
HAL Id: hal-00342152
https://hal.science/hal-00342152v1

Submitted on 11 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Java Implementation of a Component Model with
Explicit Symbolic Protocols

Sebastian Pavel, Jacques Noyé, Pascal Poizat, Jean-Claude Royer

To cite this version:
Sebastian Pavel, Jacques Noyé, Pascal Poizat, Jean-Claude Royer. Java Implementation of a Compo-
nent Model with Explicit Symbolic Protocols. Software Composition (SC), 2005, Edinburgh, United
Kingdom. pp.115-124, �10.1007/11550679_9�. �hal-00342152�

https://hal.science/hal-00342152v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Java Implementation of a Component Model

with Explicit Symbolic Protocols

Sebastian Pavel1, Jacques Noyé1, Pascal Poizat2 and Jean-Claude Royer1

1 OBASCO Project-team, École des Mines de Nantes-INRIA,
4 rue Kastler, 44307 Nantes cedex 3, France

{spavel, noye, jroyer}@emn.fr
2 LaMI, UMR 8042 CNRS-Université d’Évry Val d’Essonne, Genopole
Tour Évry 2, 523 place des terrasses de l’Agora, 91000 Évry, France

poizat@lami.univ-evry.fr

Abstract. Component-Based Software Engineering (CBSE) has now
emerged as a discipline for system development. Important issues in
CBSE such as composition incompatibility detection and (dynamic) adap-
tation can only be addressed with the help of formal component models
with Behavioural Interface Description Languages (BIDLs) and explicit
protocols. The issue is then to fill the gap between such high-level models
and implementation. This paper suggests to do so by relying on Symbolic
Transition Systems (STSs). It describes a component model with explicit
symbolic protocols based on STSs, and its implementation in Java. This
implementation is based on controllers that encapsulate protocols and
channels devoted to (possibly remote) communications between compo-
nents.
keywords: CBSE, Behavioural IDL, Explicit Protocols, Symbolic Tran-
sition Systems, Java, Controllers, Channels

1 Introduction

With the increase in complexity of software systems in the last few years, the
Component-Based Software Engineering (CBSE) approach has emerged as a dis-
cipline that yields promising results such as trusted and/or Off-The-Shelf compo-
nents (COTS), improved component reusability, semi- or automatic composition
and adaptation of components into architectures, expressive middleware, and so
on. A major drawback of the mainstream industrial approach to CBSE is that
it has mainly focused on programming/low-level features making it difficult to
reason on problematic issues hidden behind the CBSE promising results.

Recent meta-descriptive approaches such as the OMG-Model Driven Archi-
tecture and Aspect-Oriented Software Development promote the return to ab-
stract models and clear separation between the functional (or business) and non
functional (or technical, e.g. real-time constraints or synchronizing policies) as-
pects of a system. Orthogonally, Architectural Description Languages [26] and
Coordination Languages [29] are also increasingly promoted in the CBSE com-
munity. Both are interesting with regard to their ability to abstract the systems



and provide better/simpler reasoning mechanisms, but also because this activity
can be formally grounded and then equipped with tools.

The first important issue when designing a component model is related to
the definition of the component interfaces using Interface Description Languages
(IDLs). This has been initially addressed by industrial component infrastructures
to statically (i.e. at compile time) generate skeletons and stubs for distributed
components. More recently, this issue has turned to be at the core of the most
challenging issues in CBSE: component validation and trusted components, (dy-
namic) adaptation, negotiation and choreography. The limit of IDLs based on
signature types has now been demonstrated. For instance, type correct commu-
nicating components may deadlock because they do not have compatible pro-
tocols. It is therefore now widely accepted that IDLs have to take into account
behavioural protocols, yielding Behavioural IDLs (BIDLs). These protocols may
be used either as a piece of documentation for the components, in a design-by-
contract process, to compose and check connections between components or even
build adapters [10, 36] when component interfaces do not match. Several formal
models dealing with such IDLs and protocols have been proposed. However, as
components exchange data using their provided and required services, formal
models have to take data into account while managing potential state-explosion
problems.

