
HAL Id: hal-00342137
https://hal.science/hal-00342137

Submitted on 26 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Java Middleware Platform for Resource-Aware
Distributed Applications

Yves Mahéo, Frédéric Guidec, Luc Courtrai

To cite this version:
Yves Mahéo, Frédéric Guidec, Luc Courtrai. A Java Middleware Platform for Resource-Aware Dis-
tributed Applications. 2nd Int. Symposium on Parallel and Distributed Computing (ISPDC’2003),
Oct 2003, Ljubljana, Slovenia. pp.96-103. �hal-00342137�

https://hal.science/hal-00342137
https://hal.archives-ouvertes.fr

A Java Middleware Platform
for Resource-Aware Distributed Applications

Frédéric Guidec, Yves Mahéo, Luc Courtrai
Valoria

Université de Bretagne-Sud, France
{Frederic.Guidec|Yves.Maheo|Luc.Courtrai}@univ-ubs.fr

Abstract

This paper reports the development of D-RAJE (Dis-
tributed Resource-Aware Java Environment), a Java-based
middleware platform that makes it possible to model and to
monitor resources in a distributed environment. With this
middleware, any kind of hardware or software resource can
be modelled using standard Java objects, and services al-
low to discover local as well as remote resources, and to
observe the state of these resources either locally or re-
motely. D-RAJE is meant to ease the development of adap-
tive, security-oriented, or QoS-oriented Java applications,
as well as the development of platforms capable of support-
ing such demanding applications.
Keywords : Java, resource awareness, support for adapta-
tion, distributed environments and applications.

1 Introduction

Nowadays distributed applications must face an ever-
growing diversity of runtime conditions. For many such ap-
plications, the hardware devices on which application com-
ponents are liable to be deployed cover a wide spectrum,
ranging from embedded or portable devices with limited ca-
pabilities, up to full-featured, powerful workstations.

It is our conviction that the development of platforms ca-
pable of supporting adaptive programs should significantly
contribute to alleviate the burden of application program-
mers, when they strive to design portable, yet efficient dis-
tributed applications for heterogeneous distributed systems.
The services offered by operating systems or at middleware-
level on such a variety of devices are unfortunately quite
disparate. In such conditions, ensuring the portability of
a distributed application and supporting the interoperability
of its many components become crucial objectives. Any ap-
plication component should be able to allow for the nature
and characteristics of the resources available on the plat-

form it has been deployed on.
Java has proved to be an interesting approach for hiding

heterogeneity in distributed systems. The JVM provides a
standard runtime environment for Java applications. The
characteristics of the underlying hardware platform and the
operating system are either masked or perceived through
standard programming interfaces. However, although it is
clearly an advantage for developing portable code, the level
of abstraction offered becomes a drawback when it comes
to developing adaptive application, since such applications
should be allowed to take benefit from information pertain-
ing to the resources provided by the execution environment:
the execution environment is hidden so well that collecting
information on this environment becomes quite difficult. In-
deed, operating systems usually provide tools for collect-
ing information about the resources they manage. Unfor-
tunately, all types of resources are not managed the same
way. The picture is even less favorable when considering a
distributed system, where all nodes do not necessarily run
the same operating system. There is thus a need for mecha-
nisms that permit an homogeneous access, at the Java level,
to resource information across a distributed platform.

The perception of the execution environment forms the
basis of adaptation decisions. This perception is usually
achieved at a coarse grain: for example, load balancing re-
lies on the CPU load on each node, or persistence functions
are conditioned by free disk space. We believe that fine
grain perception could also be useful: a multi-threaded ap-
plication could for instance take benefit from information
on the memory consumption of a specific thread instead of
allowing only for the system free memory amount. Simi-
larly, knowing the number of bytes sent on each individual
socket could give a better insight on network utilization than
the overall amount of data sent through a network interface.
We believe that both kind of information should be obtained
through a unique framework.

