally
systems made up of several communicating components viewed through their
behavioural interfaces. This method is supported by a specific Software Ar-
chitecture which avoids costly computation steps of building global adaptors
when reconfiguring the system, if possible. In addition, most of the process
steps are computed automatically: behavioural mismatch, adaptor generation,
adaptor evaluation, updates of the system in case of suppression.

To the best of our knowledge, the closer works to ours are dedicated to
incremental protocol enhancement. In [14] it is shown how to compose com-
ponent wrappers to augment connector behaviour. In [15], the authors have
revisited [14] providing approach automation. In [15], the starting point is a
centralized adaptor that is always generated. Conversely to this, we try to
solve mismatches by only producing local adaptors and we produce a central-
ized one only when it is unavoidable (e.g., Dining Philosophers problem).

The main perspective of this work is to apply our approach to existing
implementation languages and frameworks such as COM/DCOM architectures
[10] or BPEL for web services [2].

References

[1] Special Issue on Adaptive Middleware. Commun. ACM, 45(6):30–64, 2002.

[2] T. Andrews et al. Business Process Execution Language for Web Services
(WSBPEL). BEA Systems, IBM, Microsoft, SAP AG, and Siebel Systems,
February 2005.

[3] A. Arnold. Finite Transition Systems. International Series in Computer
Science. Prentice-Hall, 1994.

[4] B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool TINA – Construction
of Abstract State Spaces for Petri Nets and Time Petri Nets. International
Journal of Production Research, 42(14), 2004.

[5] A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component
Adaptation. Journal of Systems and Software, 74(1):45–54, 2005.

[6] A. Brogi, C. Canal, and E. Pimentel. Component Adaptation Through Flexible
Subservicing. Science of Computer Programming, 2006. To appear.

[7] C. Canal, J. M. Murillo, and P. Poizat. Software Adaptation. L’Objet. Special
Issue on Software Adaptation, 12(1):9–31, 2006.

16

Poizat, Salaün, Tivoli

[8] C. Canal, P. Poizat, and G. Salaün. Synchronizing Behavioural Mismatch in
Software Composition. In Proc. of FMOODS’06, volume 4037 of LNCS, pages
63–77. Springer-Verlag, 2006.

[9] H. Garavel, F. Lang, and R. Mateescu. An Overview of CADP 2001. EASST
Newsletter, 4:13–24, 2002.

[10] P. Inverardi and M. Tivoli. Deadlock Free Software Architectures for
COM/DCOM Applications. Journal of Systems and Software, 65(3):173–183,
2003.

[11] F. Lang. Exp.Open 2.0: A Flexible Tool Integrating Partial Order,
Compositional, and On-The-Fly Verification Methods. In Proc. of IFM’05,
volume 3771 of LNCS, pages 70–88. Springer-Verlag, 2005.

[12] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng. Composing
Adaptive Software. IEEE Computer, 37(7):56–64, 2004.

[13] H. W. Schmidt and R. H. Reussner. Generating Adapters for Concurrent
Component Protocol Synchronization. In Proc. of FMOODS’02, pages 213–
229. Kluwer Academic Publishers, 2002.

[14] B. Spitznagel and D. Garlan. A Compositional Formalization of Connector
Wrappers. In Proc. of ICSE’03, pages 374–384. ACM Press, 2003.

[15] M. Tivoli and M. Autili. SYNTHESIS, a Tool for Synthesizing Correct and
Protocol-Enhanced Adaptors. L’Objet. Special Issue on Software Adaptation,
12(1):77–103, 2006.

[16] D. M. Yellin and R. E. Strom. Protocol Specifications and Components
Adaptors. ACM Transactions on Programming Languages and Systems,
19(2):292–333, 1997.

17

	Introduction
	Component Systems
	Component Interfaces
	Architectural Style

	Adaptation
	Behavioural Mismatch
	Adaptors
	Assessment

	Incremental Construction of Systems
	Addition of a Component
	Suppression of a Component

	Application
	The Video-on-Demand System
	The Dining Philosophers Problem
	The Music Player System

	Concluding Remarks
	References