In this paper, we suggest using Symbolic Transition Systems [8, 12] (STSs)
as the basis of a BIDL. This expressive formalism makes it possible to control
state explosion thanks to the use of guards and complex typed parameters asso-
ciated to the transitions. We show how STSs can be used as explicit protocols
in a hierarchical component model supporting multiple interfaces with heteroge-
neous services (synchronous and asynchronous communications). An important
property of this model is that the protocols are verified by construction. We
present a Java implementation of the model whereby the code of a primitive
component is synthesized from an STS protocol and Java code. A controller in-
tercepts the communications and calls the related service of the inner Java code
according to the protocol. The subcomponents of a compound component com-
municate via channels dealing with the guarded synchronous and asynchronous
communications.

The paper is organized as follows. Sect. 2 describes our component model.
Sect. 3 introduces a simple case study that will illustrate our presentation. Then
Sect. 4 explains how our model can be implemented in Java to deal with explicit
protocols and explicit component binding mechanisms. Sect. 5 presents related
approaches and Sect. 6 concludes.

2 STS-oriented Component Model

Like any component model, our model builds on the ADL ontology [26]: architec-
tures or configurations made of components (with ports) and connectors (with
roles), and bindings between component ports and connector roles.

2



The specificities of our model are: heterogeneous interfaces incorporating
typed services of different kinds, explicit behavioural protocols, and the use of
Symbolic Transition Systems. We rely on a simple binding mechanism rather
than on complex connectors. For the time being, we only consider one-to-one,
one-way messages. We are also dealing only with static architectures. We will
here briefly present these elements and some details of our model. More de-
tails and extensions about the formal model and how this kind of component
specification can be used to achieve component-based analysis can be found in
[28].

2.1 Primitive Components

Primitive components are made up of a type name, named interfaces, a be-
havioural protocol and an underlying data type, or implementation, on which
the component relies to achieve the services it provides (each service corresponds
to a function or method in the implementation).

Interfaces. Components interact through named interfaces, each one correspond-
ing to a communication port. An interface corresponds to a set of services A
service is given as a name (unique within a given interface) and a type which
corresponds to the type of the values received/emitted by the service. A service
can be provided or required, and for each of them, communication can be either
synchronous or asynchronous. We consider reliable message sending based on
synchronous call, asynchronous messages are realized through the use of mail-
boxes and decoupling between message receipt and execution. This approach is
based on [33], which gives a more precise discussion about the need for asyn-
chronous communications. One specificity of our approach is that the operations
related to mailboxes are transparent at this level of abstraction.

The graphical notation for interfaces and services is given in Fig. 1. Here
we omit service types for conciseness, see [28] for the comprehensive grammar.
Boxes correspond to synchronous services and circles to asynchronous ones. Black
symbols denote required services (emissions) and white ones denote provided
services (receipts). Our syntax for interfaces was inspired by various component
graphical notations, mainly from the Olan ADL [5] (for the port symbols) and
from process algebras such as LOTOS [34] (for the input/output event schemes).
The textual notation of interfaces is given, with respect to the Java language, in
Sect. 4. The keywords corresponding to service kinds are: require for required
synchronous services, provide for provided synchronous services, notify for
required asynchronous services and react for provided asynchronous services.

Protocols. A known drawback of several component models is their lack of com-
ponent behavioural protocols. It is well known that purely static (signature
based) interfaces are not sufficient to detect inconsistencies in two interacting
component protocols. Moreover, behavioural pieces of information on compo-
nents are also needed to perform tasks such are dynamic adaptation [10] or ne-
gotiation. Such protocols can be expressed using different formalisms: automata

3



[36], behavioural types [19], process algebras [6], temporal logics [14]. We chose
the Symbolic Transition Systems framework.

Symbolic Transition Systems (STS) [8, 20] have initially been developed as a
solution to the state and transition explosion problem in value-passing process
algebras using substitutions associated to states and symbolic values in transition
labels. Our STSs (see example Fig. 4) are a generalisation of these, associating a
symbolic state and transition system with a data type description [4, 12, 32]. This
description may be given using algebraic specifications [12, 32], model-oriented
specifications [4] or even Java classes. STSs can be related to statecharts (see
[31] for details) but are simpler as far as semantics is concerned.

