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has now emerged as a discipline for system development. Important issues in CBSE such as composition incompatibility detection and (dynamic) adaptation can only be addressed with the help of formal component models with Behavioural Interface Description Languages (BIDLs) and explicit protocols. The issue is then to fill the gap between such high-level models and implementation. This paper suggests to do so by relying on Symbolic Transition Systems (STSs). It describes a component model with explicit symbolic protocols based on STSs, and its implementation in Java. This implementation is based on controllers that encapsulate protocols and channels devoted to (possibly remote) communications between components.

Introduction

With the increase in complexity of software systems in the last few years, the Component-Based Software Engineering (CBSE) approach has emerged as a discipline that yields promising results such as trusted and/or Off-The-Shelf components (COTS), improved component reusability, semi-or automatic composition and adaptation of components into architectures, expressive middleware, and so on. A major drawback of the mainstream industrial approach to CBSE is that it has mainly focused on programming/low-level features making it difficult to reason on problematic issues hidden behind the CBSE promising results.

Recent meta-descriptive approaches such as the OMG-Model Driven Architecture and Aspect-Oriented Software Development promote the return to abstract models and clear separation between the functional (or business) and non functional (or technical, e.g. real-time constraints or synchronizing policies) aspects of a system. Orthogonally, Architectural Description Languages [START_REF] Medvidovic | A classification and comparison framework for software architecture description languages[END_REF] and Coordination Languages [START_REF] Papadopoulos | Coordination Models and Languages[END_REF] are also increasingly promoted in the CBSE community. Both are interesting with regard to their ability to abstract the systems and provide better/simpler reasoning mechanisms, but also because this activity can be formally grounded and then equipped with tools.

The first important issue when designing a component model is related to the definition of the component interfaces using Interface Description Languages (IDLs). This has been initially addressed by industrial component infrastructures to statically (i.e. at compile time) generate skeletons and stubs for distributed components. More recently, this issue has turned to be at the core of the most challenging issues in CBSE: component validation and trusted components, (dynamic) adaptation, negotiation and choreography. The limit of IDLs based on signature types has now been demonstrated. For instance, type correct communicating components may deadlock because they do not have compatible protocols. It is therefore now widely accepted that IDLs have to take into account behavioural protocols, yielding Behavioural IDLs (BIDLs). These protocols may be used either as a piece of documentation for the components, in a design-bycontract process, to compose and check connections between components or even build adapters [START_REF] Canal | WCAT'2004 -Int. Workshop on Coordination and Adaptation Techniques for Software Entities[END_REF][START_REF] Yellin | Protocol specifications and component adaptors[END_REF] when component interfaces do not match. Several formal models dealing with such IDLs and protocols have been proposed. However, as components exchange data using their provided and required services, formal models have to take data into account while managing potential state-explosion problems.

In this paper, we suggest using Symbolic Transition Systems [START_REF] Calder | A Modal Logic for Full LOTOS Based on Symbolic Transition Systems[END_REF][START_REF] Choppy | A global semantics for views[END_REF] (STSs) as the basis of a BIDL. This expressive formalism makes it possible to control state explosion thanks to the use of guards and complex typed parameters associated to the transitions. We show how STSs can be used as explicit protocols in a hierarchical component model supporting multiple interfaces with heterogeneous services (synchronous and asynchronous communications). An important property of this model is that the protocols are verified by construction. We present a Java implementation of the model whereby the code of a primitive component is synthesized from an STS protocol and Java code. A controller intercepts the communications and calls the related service of the inner Java code according to the protocol. The subcomponents of a compound component communicate via channels dealing with the guarded synchronous and asynchronous communications.

The paper is organized as follows. Sect. 2 describes our component model. Sect. 3 introduces a simple case study that will illustrate our presentation. Then Sect. 4 explains how our model can be implemented in Java to deal with explicit protocols and explicit component binding mechanisms. Sect. 5 presents related approaches and Sect. 6 concludes.

STS-oriented Component Model

Like any component model, our model builds on the ADL ontology [START_REF] Medvidovic | A classification and comparison framework for software architecture description languages[END_REF]: architectures or configurations made of components (with ports) and connectors (with roles), and bindings between component ports and connector roles.