This paper presents an overview of D-RAJE (Dis-
tributed Resource-Aware Java Environment), an open,
object-oriented middleware platform with which a dis-

1

tributed system can be modelled and monitored using Java
objects that reify the various resources offered in this sys-
tem. Our main objective is to develop some middleware that
makes it possible for higher-level pieces of software (eg ap-
plication programs) to perceive their runtime environment,
so that they can adapt their behaviour to the characteristics
of this environment, and to possible dynamic variations in
these characteristics. As a general rule, we qualify as “re-
source” any hardware or software entity a software com-
ponent may use during its execution. The resources con-
sidered to date in the platform include system resources
(CPU, system memory, swap, network interfaces, etc.) that
chiefly characterize the underlying hardware platform, as
well as other resources (sockets, processes, threads, direc-
tories, files, RMI servers, etc.) that rather pertain to the
applicative environment considered. Besides allowing that
resources be modelled and handled as Java object, D-RAJE

implemements mechanisms that make it possible for appli-
cations to discover the existence of a specific resource (or
kind of resource) in their environment; to search for a spe-
cific resource (or kind of resource) in their environment; to
ask for the condition (ie state) of a specific resource or to be
notified when changes occur in the state of a resource.

Since D-RAJE is dedicated to resource modelling and
monitoring in a distributed system, the dissemination of re-
sources in this kind of environment must be allowed for.
The above-mentioned mechanisms are thus implemented in
such a way that all resources can be identified and moni-
tored in a homogeneous way, regardless of where they are
located.

The remaining of this paper is organized as follows. Re-
lated work is discussed in Section 2. Section 3 explains how
resources are modelled in D-RAJE. Mechanisms offered for
the distributed management of resources are described in
Section 4. Section 5 details some implementation choices.
Lastly, Section 6 summarizes the paper and mentions cases
of D-RAJE utilization.

2 Related work

Resource modelling and monitoring has justified much
effort in the past few years. Considering only fine-grain
resources on a per host basis, some of the services D-
RAJE offers for modelling and monitoring resources com-
pare with those offered by JRes [5], GVM [2], and Kaf-
feOS [1]. These works are mostly devoted to providing a
secure environment for application programs based on vari-
ations –or extensions– of the traditional sandbox security
model (as implemented for example in the standard Java
Runtime Environment). However monitoring is limited to
a pre-defined set of general resource categories (such as the
network and the filesystem). Our approach differs in that D-
RAJE primarily defines a framework for resource modelling

and monitoring, and provides a number of generic tools and
facilities in order to ease the integration and the support of
resources of any kind.

As far as the distribution of resources is concerned, sev-
eral works have been –or are being– carried out in the con-
text of network computing or grid computing. D-RAJE gen-
erally does not share the same overall objective and dif-
fers in the granularity of the resources handled. In the in-
dustrial area, the Data Management Task Force proposes a
Common Information Model [7], a set of object oriented
models that form the basis of several products for man-
aging systems and networks across multiple organizations.
In the context of grid computing, many projects propose
tools for modelling and monitoring the resources scattered
in a large scale distributed environment [9]. They often
rely on distributed directory services (eg. Globus [6], Con-
dor [12]) or follow an object-oriented approach (eg. Le-
gion [3], Javalin [11]) to store and retrieve resource infor-
mation. The resources considered in these environments are
mainly coarse-grain resources, such as computing nodes or
storage units. The objective is to be able to collect informa-
tion about disseminated resources in order to manage the
allocation of some of these resources for the execution of a
given set of computational-intensive jobs. The distributed
operating system 2K [8] aims at providing an adaptable ar-
chitecture for developing and deploying distributed services
across heterogeneous platforms. Resource management in
2K relies on Corba and resource allocation based on the
needs of application components is considered as a part of
the resource management process. The scope of D-RAJE

is somehow more restricted, as its purpose is to serve only
for distributed resource modelling and monitoring. Services
specifically dedicated to resource allocation, resource reser-
vation or QoS provision can be built on top of D-RAJE, but
their definition and their implementation remain outside the
scope of this project [10].