Implementation. The implementation part of components is an encapsulated
datatype element of some kind on which the behavioural protocol relies to achieve
operations corresponding to its transitions. An assumption is that this datatype
does not only implement the interface services but also that it does it in a
way that is compliant with the protocol. In a purely formal specification ap-
proach [12, 31], the implementation is given as an algebraic datatype. In such a
case, derivation mechanisms originating from the Graphical Abstract data Type
(GAT) formalism [13, 32] makes it possible to obtain semi-automatically a com-
pliant datatype. Here, the implementation part is given as a Java application
(see Sect. 4). Translation from GAT datatypes to Java code could be used [13].
Code analysis could also be performed to check protocol compliance. This is out
of the scope of this paper.

Syntax. The graphical syntax of a component is given in Fig. 1. The textual
syntax depends on the target language. The instantiation for the Java language
is given in Sect. 4.

P
ro

to
co

l

S
ym

b
o

lic
 T

ra
n

si
ti

o
n

 S
ys

te
m

Implementation

in
te

rf
ac

e
in

te
rf

ac
e

b

a

Service names Service kinds

Provided

Provided

Required

d

c

Required

Synchronous

Asynchronous

Synchronous

Asynchronous

Component type

Name

Fig. 1. Components Syntax

Semantics. Various operational and denotational semantics have been defined
for variants of STSs, see [1, 12, 25]. The semantics of a component corresponds

4



to the semantics of its STS which may be expressed as a configuration graph
(see [25, 28]). A configuration graph is a LTS with values associated to states,
thus the usual notions (e.g. traces, reachability tree and reachability graph)
are naturally extended to an STS using configuration transitions. This formal
framework enables component-based analysis [10].

2.2 Compound Components

Compound components are component assemblies given as a set of identified and
typed subcomponents and a set of bindings between these component interfaces.
Communication is binary (one sender, one receiver) and oriented (no rendez-
vous as in process algebras [6, 34]). The matching between services of two bound
interfaces is done through name matching (this can be achieved using renaming),
that is, given two bound interfaces I1 and I2, each required service s of I1 (resp. of
I2) corresponds to a provided service s (same name) in I2 (resp. I1). Moreover,
service types and kinds (asynchronous/synchronous) must correspond too. In
order to have compound components, an interface is given for the compound
and bindings (exports) are defined between this interface and the subcomponents
interfaces. Any interface of the subcomponents in a compound component that
is not bound can be exported.

Syntax. A compound component may be given either in its graphical form
(Fig. 2) or its textual form (see Sect. 4 for its Java version).

composite interface

c:C d:D

Composite Type

a

b

c z

c z

a

b

Fig. 2. Compound Syntax

Semantics. Formally, the semantics of composites is obtained by adapting the
synchronous product to STS [1, 12, 33].

3 The Flight Reservation System Example

In order to demonstrate our proposal, we present a simplified flight ticket reserva-
tion system. The reservation system (see Fig. 3) contains a Company component,

5



a Bank component, and a Counter component. The Company is responsible for
proposing the available flights corresponding to a particular request. The Bank

manages the bank accounts of the clients. The Counter is the most important
component as it receives the requests from clients and then coordinates the
search and confirmation (by interacting with the Company) and the payment (by
calling the Bank services) of the confirmed flight. As a coordinator, the Counter

exposes three interfaces: bookingIntf, paymentIntf and orderingIntf. While
the first two interfaces are used to connect the Counter to the Company and the
Bank, respectively, orderingIntf is used to interact with the clients. The types
associated to these interfaces are given in Fig. 5.

cancelFlight

flightRequest

flightBook

flightNotAvailable

proposePrice

bookingIntf

company:Company

bookingIntf

flightRequest

cancelFlight

flightBook

flightNotAvailable

proposePrice

counter:Counter

bank:Bank

order

orderResponse

paymentIntf

orderResponse

order

accountIntf

orderingIntf

cancelFlight

flightBook

proposePrice

orderingIntf

cancelFlight

flightBook

proposePrice

ReservationSystem

Fig. 3. A Simplified Ticket Reservation System

Once connected, the Company, the Bank, and the Counter form a compound
component called ReservationSystem. A client component does not have to
know the internals of this component. It will only communicate through the
interfaces exposed by ReservationSystem. The interaction between a client and
the system is actually implemented within the Counter component, the exposed
interface is orderingIntf. Once the architecture has been built, all requests
coming from a client are transferred to the orderingIntf in the Counter.