The specificities of our model are: heterogeneous interfaces incorporating typed services of different kinds, explicit behavioural protocols, and the use of Symbolic Transition Systems. We rely on a simple binding mechanism rather than on complex connectors. For the time being, we only consider one-to-one, one-way messages. We are also dealing only with static architectures. We will here briefly present these elements and some details of our model. More details and extensions about the formal model and how this kind of component specification can be used to achieve component-based analysis can be found in [START_REF] Noyé | A formal component model with explicit symbolic protocols and its java implementation[END_REF].

Primitive Components

Primitive components are made up of a type name, named interfaces, a behavioural protocol and an underlying data type, or implementation, on which the component relies to achieve the services it provides (each service corresponds to a function or method in the implementation).

Interfaces. Components interact through named interfaces, each one corresponding to a communication port. An interface corresponds to a set of services A service is given as a name (unique within a given interface) and a type which corresponds to the type of the values received/emitted by the service. A service can be provided or required, and for each of them, communication can be either synchronous or asynchronous. We consider reliable message sending based on synchronous call, asynchronous messages are realized through the use of mailboxes and decoupling between message receipt and execution. This approach is based on [START_REF] Royer | Analysing mailboxes of asynchronous communicating components[END_REF], which gives a more precise discussion about the need for asynchronous communications. One specificity of our approach is that the operations related to mailboxes are transparent at this level of abstraction.

The graphical notation for interfaces and services is given in Fig. 1. Here we omit service types for conciseness, see [START_REF] Noyé | A formal component model with explicit symbolic protocols and its java implementation[END_REF] for the comprehensive grammar. Boxes correspond to synchronous services and circles to asynchronous ones. Black symbols denote required services (emissions) and white ones denote provided services (receipts). Our syntax for interfaces was inspired by various component graphical notations, mainly from the Olan ADL [START_REF] Bellissard | Component-based programming and Application Management with Olan[END_REF] (for the port symbols) and from process algebras such as LOTOS [START_REF] Turner | Using Formal Description Techniques, An introduction to Estelle, LOTOS and SDL[END_REF] (for the input/output event schemes). The textual notation of interfaces is given, with respect to the Java language, in Sect. 4. The keywords corresponding to service kinds are: require for required synchronous services, provide for provided synchronous services, notify for required asynchronous services and react for provided asynchronous services.

Protocols. A known drawback of several component models is their lack of component behavioural protocols. It is well known that purely static (signature based) interfaces are not sufficient to detect inconsistencies in two interacting component protocols. Moreover, behavioural pieces of information on components are also needed to perform tasks such are dynamic adaptation [START_REF] Canal | WCAT'2004 -Int. Workshop on Coordination and Adaptation Techniques for Software Entities[END_REF] or negotiation. Such protocols can be expressed using different formalisms: automata [START_REF] Yellin | Protocol specifications and component adaptors[END_REF], behavioural types [START_REF] Honda | Language primitives and type disciplines for structured communication-based programming[END_REF], process algebras [START_REF] Bergstra | Handbook of Process Algebra[END_REF], temporal logics [START_REF] Emerson | Temporal and Modal Logic[END_REF]. We chose the Symbolic Transition Systems framework.

Symbolic Transition Systems (STS) [START_REF] Calder | A Modal Logic for Full LOTOS Based on Symbolic Transition Systems[END_REF][START_REF] Ingolfsdottir | A Symbolic Approach to Value-passing Processes[END_REF] have initially been developed as a solution to the state and transition explosion problem in value-passing process algebras using substitutions associated to states and symbolic values in transition labels. Our STSs (see example Fig. 4) are a generalisation of these, associating a symbolic state and transition system with a data type description [START_REF] Attiogbé | Integration of formal datatypes within state diagrams[END_REF][START_REF] Choppy | A global semantics for views[END_REF][START_REF] Royer | The GAT approach to specify mixed systems[END_REF]. This description may be given using algebraic specifications [START_REF] Choppy | A global semantics for views[END_REF][START_REF] Royer | The GAT approach to specify mixed systems[END_REF], model-oriented specifications [START_REF] Attiogbé | Integration of formal datatypes within state diagrams[END_REF] or even Java classes. STSs can be related to statecharts (see [START_REF] Poizat | Korrigan: a Formal ADL with Full Data Types and a Temporal Glue[END_REF] for details) but are simpler as far as semantics is concerned.