Our work with D-RAJE is thus focused on providing an
easy-to-use, extensible Java framework for resource mod-
elling and monitoring in a distributed environment. Its main
purpose is to support distributed Java applications that can
adapt themselves to –possibly fine-grain– resource informa-
tion.

3 Resource modelling

The architecture of D-RAJE is organised around a class
hierarchy in which a Java class is defined for each resource
type. Figure 1 shows some of the classes we have defined
so far. The classes shown in this figure either reify typi-
cal system or hardware resources (CPU, memory, etc.), as
well as other resources that are not necessarily identifiable
as hardware or system parts (such as an RMI registry, or an
RMI server).

2

Resource
+id(): ResourceId
+observe(): ObservationReport

ThreadSocketSwap FileMemory NetworkInterface

DatagramSocket

ThreadGroup

ResourceId

identified by

EthernetInterface PPP_Interface

LoopbackInterface WirelessInterface

CPU

RMI_Registry

RMI_Server

Figure 1. Object-based modelling of common system and non-system resources.

By modelling all kinds of resources in D-RAJE, our
prime objective is to provide Java programs with means to
perceive their runtime environment. We also permit that
programs identify, locate, and monitor these resources us-
ing the generic facilities implemented in D-RAJE.

The class hierarchy used for modelling resources in D-
RAJE was designed so as to be easily extensible. As a con-
sequence, any new kind of resource can be included in the
hierarchy at any time and with minimal effort. D-RAJE

should actually be perceived as a design framework, rather
than on a pre-defined toolkit or Java package. Similarly,
the classes we have developed so far should simply be con-
sidered as examples, as they are meant to demonstrate how
resources can be reified and then handled as Java objects in
D-RAJE.

As shown if Figure 1, a class meant to reify a resource
type in D-RAJE must implement the Resource interface.
This interface serves as the root of the hierarchy of resource
classes, but it also specifies that any resource object should
have a unique identifier, and that it should be capable of pro-
ducing an observation report on demand. Resource identifi-
cation and observation reporting are important topics in D-
RAJE. They are discussed in details in sections 3.2 and 4.1.

3.1 Reification of resources

Detailed information about low-level resources is usu-
ally not available to programmers of Java applications. One
of our objectives in this project is to bring forth such in-
formation through the boundaries of the JVM, so that Java
programmers can take benefit from this kind of information.

Each of the classes reifying system resources in D-RAJE

defines methods for consulting the state of the actual re-
source it models. For example, by calling appropriate meth-
ods on an instance of class Memory one can consult the
amounts of free and used physical memory in the system.
The abstract class NetworkInterface similarly defines a set

of methods for consulting the state of any kind of network
interface, and descendants of this class provide additional
methods for consulting attributes that only make sense for
specific kinds of interfaces (such as the number of collisions
registered by an Ethernet interface, or the radio channel cur-
rently used by a wireless interface).

The notion of ”resource” can actually be extended far be-
yond that of basic hardware or system parts. Many software
elements can also be considered as resources. Indeed, as
soon as a piece of software provides a specific service that
can be used by other elements (such as entire application
programs, or other pieces of software), then it too can be
considered as a ”resource”. For example, an RMI server is a
resource for potential RMI clients. Similarly, when consid-
ering a deployment platform where transmissions through a
network can somehow be restricted (based for example on
the range of accessible remote IP addresses and ports), each
transmission socket can in turn be perceived as a resource.
We sometimes use the terms ”conceptual resource” or ”ap-
plicative resource” to denote those resources that cannot be
directly or systematically identified as hardware or system
parts, but that definitely provide a service that may be of
interest to application programs.

3.2 Observation reports

Any object that implements the Resource interface de-
fines specific methods that allow the consultation of the cur-
rent state of the resource it models. However each resource
type defines a very specific set of methods. This approach
makes it difficult to monitor heterogeneous sets of resources
using a single, generic scheme. Observation reports were
defined in D-RAJE so as to circumvent this constraint. An
observation report is meant to capture and to preserve infor-
mation about the state reached by a given resource at a given
time. A hierarchy of Java classes was developed (see Fig-
ure 2) so as to define different kinds of observation reports,

3

and facilities implemented in D-RAJE allow the generation,
the collection, and the management of such reports.