In order to facilitate the understanding of STS protocols associated to com-
ponents we propose a graphical description. The protocol described in Fig. 4
represents the allowed behaviour associated to the Company component. The
protocol consists of three states and several transitions between these states
corresponding to the messages that are received and emitted to and from the
component. In addition, the protocol specifies the messages ordering. For ex-
ample, a booking (flightBook) or cancellation (cancelFlight) message can-
not be exchanged before a proposePrice message is received. The flightBook

6



and cancelFlight messages are guarded (a boolean expression between square
brackets). They will be processed only if the corresponding guard (depending on
message parameters) is true. Received messages are preceded by a ? sign. A !

0

1

!proposePrice(Price price)

2

cancelFlight(Flight flight)
[wasProposed(flight)]

!flightNotAvailable()

flightBook(Flight flight,
ClientID client)

[wasProposed(Flight)]

?flightRequest(Flight flight)

?̂

?̂

Fig. 4. The Company STS Protocol

sign precede a sent message and the ?̂ sign denotes an asynchronous message.

3.1 Textual Description

Graphical descriptions of protocols are useful for human understanding of dy-
namic systems. However, automated computation requires a textual represen-
tation. We have defined a minimal component language [28] relatively close to
Java to describe the interfaces and the protocol of a basic component. Fig. 5
depicts the definition of the Company component using the proposed language.
A definition for a basic component comprises one or more Interface sections
used to define the services of each interface of the component. The second section
defines the operations representing the guards used in transitions (wasProposed
in Fig. 4). The last section describes the STS protocol we want to associate to
this component. The Protocol section contains the list of states of the protocol
including the initial state and the final states, if any, and the list of transitions.
The protocol associated to the Company has no final state meaning that the
execution runs forever.

The definition of compound components is slightly different. In order to ob-
tain the ReservationSystem compound component from the example we would
write the code presented in Fig. 6. After declaring the subcomponents, the
connect primitives are used to put in correspondence the components inter-
faces. This primitive makes no assumption with regard to the type of connection
(local, remote, etc) employed to actually connect the implementation compo-
nents at runtime. This information is given at deployment time. The Interface
section defines the interfaces to be exposed by the compound component. In

7



component Company {

interface bookingIntf {

PROVIDE void flightRequest(Flight flight);

REQUIRE void proposePrice(Price price);

REQUIRE void flightNotAvailable();

REACT void flightBook(Flight flight, ClientID client);

REACT void cancelFlight(Flight flight);

};

guards {

boolean wasProposed(Flight flight);

};

protocol {

states {0 (initial), 1, 2};

transitions {

0:flightRequest -> 1;

1:flightNotAvailable -> 0;

1:proposeFlight -> 2;

2:flightBook(flight, client)

[wasProposed(flight)] -> 0;

2:cancelFlight(flight)

[wasProposed(flight)] -> 0;

};

};

};

Fig. 5. The Company Textual Description

compound ReservationSystem {

Company company;

Counter counter;

Bank bank;

connect company.bookingIntf, counter.bookingIntf;

connect bank.accountIntf, counter.paymentIntf;

Interface orderingIntf{

export Counter.orderingIntf;

};

};

Fig. 6. The ReservationSystem Textual Description

8



the proposed example, the interface to be exposed is the same as that of the
Counter subcomponent but a combination of interfaces of subcomponents into
a new interface of the compound is possible.

4 Model Implementation

The general idea is depicted in Fig. 7. The purpose is to attach an STS pro-
tocol to an already defined ”component” (further referred as bare component).
After attaching the protocol, the result is another component (further referred
to as controlled component) with the same functionality as the initial one and
in addition a mechanism to check and impose the specified protocol. A bare
component would connect into an architecture using simple binding mechanisms
(if the correspondent is local) or RMI connections (if the correspondent is re-
mote). A controlled component would connect using a special connection based
on communication channels as we will see later in this section.

Functional Code

(implementation) +

x:X
protocol & communication
controller

precompiler

controlledx:ControlledX

Protocol

(STS)

In
te

rf
ac

e Functional Code

In
te

rf
ac

e
Fig. 7. General Idea

The guidelines to follow in order to implement a component in Java are
discussed in Subsect. 4.1. The approach we propose in order to attach a given
protocol to a given component is described in Subsect. 4.2.