Implementation. The implementation part of components is an encapsulated datatype element of some kind on which the behavioural protocol relies to achieve operations corresponding to its transitions. An assumption is that this datatype does not only implement the interface services but also that it does it in a way that is compliant with the protocol. In a purely formal specification approach [START_REF] Choppy | A global semantics for views[END_REF][START_REF] Poizat | Korrigan: a Formal ADL with Full Data Types and a Temporal Glue[END_REF], the implementation is given as an algebraic datatype. In such a case, derivation mechanisms originating from the Graphical Abstract data Type (GAT) formalism [START_REF] Choppy | From informal requirements to COOP: a Concurrent Automata Approach[END_REF][START_REF] Royer | The GAT approach to specify mixed systems[END_REF] makes it possible to obtain semi-automatically a compliant datatype. Here, the implementation part is given as a Java application (see Sect. 4). Translation from GAT datatypes to Java code could be used [START_REF] Choppy | From informal requirements to COOP: a Concurrent Automata Approach[END_REF]. Code analysis could also be performed to check protocol compliance. This is out of the scope of this paper.

Syntax. The graphical syntax of a component is given in Fig. 1. The textual syntax depends on the target language. The instantiation for the Java language is given in Sect. 4. Semantics. Various operational and denotational semantics have been defined for variants of STSs, see [START_REF] Aiguier | A Logic with Temporal Glue for Mixed Specifications[END_REF][START_REF] Choppy | A global semantics for views[END_REF][START_REF] Maréchal | Checking asynchronously communicating components using symbolic transition systems[END_REF]. The semantics of a component corresponds to the semantics of its STS which may be expressed as a configuration graph (see [START_REF] Maréchal | Checking asynchronously communicating components using symbolic transition systems[END_REF][START_REF] Noyé | A formal component model with explicit symbolic protocols and its java implementation[END_REF]). A configuration graph is a LTS with values associated to states, thus the usual notions (e.g. traces, reachability tree and reachability graph) are naturally extended to an STS using configuration transitions. This formal framework enables component-based analysis [START_REF] Canal | WCAT'2004 -Int. Workshop on Coordination and Adaptation Techniques for Software Entities[END_REF].

Protocol

Compound Components

Compound components are component assemblies given as a set of identified and typed subcomponents and a set of bindings between these component interfaces.

Communication is binary (one sender, one receiver) and oriented (no rendezvous as in process algebras [START_REF] Bergstra | Handbook of Process Algebra[END_REF][START_REF] Turner | Using Formal Description Techniques, An introduction to Estelle, LOTOS and SDL[END_REF]). The matching between services of two bound interfaces is done through name matching (this can be achieved using renaming), that is, given two bound interfaces I 1 and I 2 , each required service s of I 1 (resp. of I 2 ) corresponds to a provided service s (same name) in I 2 (resp. I 1 ). Moreover, service types and kinds (asynchronous/synchronous) must correspond too. In order to have compound components, an interface is given for the compound and bindings (exports) are defined between this interface and the subcomponents interfaces. Any interface of the subcomponents in a compound component that is not bound can be exported.

Syntax. A compound component may be given either in its graphical form (Fig. 2) or its textual form (see Sect. 4 for its Java version). Semantics. Formally, the semantics of composites is obtained by adapting the synchronous product to STS [START_REF] Aiguier | A Logic with Temporal Glue for Mixed Specifications[END_REF][START_REF] Choppy | A global semantics for views[END_REF][START_REF] Royer | Analysing mailboxes of asynchronous communicating components[END_REF].