A specific kind of report must be defined for each re-
source type. As a consequence the hierarchy of observation
report classes somehow mirrors that of resource classes, and
most of the methods defined in resource classes in order to
consult the state of the resources they model have a coun-
terpart in the corresponding observation report classes. The
method observe() declared in interface Resource (see Fig-
ure 1) provides a generic access point for requesting obser-
vation reports from resources of any kind. Any resource
class defined in D-RAJE must implement this method. This
approach makes it possible for application programs to re-
quest reports about resources using a generic scheme (by
calling method observe()), regardless of the actual type of
the resources considered, and regardless of the type of the
reports thus obtained.

3.3 Sporadic system resources

Any kind of resource can be modelled as a Java object
in D-RAJE. To achieve this goal the first condition is that a
Java class be defined for this kind of resource. The second
condition is that one or several instances of this class be cre-
ated at runtime in order to model the resources that actually
exist in the system.

Fulfilling the second condition may in some cases be
quite difficult for system resources. Consider an applica-
tion programmer who wishes to monitor the state of each
network interface in the system. If this system is a worksta-
tion with a permanent connection to a LAN infrastructure,
then there is probably no ambiguity as to which network
interface must be modelled as a Java object. The program-
mer simply needs to know the name of the device associated
with this interface at system level (such as ”eth0”, see line
1 in the example below), and create a resource object ac-
cordingly (all NetworkInterface classes take the name of a
network device as a construction parameter). Now, if the
system is actually a mobile laptop, then this system may
show a highly dynamic behavior as far as network con-
nectivity is concerned. In such a case where system re-
sources can appear and disappear dynamically, there is a
need for tools that can help the programmer discover system
resources and keep informed about the creation and dele-
tion of sporadic system resources. A few such tools have
already been implemented in D-RAJE for specific resource
types. For example a monitor was implemented, whose role
is to poll the system periodically in order to keep informed
about network interfaces. This monitor maintains a popula-
tion of NetworkInterface objects, and whenever a network
interface appears or disappears in the system the monitor
updates this population accordingly. Line 2 and 3 in the
example below illustrates the use of this kind of monitor.

// (1) Create a known resource
Resource r = new EthernetInterface(”eth0”);

// (2) Create a monitor
ResourceDiscovery rd = new EthernetDiscovery();
// (3) Get the set of current network interfaces
Set s = rd.getResources();

As a general rule, similar monitors can be designed to
monitor any kind of resource whose persistence in the sys-
tem is not guaranteed (eg PCMCIA or USB devices). In
the future we plan to design specific tools for interacting
with plug-and-play mechanisms, such as the Linux HotPlug
package.

4 Dealing with distributed resources

D-RAJE handles every Resource object created on any
host of the distributed platform. This handling is performed
by the main component of D-RAJE called the ”resource
manager”. This component is spread over the distributed
system and is accessible to the user through an instance of
the ResourceManager class. The resource manager pro-
vides several services across the distributed platform: it
registers every creation or destruction of a resource object,
identifies and locates every resource object and offers some
facilities for obtaining information about resources.

The current implementation of the resource manager is
fully distributed. Each of the ResourceManager objects that
contribute to the resource manager function maintains a reg-
istry of the resources created locally and cooperates with its
counterparts using RMI.

4.1 Resource identification and registration

Resource objects can be created ”manually” in an appli-
cation program, or a pool of resource objects can be handled
automatically or semi-automatically thanks to resource dis-
covery facilities such as those described in Section 3.3. The
mechanisms we designed can help identifying and tracking
resources at runtime. They rely on a naming system that
gives any resource a unique identity. Whenever a resource
object is created, the constructor requests a unique identifier
(object of type ResourceId, see Figure 1) from a ResourceI-
dGenerator. It then registers with the resource manager.