4.1 Bare Components

One simple solution to implement a component into Java is to use the package

feature provided by this language. In order to achieve the hard boundaries we
need for components, we use an approach close to the one presented in [3]. This
approach imposes some restrictions. First, a component must have at least one
class that represents the component’s interface. Second, these interface classes
are the only public classes in the package. Third, only interface classes can have
public methods. Fourth, the internal references are invisible from outside the
component boundaries.

The clear advantage of such an approach is that the access to a component
is possible only through its clearly specified interfaces. On the other hand, the
restrictions we impose does not have a great impact on how the component is

9



implemented. At execution, a component instance may have one or more objects,
one or more active entities, etc.

4.2 Protocol Implementation

To integrate protocols expressed as STSs, we have identified two major ap-
proaches. First, we could modify the code of a bare component in order to
behave as specified by the protocol. One solution would be to use AOP [21],
or bytecode altering techniques [11] to create a new Java class hierarchy im-
plementing the component with the protocol. The second approach does not
modify the initial code but rather creates a framework of classes around the
initial code. Once instantiated, this framework will become a component (with
the same functionality as the initial one) integrating the specified protocol.

cancelFlight

flightRequest

flightBook

flightNotAvailable

proposePrice

bookingIntf

company:Company

bookingIntf

flightRequest

cancelFlight

flightBook

flightNotAvailable

proposePrice

companyController:
CompanyController

controlledCompany:ControlledCompany

inChannel

outChannel

Fig. 8. Controlled Company

We choose to implement our proposal by following the second approach (see
Fig. 8). In order to associate a protocol to a component at runtime, we use a
single, complementary active entity that plays the role of a controller for the
component (hence the name controlled component for the association of a bare
component and a protocol). The role of a controller is to: (1) intercept the
messages sent or received by the actual component and (2) decide whether these
messages are either allowed or forbidden. This can be achieved by implementing
the logical state pattern [18].

Fig. 9 depicts a simplified view of the ComponentController implementation
class. The controller class implements the Runnable interface and the Java in-
terface (BookingIntfImported) defining the required operations (proposePrice
and flightNotAvailable) in the bookingIntf set.

The logical state pattern is implemented in two steps. First, all the possible
states of the protocol are declared as private variables in the controller. Second,

10



public class CompanyController implements BookingIntfImported,

Runnable {

private static final int ZERO = 0;

private static final int ONE = 1;

private static final int TWO = 2;

private int controlState = ZERO; //Current State

...

public void proposePrice(Price price) {...}

public void flightNotAvailable() {...}

...

public run(){

...

while (true) { //No final state.

switch (controlState) {

case ZERO: ...; break;//Process flightRequestMessage

case TWO: ...; break;//Process flightBook & cancelFlight

}

}

}

...

}

Fig. 9. CompanyController Code1

the actions to be taken when the component can receive a request (according to
the protocol state) are defined in the run method. The actions to be taken when
the component can send a message are defined in the methods implementing the
required operation of the component.

Fig. 10 presents the body of one of these methods (proposePrice). Two
checks have to be realized before actually forwarding the message. The first
check is related to the component current state. The second is the guard check.
If the two checks are successful, the message is forwarded to the correspondent
by employing a special entity called channel (see next subsection for details). If
the message was correctly received, the protocol passes into a new state (state
TWO as according to the definition of the STS) otherwise the execution blocks.

4.3 Channel Connections

In order to connect components into an architecture, we propose to employ chan-
nels [3]. A channel represents a one-to-one anonymous connection mechanism.
It is also directed: messages flow from its source (where messages are sent) to
its sink (where messages are received). Channels can be synchronous or asyn-
chronous, mobile, with conditions, etc. In addition to its coordination role, a
channel could be used in more sophisticated connection schemes. For example,
a channel could integrate buffers or could be used to adapt one interface (and
protocol) to another one. In the presented example we consider that all the com-
ponents are local and that the architecture is static. However, a channel could

11



public void proposePrice(Price price) {

if (controlState != ONE) {//Protocol Compatibility Error}

// guard is implicitelly true but BLOCK if false

// Pack the actual message as: obj = new Object[]{...};

try {

writeChannel.write(obj);

} catch (GuardException e) {

//The guard of the correspondent is false. Block

}

controlState = TWO;//Transition successful. Change current state.