The Flight Reservation System Example

In order to demonstrate our proposal, we present a simplified flight ticket reservation system. The reservation system (see Fig. Once connected, the Company, the Bank, and the Counter form a compound component called ReservationSystem. A client component does not have to know the internals of this component. It will only communicate through the interfaces exposed by ReservationSystem. The interaction between a client and the system is actually implemented within the Counter component, the exposed interface is orderingIntf. Once the architecture has been built, all requests coming from a client are transferred to the orderingIntf in the Counter.

In order to facilitate the understanding of STS protocols associated to components we propose a graphical description. The protocol described in Fig. 4 represents the allowed behaviour associated to the Company component. The protocol consists of three states and several transitions between these states corresponding to the messages that are received and emitted to and from the component. In addition, the protocol specifies the messages ordering. For example, a booking (flightBook) or cancellation (cancelFlight) message cannot be exchanged before a proposePrice message is received. The flightBook and cancelFlight messages are guarded (a boolean expression between square brackets). They will be processed only if the corresponding guard (depending on message parameters) is true. Received messages are preceded by a ? sign. A ! 

The Company STS Protocol

sign precede a sent message and the ? sign denotes an asynchronous message.

Textual Description

Graphical descriptions of protocols are useful for human understanding of dynamic systems. However, automated computation requires a textual representation. We have defined a minimal component language [START_REF] Noyé | A formal component model with explicit symbolic protocols and its java implementation[END_REF] relatively close to Java to describe the interfaces and the protocol of a basic component. Fig. 5 depicts the definition of the Company component using the proposed language. A definition for a basic component comprises one or more Interface sections used to define the services of each interface of the component. The second section defines the operations representing the guards used in transitions (wasProposed in Fig. 4). The last section describes the STS protocol we want to associate to this component. The Protocol section contains the list of states of the protocol including the initial state and the final states, if any, and the list of transitions. The protocol associated to the Company has no final state meaning that the execution runs forever.

The definition of compound components is slightly different. In order to obtain the ReservationSystem compound component from the example we would write the code presented in Fig. 6. After declaring the subcomponents, the connect primitives are used to put in correspondence the components interfaces. This primitive makes no assumption with regard to the type of connection (local, remote, etc) employed to actually connect the implementation components at runtime. This information is given at deployment time. The Interface section defines the interfaces to be exposed by the compound component. In the proposed example, the interface to be exposed is the same as that of the Counter subcomponent but a combination of interfaces of subcomponents a new interface of the compound is possible.

Model Implementation

The general idea is depicted in Fig. 7. The purpose is to attach an STS protocol to an already defined "component" (further referred as bare component). After attaching the protocol, the result is another component (further referred to as controlled component) with the same functionality as the initial one and in addition a mechanism to check and impose the specified protocol. A bare component would connect into an architecture using simple binding mechanisms (if the correspondent is local) or RMI connections (if the correspondent is remote). A controlled component would connect using a special connection based on communication channels as we will see later in this section. The guidelines to follow in order to implement a component in Java are discussed in Subsect. 4.1. The approach we propose in order to attach a given protocol to a given component is described in Subsect. 4.2.

Bare Components

One simple solution to implement a component into Java is to use the package feature provided by this language. In order to achieve the hard boundaries we need for components, we use an approach close to the one presented in [START_REF] Arbab | A channel-based coordination model for components[END_REF]. This approach imposes some restrictions. First, a component must have at least one class that represents the component's interface. Second, these interface classes are the only public classes in the package. Third, only interface classes can have public methods. Fourth, the internal references are invisible from outside the component boundaries.

The clear advantage of such an approach is that the access to a component is possible only through its clearly specified interfaces. On the other hand, the restrictions we impose does not have a great impact on how the component is implemented. At execution, a component instance may have one or more objects, one or more active entities, etc.