D-RAJE mostly proposes a framework for dealing with
resource objects at runtime. Various implementations can
fit in this framework, so that quite complex resource identi-
fication and registration systems (such as hierarchical ones)
could very well be deployed. As a first step, the current
implementation provides a flat naming scheme.

When a resource becomes of no interest for an applica-
tion, it is likely that the application eventually maintains no
reference to the resource object. As it desirable that this
kind of object be garbage collected, the resource manager

4

ObservationReport
+source(): ResourceId
+toXML(): String

Memory
+total(): long
+used(): long
+free(): long
+shared(): long

CPU_Report
+processors(): Set[CPU_Model]
+upTime(): long
+userTime(): long
+systemTime(): long
+idleTime(): long

NetworkInterfaceReport
+isUp(): boolean
+address(): InetAddress
+rxPackets(): long
+txPackets(): long
+rxBytes(): long
+txBytes(): long

Serializable

Figure 2. Observation reports modelling.

only uses weak references to resources objects so garbage
collecting is possible.

4.2 Resource tracking

The number of resources in a distributed system may be
quite high. We defined a collection of patterns that make
it possible to look for resources, or to collect observation
reports from resources, selectively. The interface Search-
Pattern serves as the root of a hierarchy of classes that each
describes a specific search strategy (Figure 3). Search pat-
terns are meant to help focus on the resources located on a
fraction of a distributed system.

The following segment of code shows how a resource
manager can be requested to look for resources using dif-
ferent search patterns. In this example several patterns are
used in order to specify that the search should apply (line 1)
to local resources only; (line 2) to the resources located on
a remote node whose identity is specified as an argument;
(line 3) to all resources, wherever they are.

ResourceManager manager = ResourceManager.getManager();
// (1)
Set localIds = manager.getResourceIds(new LocalSearch());
// (2)
Set remoteIds =

manager.getResourceIds(new LocalSearch(remoteNodeId));
// (3)
Set allIds = manager.getResourceIds(new GlobalSearch());
[...]
// (4)
ObservationReport report = manager.getObservationReport(resId);

In this example, the method getResourceIds() is invoked
on the resource manager. This method returns a set of iden-
tifiers of all known resources. One can then require that the
resource manager collect and return an observation report
concerning one of these resources (line 4, assuming that the
value of resId was extracted from one of the three id sets).

4.3 Resource classification and selection.

The resources registered within a resource manager can
be of various types (eg CPU, Memory, Swap, etc.). D-RAJE

implements mechanisms for classifying and selecting re-
sources based on the notion of “resource pattern”.

The interface ResourcePattern (see Figure 3) defines a
function isMatchedBy(), which takes a resource object as a
parameter, and returns a boolean whose value depends on
whether this object satisfies the considered selection crite-
rion or not. In the most simple scenario resource selection
can simply be based on the actual type of the resource ob-
ject which is submitted to the test. More sophisticated se-
lection mechanisms can also be implemented using the re-
source pattern mechanism. For example the class Network-
InterfacePattern permits the selection of network interfaces
based on various criteria. Of course this pattern will only se-
lect NetworkInterface objects, but it can also be used more
selectively so as to match, for example, only those network
interfaces that are multicast capable, or those that currently
run in promiscuous mode.

The following example shows the creation of two re-
source patterns. The first pattern permits the selection of
any EthernetInterface object. In this example the construc-
tor of the pattern is called with no parameter, which means
that any EthernetInterface object should be selected by this
pattern. The second pattern makes it possible to select
only those resource objects that model sockets resources,
and that additionally satisfy the following selection crite-
ria: the IP address of the remote host must belong to the
195.83.160/24 network, and the remote port must be in the
range 0 to 1023. On the other hand, the local IP address and
port the socket is bound to can take any value.