}

Fig. 10. The proposePrice Implementation Code

also be employed to connect remote component instances, possibly dynamically
created at runtime.

To connect two interfaces we need two different channels. One channel is ori-
ented from interface I1 to interface I2. The second channel is oriented form I2 to
I1. Created inside the scope of the compound, the channel ends are transmitted
as parameters to the communicating components (subcomponents) at instanti-
ation time. The fact that the channels are not exported outside the composite
scope ensures that they are exclusively used by the connected components.

We have created a class called Channel. This class implements two interfaces
WriteChannel and ReadChannel. The WriteChannel interface defines the oper-
ation write related to the channel source. The ReadChannel interface defines the
operations read, commit, and cancel related to the channel sink. The execution
behaves differently depending on the communication type. If the communication
is synchronous the sender blocks on the write method until the receiver reads
(and commits or cancels, depending on the evaluation of the associated guard)
the message. If the communication is asynchronous the write method blocks
until the message is saved into a buffer, built inside the channel entity.

While the Channel class can be reused as is in many different connections,
the controller classes have to be created for each bare component in the archi-
tecture. This can be done manually of course, but an automated solution is also
possible. In fact, the language used to define the interfaces and the protocol of a
component contains enough information to allow a tool to automatically create
the required classes for an application. A pre-compiler based on the SableCC [17]
framework has been developed. The pre-compiler takes as input the description
of component (either primitive or compound) classes and generates the necessary
controller classes.

12



5 Related Work

In the last decade, formal models with behavioural descriptions have been pro-
posed in the context of software architectures [2, 22]. However, if they propose
different analysis mechanisms for component architectures, they do not address
the issue of taking protocols into account within the implementation, which are
mandatory issues for seamless CBSE development processes.

In the concurrent object-oriented community, PROCOL [35] is one of the old-
est proposals that deals with explicit protocols. PROCOL is a parallel C-based
object-oriented language with communication based on one-way synchronous
messages. Taking into consideration the sequential nature and the lack of pro-
tection against unscheduled accesses of object-oriented languages, the authors
of PROCOL proposed to use synchronous message transfer in place of the RPC
mechanism. This offers more potential for concurrency, and it may be seen as
a restricted form of asynchronous communication (mailboxes being bounded to
one message). The support language being an object-oriented one, required op-
erations are not explicitly given. Moreover, receivers are explicitly given within
the code. It is well known that component languages should rather explicit com-
munications between components and try to separate communications from op-
eration implementation and behavioural protocols. As far as the protocols are
concerned, PROCOL relies on rational expressions extended with variables and
guards. Each object is implemented as a process within the Unix environment
and communicates under the control of a unique arbiter. Action sequencing is
implemented by a nondeterministic finite automaton that is equivalent (in the
accepting language sense) to the regular expression protocol of the object. Apart
from the graphical presentation, PROCOL protocols have the same expressive
power than STSs.

In [23], the authors present techniques to relate concurrent Java programs
with a behavioural description given in the FSP (Finite State Processus) process
algebra. Rather than really taking into account FSP protocols within a program-
ming language, their goal is to be able to use FSP in a development process and to
analyse models of threaded concurrent Java programs before coding them. This
approach has been extended to the analysis of software architectures like [16]
on web services where BPEL4WS is translated into FSP before analysis. The
reverse approach is presented in [24] where the Darwin ADL has been used to
address system construction using a Darwin to Corba IDL translation. How-
ever, behavioural protocols are not taken into account. The same holds for the
different related approaches presented in [9].

In [15] the authors propose to integrate protocols within EJBs, at different
levels. These protocols are given as labelled FSMs (Finite State Models) enriched
by specific datatypes (for instance, to handle lists of allowed receivers) and re-
lated guards. A notion of consistency between the specified and the implemented
protocol is also presented. Consistency is based on Nierstrasz work on regular
types [27]. The main differences with our work are that we make it possible
to use more complex datatypes within our protocols, we consider hierarchical
models, and we address the development phase.