Protocol Implementation

To integrate protocols expressed as STSs, we have identified two major approaches. First, we could modify the code of a bare component in order to behave as specified by the protocol. One solution would be to use AOP [START_REF] Kiselev | Aspect-Oriented Programming with AspectJ[END_REF], or bytecode altering techniques [START_REF] Chiba | Load-time structural reflection in Java[END_REF] to create a new Java class hierarchy implementing the component with the protocol. The second approach does not modify the initial code but rather creates a framework of classes around the initial code. Once instantiated, this framework will become a component (with the same functionality as the initial one) integrating the specified protocol. We choose to implement our proposal by following the second approach (see Fig. 8). In order to associate a protocol to a component at runtime, we use a single, complementary active entity that plays the role of a controller for the component (hence the name controlled component for the association of a bare component and a protocol). The role of a controller is to: (1) intercept the messages sent or received by the actual component and (2) decide whether these messages are either allowed or forbidden. This can be achieved by implementing the logical state pattern [START_REF] Gamma | Design Patterns. Addison Wesley Professional Computing Series[END_REF].

Fig. 9 depicts a simplified view of the ComponentController implementation class. The controller class implements the Runnable interface and the Java interface (BookingIntfImported) defining the required operations (proposePrice and flightNotAvailable) in the bookingIntf set.

The logical state pattern is implemented in two steps. First, all the possible states of the protocol are declared as private variables in the controller. Second, To connect two interfaces we need two different channels. One channel is oriented from interface I1 to interface I2. The second channel is oriented form I2 to I1. Created inside the scope of the compound, the channel ends are transmitted as parameters to the communicating components (subcomponents) at instantiation time. The fact that the channels are not exported outside the composite scope ensures that they are exclusively used by the connected components.

We have created a class called Channel. This class implements two interfaces WriteChannel and ReadChannel. The WriteChannel interface defines the operation write related to the channel source. The ReadChannel interface defines the operations read, commit, and cancel related to the channel sink. The execution behaves differently depending on the communication type. If the communication is synchronous the sender blocks on the write method until the receiver reads (and commits or cancels, depending on the evaluation of the associated guard) the message. If the communication is asynchronous the write method blocks until the message is saved into a buffer, built inside the channel entity.

While the Channel class can be reused as is in many different connections, the controller classes have to be created for each bare component in the architecture. This can be done manually of course, but an automated solution is also possible. In fact, the language used to define the interfaces and the protocol of a component contains enough information to allow a tool to automatically create the required classes for an application. A pre-compiler based on the SableCC [START_REF] Gagnon | An Object-Oriented Compiler Framework[END_REF] framework has been developed. The pre-compiler takes as input the description of component (either primitive or compound) classes and generates the necessary controller classes.

Related Work

In the last decade, formal models with behavioural descriptions have been proposed in the context of software architectures [START_REF] Allen | A formal approach to software architecture[END_REF][START_REF] Magee | Specifying distributed software architectures[END_REF]. However, if they propose different analysis mechanisms for component architectures, they do not address the issue of taking protocols into account within the implementation, which are mandatory issues for seamless CBSE development processes.

In the concurrent object-oriented community, PROCOL [START_REF] Van Den Bos | PROCOL: A Parallel Object Language with Protocols[END_REF] is one of the oldest proposals that deals with explicit protocols. PROCOL is a parallel C-based object-oriented language with communication based on one-way synchronous messages. Taking into consideration the sequential nature and the lack of protection against unscheduled accesses of object-oriented languages, the authors of PROCOL proposed to use synchronous message transfer in place of the RPC mechanism. This offers more potential for concurrency, and it may be seen as a restricted form of asynchronous communication (mailboxes being bounded to one message). The support language being an object-oriented one, required operations are not explicitly given. Moreover, receivers are explicitly given within the code. It is well known that component languages should rather explicit communications between components and try to separate communications from operation implementation and behavioural protocols. As far as the protocols are concerned, PROCOL relies on rational expressions extended with variables and guards. Each object is implemented as a process within the Unix environment and communicates under the control of a unique arbiter. Action sequencing is implemented by a nondeterministic finite automaton that is equivalent (in the accepting language sense) to the regular expression protocol of the object. Apart from the graphical presentation, PROCOL protocols have the same expressive power than STSs.