ResourcePattern ethPattern = new EthernetInterfacePattern();
ResourcePattern socketPattern =

new SocketPattern(InetAddress.AnyAddress, "195.83.160/24",
PortRange.AnyPort, new PortRange(0, 1023));

5

FilePattern

ResourcePattern
+isMatchedBy(res:Resource): boolean

SocketPattern CPU_Pattern

ThreadPattern

Serializable

SearchPattern

GlobalSearch

LocalSearch
+node: NodeId

Figure 3. Modelling of the patterns that can be used to select resources (left-hand side of the hierar-
chy) and to describe search strategies (right-hand side of the hierarchy).

The resource manager can handle requests that take a
ResourcePattern or a SearchPattern object (or both) as a
parameter. One can thus request that the resource manager
identify a specific set of resources, or collect observation re-
ports from these resources according to a specific location
specification.

4.4 Event notification

In addition to direct observation that shows in the form of
requests for observation reports sent to resources, D-RAJE

allows observation to be delegated to parameterizable mon-
itors. Indeed, The implementation of a simple – yet flexi-
ble – event model makes it possible to ask monitor objects
to periodically observe some resources so as to be notified
when specific events occur regarding the state of these re-
sources.

The description of a set of interesting events is modelled
by an ObservationProfile object which comprises a set of
resource ids and an object implementing the Observation-
ReportPattern interface. Observation report patterns are to
observation reports what resource patterns are to resources.
Interface ObservationReportPattern is the root of a hier-
archy of classes that serve as event filters. Each of these
classes provides a boolean method isMatchedBy that imple-
ments a predicate on an obervation report passed as a pa-
rameter. A the top level of the hierarchy we have report
patterns that are used to filter events according to resource
types (for example method IsMatchedby of class SocketPat-
tern only verifies that its parameter is of type SocketReport).
Under this level, we have defined more precise patterns that
covers usual events. For example, the class LowFreeMem-
oryPattern makes it possible to detect that the free memory
attribute value of a memory report is under a given thresh-
old. The hierarchy can be easily extended by defining spe-
cific patterns for other events as long as they each pertain to
one resource.

Event publishing is performed by an object implement-

ing the ResourceMonitor interface that handles a set of ob-
servation profiles. It is in charge of observing, at a given
period, the resources cited in all its observation profiles and
notifying the corresponding event sinks (an object imple-
menting interface Notifiable is stored in each observation
profile). Two classes currently implement the Resource-
Monitor interface, offerring distinct monitoring schemes. In
the first one, a resource monitor creates only one periodic
observer (mainly a thread) that fetches possibly distant ob-
servation reports. Notification is thus performed locally. In
the second scheme, periodic observers are dispatched close
to resources and event notifications are transferred through
the network. Event subscription is done by instanciating a
monitor and passing it a set of observation profiles. More-
over, after a monitor has been created, its behaviour can be
dynamically modified by changing its observation period or
by adding/removing observation profiles.

Event notification is achieved by calling the notify
method on the event sink object. The call holds a reference
to an ObservationEvent object that contains a local times-
tamp as well as the information necessary to identify the
origin of the event (a resource id) and the corresponding
subscription (a reference to a resource monitor and an ob-
servation profile).

The following piece of code illustrates how a simple sub-
scription is performed. In this case the user is interested in
being notified whenever the free memory level of any node
in the network goes either below 5 Mo or beyond 100 Mo.
First the ids of all the memory objects are gathered (line
1); then two observation profiles are built, corresponding to
the two kind of desired events (lines 2 and 3); and lastly the
observation profiles are passed to a dispatched monitor con-
structor (line 4). The state of the memories will be observed
locally with a period of 1000 ms. Notice that the object per-
forming these calls is specified as the event sink for all the
events generated (parameter this in lines 2 and 3).