13



The SOFA [30] component model considers component types or templates.
A component is an instance of a template. SOFA introduces the notion of inter-
face, compound and primitive architectures as well as usual means to connect
services between the subcomponents of an architecture. The description language
introduces behavioural protocols and employs first-class connectors. Similarly to
components, these connectors are described by a frame (required and provided
interfaces) and an architecture (its implementation). The behaviour protocols are
regular expressions denoting traces, i.e. sequences of events (required, provided,
and internal calls). These protocols may be associated with interface, frame and
architecture. [30] presents a model for the behaviour protocol-based description
of hierarchical components. They define a notion of component substitution and
a behavioural compliance between protocols. Protocol conformance can be ver-
ified at design time but protocols are not explicitly taken into consideration at
implementation level.

6 Conclusions

We have presented in this paper a hierarchical component model supporting
multiple interfaces with asynchronous and synchronous services. The main fea-
ture of this model is the introduction of explicit protocols based on Symbolic
Transition Systems. This improves the capabilities of formal analysis of com-
ponent systems with either model-checking or theorem proving [28]. Then, we
have presented a Java implementation of our model. A component corresponds
to a controller encapsulating the STS part and a Java application provided with
a well-defined component interface. The controller has the responsibility of in-
tercepting communications and of triggering the right service on the inner Java
code, depending on the state of the protocol. The communications are realized
thanks to a notion of channel. This construction is well-known to provide benefits
such as mobility, remote connections and reusability. In addition, channels are
used in our implementation to ensure that a message arrives to its correspondent
and also to notify the sender when the guard at the correspondent side is false.

Acknowledgment. This work was partly supported by the ACI Sécurité Infor-
matique, DISPO project.

References

1. M. Aiguier, F. Barbier, and P. Poizat. A Logic with Temporal Glue for Mixed
Specifications. In FOCLASA’2003, volume 97 of Electronic Notes in Theoretical
Computer Science, pages 155–174. Springer-Verlag, 2005.

2. R. J. Allen. A formal approach to software architecture. PhD thesis, Carnegie
Mellon University, 1997.

3. F. Arbab, J. V. Guillen Scholten, F.S. de Boer, and M. M. Bonsangue. A
channel-based coordination model for components. Technical report, Centruum
voor Wiskunde en Informatica, 2002.

14



4. C. Attiogbé, P. Poizat, and G. Salaün. Integration of formal datatypes within state
diagrams. In FASE’2003, volume 2621 of Lecture Notes in Computer Science, pages
344–355. Springer-Verlag, 2003.

5. L. Bellissard, S. B. Atallah, A. Kerbrat, and M. Riveill. Component-based pro-
gramming and Application Management with Olan. In J. Briot, J. Geib, and
A. Yonezawa, editors, Object-Based Parallel And Distributed Computation, volume
1107 of LNCS, pages 290–309. Springer-Verlag, Berlin, 1995.

6. J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process Algebra.
Elsevier, 2001.

7. E. Bertino, editor. Proceedings of the European Conference on Object-oriented
Programming (ECOOP 2000), number 1850 in Lecture Notes in Computer Science,
Sophia Antipolis and Cannes, France, June 2000. Springer-Verlag.

8. M. Calder, S. Maharaj, and C. Shankland. A Modal Logic for Full LOTOS Based
on Symbolic Transition Systems. The Computer Journal, 45(1):55–61, 2002.

9. C. Canal. On the dynamic adaptation of component behaviour. In WCAT’04,
pages 81–88, 2004.

10. C. Canal, J. M. Murillo, and P. Poizat, editors. WCAT’2004 - Int. Workshop on
Coordination and Adaptation Techniques for Software Entities. 2004. Available at
http://wcat04.unex.es.

11. S. Chiba. Load-time structural reflection in Java. In Bertino [7], pages 313–336.
12. C. Choppy, P. Poizat, and J.-C. Royer. A global semantics for views. In T. Rus,

editor, International Conference, AMAST’2000, volume 1816 of Lecture Notes in
Computer Science, pages 165–180. Springer-Verlag, 2000.

13. Christine Choppy, Pascal Poizat, and Jean-Claude Royer. From informal require-
ments to COOP: a Concurrent Automata Approach. In J.M. Wing and J. Wood-
cock and J. Davies, editor, FM’99, volume 1709 of Lecture Notes in Computer
Science, pages 939–962. Springer-Verlag, 1999.

14. E. A. Emerson. Temporal and Modal Logic, volume B of Handbook of Theoretical
Computer Science, chapter 16, pages 997–1072. Elsevier, 1990. J. Van Leeuwen,
Editor.