In [START_REF] Magee | Concurrency: State Models & Java Programs[END_REF], the authors present techniques to relate concurrent Java programs with a behavioural description given in the FSP (Finite State Processus) process algebra. Rather than really taking into account FSP protocols within a programming language, their goal is to be able to use FSP in a development process and to analyse models of threaded concurrent Java programs before coding them. This approach has been extended to the analysis of software architectures like [START_REF] Foster | Model-based verification of web service compositions[END_REF] on web services where BPEL4WS is translated into FSP before analysis. The reverse approach is presented in [START_REF] Magee | Composing distributed objects in CORBA[END_REF] where the Darwin ADL has been used to address system construction using a Darwin to Corba IDL translation. However, behavioural protocols are not taken into account. The same holds for the different related approaches presented in [START_REF]On the dynamic adaptation of component behaviour[END_REF].

In [START_REF] Farías | Integrating behavioral protocols in Enterprise Java Beans[END_REF] the authors propose to integrate protocols within EJBs, at different levels. These protocols are given as labelled FSMs (Finite State Models) enriched by specific datatypes (for instance, to handle lists of allowed receivers) and related guards. A notion of consistency between the specified and the implemented protocol is also presented. Consistency is based on Nierstrasz work on regular types [START_REF] Nierstrasz | Regular types for active objects[END_REF]. The main differences with our work are that we make it possible to use more complex datatypes within our protocols, we consider hierarchical models, and we address the development phase.

The SOFA [START_REF] Plasïl | Behavior protocols for software components[END_REF] component model considers component types or templates. A component is an instance of a template. SOFA introduces the notion of interface, compound and primitive architectures as well as usual means to connect services between the subcomponents of an architecture. The description language introduces behavioural protocols and employs first-class connectors. Similarly to components, these connectors are described by a frame (required and provided interfaces) and an architecture (its implementation). The behaviour protocols are regular expressions denoting traces, i.e. sequences of events (required, provided, and internal calls). These protocols may be associated with interface, frame and architecture. [START_REF] Plasïl | Behavior protocols for software components[END_REF] presents a model for the behaviour protocol-based description of hierarchical components. They define a notion of component substitution and a behavioural compliance between protocols. Protocol conformance can be verified at design time but protocols are not explicitly taken into consideration at implementation level.

Conclusions

We have presented in this paper a hierarchical component model supporting multiple interfaces with asynchronous and synchronous services. The main feature of this model is the introduction of explicit protocols based on Symbolic Transition Systems. This improves the capabilities of formal analysis of component systems with either model-checking or theorem proving [START_REF] Noyé | A formal component model with explicit symbolic protocols and its java implementation[END_REF]. Then, we have presented a Java implementation of our model. A component corresponds to a controller encapsulating the STS part and a Java application provided with a well-defined component interface. The controller has the responsibility of intercepting communications and of triggering the right service on the inner Java code, depending on the state of the protocol. The communications are realized thanks to a notion of channel. This construction is well-known to provide benefits such as mobility, remote connections and reusability. In addition, channels are used in our implementation to ensure that a message arrives to its correspondent and also to notify the sender when the guard at the correspondent side is false.
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the actions to be taken when the component can receive a request (according to the protocol state) are defined in the run method. The actions to be taken when the component can send a message are defined in the methods implementing the required operation of the component. Fig. 10 presents the body of one of these methods (proposePrice). Two checks have to be realized before actually forwarding the message. The first check is related to the component current state. The second is the guard check. If the two checks are successful, the message is forwarded to the correspondent by employing a special entity called channel (see next subsection for details). If the message was correctly received, the protocol passes into a new state (state TWO as according to the definition of the STS) otherwise the execution blocks.

Channel Connections

In order to connect components into an architecture, we propose to employ channels [START_REF] Arbab | A channel-based coordination model for components[END_REF]. A channel represents a one-to-one anonymous connection mechanism. It is also directed: messages flow from its source (where messages are sent) to its sink (where messages are received). Channels can be synchronous or asynchronous, mobile, with conditions, etc. In addition to its coordination role, a channel could be used in more sophisticated connection schemes. For example, a channel could integrate buffers or could be used to adapt one interface (and protocol) to another one. In the presented example we consider that all the components are local and that the architecture is static. However, a channel could