6

// (1)
Set allMemIds =

manager.getResourceIds(new MemoryPattern(), new GlobalSearch());
// (2)
ObservationProfile opLow =

new ObservationProfile(allMemids,
new LowFreeMemoryPattern(5*Mo),
this);

// (3)
ObservationProfile opHigh=

new ObservationProfile(allMemids,
new HighFreeMemoryPattern(100*Mo),
this);

// (4)
ResourceMonitor rm =

new DispatchedResourceMonitor({opLow, opHigh},
1000);

5 Implementation details

Obtaining in Java some information about hardware or
system parts implies that the objects reifying these re-
sources in D-RAJE interact with the underlying operating
system in order to collect the pieces of information re-
quested by the calling program. The implementation of the
classes modelling system resources in D-RAJE relies on na-
tive C code, whose role is to get information from the OS.
So far D-RAJE was only implemented over Linux; though,
the architecture of D-RAJE was carefully designed so that it
can be ported at low cost on a variety of operating systems.

The approach we have chosen for implementing concep-
tual resources is to change the definition and implementa-
tion of standard JDK classes when necessary. Only minor
modifications were required in the source code of classes
like Socket, DatagramSocket, and File. The problem was
more complex for the class Thread, though, since our objec-
tive was to permit that the CPU time and the memory space
consumed by each Java thread be observable at runtime. To
achieve this goal the actual implementation of Java threads
in the JVM (Kaffe 1.07) had to be altered significantly and
the memory allocator had too be also modified. It is worth
mentioning that the signatures of the methods defined orig-
inally in the JDK were left untouched, and the semantics of
these methods was preserved as well.

Although performance was not our prior concern in the
initial implementation, a set of preliminary measurements
have been conducted, mainly to obtain the order of mag-
nitude of observation timings, especially as far as distant
access to resource information is concerned. A few par-
tial results are presented in the following table. In this ex-
periment, a client asks a server for an observation report
concerning four different resources: the CPU, the physical
memory, an Ethernet interface and a user-defined dummy
resource that produces empty observation reports. The
client and the server run on 2.5 GHz Pentium 4 machines
(with Linux 2.4) linked by an Ethernet network (100 Mb/s
and 10 Mb/s). The last line of the table reports analogous
resource observations using RAJE, the version of D-RAJE

that restricts observation to the local host. The results show
that although performances vary according to the type of
resource, timings remain acceptable. Several ways of im-
provement are clearly possible, namely by replacing RMI
by a more efficient transmission mode for cooperation be-
tween resource managers and by optimizing the manage-
ment of the internal data structures of D-RAJE.

CPU Memory Eth. Int. Dummy

D-RAJE 100 Mb/s 1.8 ms 1.5 ms 7.8 ms 1.4 ms

D-RAJE 10 Mb/s 2.5 ms 2.0 ms 8.5 ms 1.9 ms

RAJE 0.095 ms 0.095 ms 5.0 ms 0.002 ms

6 Conclusion

This paper has presented an overview of D-RAJE (Dis-
tributed Resource-Aware Java Environment), an open,
object-oriented Java middleware architecture that makes it
possible to model and to monitor resources in a distributed
environment. The types of resources considered goes be-
yond classical system resources such as memory or CPU.
With D-RAJE, the user may model resources that are not di-
rectly associated with hardware devices. For example, ap-
plicative entities like a socket, a file, a RMI registry or a
user thread may also be considered as resources.

D-RAJE permits the identification of resources and the
consultation of their state across a distributed system. The
objective is to provide homogeneous access to resource in-
formation. A distributed resource manager offers services
to search for resources based on possibly complex selection
criteria, and to obtain observation reports from the resources
thus selected. Mechanisms for notification of events con-
cerning resources’ states are also available.