15. A. Faŕıas, Y.-G. Guéhéneuc, and M. Südholt. Integrating behavioral protocols in
Enterprise Java Beans. In K. Baclawski and H. Kilov, editors, Eleventh OOPSLA
Workshop on Behavioral Semantics: Serving the Customer, pages 80–89, 2002.

16. H. Foster, S. Uchitel, J., and J. Kramer. Model-based verification of web service
compositions. In ASE, pages 152–163. IEEE Computer Society, 2003.

17. E. Gagnon. SableCC, An Object-Oriented Compiler Framework. PhD thesis, School
of Computer Science McGill University, Montreal, November 1998.

18. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison Wes-
ley Professional Computing Series. Addison Wesley, 1995. http://www.aw.com.

19. K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type disciplines
for structured communication-based programming. In ESOP’98), volume 1381 of
Lecture Notes in Computer Science, pages 122–138. Springer-Verlag, 1998.

20. A. Ingolfsdottir and H. Lin. A Symbolic Approach to Value-passing Processes,
chapter 7 in [6], pages 427–478. Elsevier, 2001.

21. I. Kiselev. Aspect-Oriented Programming with AspectJ. Sams Publishing, Indi-
anapolis, 2003.

22. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software
architectures. In Proceedings of ESEC’95, pages 137–53. IEEE, 1995.

23. J. Magee and J. Kramer. Concurrency: State Models & Java Programs. Wiley,
1999.

15



24. J. Magee, A. Tseng, and J. Kramer. Composing distributed objects in CORBA. In
Proceedings of the Third International Symposium on Autonomous Decentralized
Systems, pages 257–63, Berlin, Germany, 9–11 1997. IEEE.

25. O. Maréchal, P. Poizat, and J.-C. Royer. Checking asynchronously communicating
components using symbolic transition systems. In Z. Tari R. Meersman and al.,
editors, CoopIS, DOA, and ODBASE, volume 3291 of Lecture Notes in Computer
Science, pages 1502–1519. Springer-Verlag, 2004.

26. N. Medvidovic and R. N. Taylor. A classification and comparison framework for
software architecture description languages. IEEE - Transactions on Software
Engineering, 26(1):70–93, 2000.

27. O. Nierstrasz. Regular types for active objects. In Proceedings of the eighth annual
conference on Object-oriented programming systems, languages, and applications,
pages 1–15. ACM Press, 1993.

28. J. Noyé, S. Pavel, P. Poizat, and J.-C. Royer. A formal component model with
explicit symbolic protocols and its java implementation. Technical report, Ecole
des Mines de Nantes, 2005.

29. G. A. Papadopoulos and F. Arbab. Coordination Models and Languages. In The
Engineering of Large Systems, volume 46 of Advances in Computers, pages 329–
400. Academic Press, August 1998.

30. F. Plas̈ıl and S. Visnovsky. Behavior protocols for software components. IEEE -
Transactions on Software Engineering, 28(11):1056–1076, November 2002.

31. P. Poizat and J.-C. Royer. Korrigan: a Formal ADL with
Full Data Types and a Temporal Glue. Technical Report 83–
2002, Laboratoire de Méthodes Informatiques, 2002. Available at
http://www.lami.univ-evry.fr/~poizat/publications-fr.php.

32. J.-C. Royer. The GAT approach to specify mixed systems. Informatica, 27(1):89–
103, 2003.

33. J.-C. Royer and M. Xu. Analysing mailboxes of asynchronous communicating
components. In D. C. Schmidt R. Meersman, Z. Tari and al., editors, CoopIS,
DOA, and ODBASE, volume 2888 of Lecture Notes in Computer Science, pages
1421–1438. Springer-Verlag, 2003.

34. K. J. Turner, editor. Using Formal Description Techniques, An introduction to
Estelle, LOTOS and SDL. Wiley, 1993. ISBN 0-471-93455-0.

35. J. van den Bos and C. Laffra. PROCOL: A Parallel Object Language with Pro-
tocols. In Norman Meyrowitz, editor, OOPSLA’89 Conference Proceedings, pages
95–102. ACM Press, 1989.

36. D. M. Yellin and R. E. Strom. Protocol specifications and component adaptors.
ACM Transactions on Programming Languages and Systems, 19(2):292–333, 1997.

16