D-RAJE defines and implements an extensible frame-
work that may be used to ease the development of adaptive,
security-oriented, or QoS-oriented Java applications. It is
not intended directly for end-users but could rather form
a basis for higher level middleware. In this perspective,
D-RAJE has been used in two projects that are being car-
ried out in our laboratory. The first one is project Concerto
which aims at allowing the deployment and the support
of parallel adaptive software components on non-dedicated
clusters of workstations [4]. Concerto uses the facilities of-
fered by D-RAJE to permit the definition of dynamic adap-
tation strategies, based on the observation of resources of
any kind. The extensibility of D-RAJE was exploited in
project Concerto, as new types of resources were defined
specifically for this project. JAMUS is another middleware
architecture built on top of D-RAJE in order to experiment
with the idea of resource contracting[10]. JAMUS is a plat-
form that supports the deployment of so-called “untrusted”
software components, provided that these components can

7

specify their requirements regarding resource utilisation in
both qualitative and quantitative terms (eg acces permis-
sions and access quotas). Emphasis is put on providing a
safe and guaranteed runtime environment for such compo-
nents. Resource control in JAMUS is based on a contrac-
tual approach. Whenever a software component applies for
being deployed on the platform, it must specify explicitly
what resources it will need at runtime, and in what condi-
tions. Thanks to the resource observation services of D-
RAJE, JAMUS can provide some level of quality of service
regarding resource availability. It also provides components
with a relatively safe runtime environment, since no compo-
nent can access or monopolise resources to the detriment of
other components.

The D-RAJE platform is still under construction. In a
near future, we plan to augment the set of resources mod-
elled (laptop battery, USB devices,...) and to extend the
event model so that compound events, pertaining to several
resources at the same time, could be handled.

Aknowledment

This work is supported by the French Ministry of Re-
search in the framework of the ACI GRID Program.

References

[1] G. Back, W. C. Hsieh, and J. Lepreau. Processes in
KaffeOS: Isolation, Resource Management, and Shar-
ing in Java. In 4th Symposium on Operating Systems
Design and Implementation, October 2000.

[2] G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and
J. Lepreau. Techniques for the Design of Java Oper-
ating Systems. In USENIX Annual Technical Confer-
ence, June 2000.

[3] S. J. Chapin, D. Katramatos, J. Karpovich, and
A. Grimshaw. The Legion Resource Management
System. In 5th Workshop on Job Scheduling Strate-
gies for Parallel Processing, IPDPS’99, April 1999.

[4] L. Courtrai, F. Guidec, N. Le Sommer, and Y. Mahéo.
Resource Management for Parallel Adaptive Compo-
nents. In 5th Int. Workshop on Java for Parallel
and Distributed Computing, IPDPS’03, Nice, France,
April 2003.

[5] G. Czajkowski and T. von Eicken. JRes: a Resource
Accounting Interface for Java. In ACM OOPSLA Con-
ference, 1998.

[6] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kessel-
man. Grid information services for distributed re-

source sharing. In 10th IEEE Int. Symposium on High-
Performance Distributed Computing. IEEE Press, Au-
gust 2001.

[7] DMTF. CIM specification v2.2. Technical
Report DSP0004, Data Management Task Force,
http://www.dmtf.org 1999.

[8] F. Kon, R. Campbell, M. D. Mickunas, K. Nahrstedt,
and F. J. Ballesteros. 2K: A Distributed Operating Sys-
tem for Dynamic Heterogeneous Environments. In
9th IEEE Int. Symposium on High Performance Dis-
tributed Computing, Pittsburgh, USA, August 2000.

[9] K. Krauter, R. Buyya, and M. Maheswaran. A Taxon-
omy and Survey of Grid Resource Management Sys-
tems for Distributed Computing. Sofware – Practice
and Experience, 32(2):135–164, February 2002.

[10] N. Le Sommer and F. Guidec. A Contract-Based
Approach of Resource-Constrained Software Deploy-
ment. In 1st Int. IFIP/ACM Working Conference on
Component Deployment, Berlin, Germany, June 2002.

[11] M. Neary, A. Phipps, S. Richman, and P. Capello.
Javalin 2.0: Java-based Parallel Computing on the In-
ternet. In European Parallel Computing Conference
(Euro-Par’2000), Munich, Germany, August 2000.

[12] R. Raman, M. Livny, and M. Solomon. Matchmaking:
Distributed Resource Management for High Through-
put Computing. In 7th IEEE Int. Symposium on High
Performance Distributed Computing, Chicago, USA,
July 1998.

8

