
HAL Id: hal-00342136
https://hal.science/hal-00342136v1

Submitted on 26 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Middleware Support for Resource-Constrained Software
Deployment

Nicolas Le Sommer, Frédéric Guidec

To cite this version:
Nicolas Le Sommer, Frédéric Guidec. Middleware Support for Resource-Constrained Software De-
ployment. DAIS’03, Nov 2003, Paris, France. pp.49-60. �hal-00342136�

https://hal.science/hal-00342136v1
https://hal.archives-ouvertes.fr


Middleware Support
for Resource-Constrained Software Deployment

Nicolas Le Sommer and Frédéric Guidec

VALORIA Laboratory
University of South Brittany, France

{Nicolas.Le-Sommer, Frederic.Guidec}@univ-ubs.fr

Abstract The JAMUS platform is dedicated to providing a safe runtime envi-
ronment for untrusted Java application programs, while offering each of these
programs access to the resources it needs to use at runtime. To achieve this goal,
JAMUS implements a contractual approach of resource utilisation and control, to-
gether with a reservation-based resource management scheme, and a monitoring
model. When getting deployed on the platform, a candidate program must first
subscribe a contract with the resource manager of the platform. This contract de-
scribes the resources the program requires to be able to access at runtime, and
how it plans to behave when accessing these resources. Based on this informa-
tion, the platform can monitor programs at runtime, so that any violation of the
contracts they subscribed can be detected and sanctioned. Moreover, since the
specific needs of a program are liable to change (or to be refined) dynamically
while this program is running, any program hosted by the platform can ask that
its contract be re-negotiated at any time.

1 Introduction

The growing popularity of mobile and network-dependent Java application programs
leads to an increased demand for deployment platforms that permit to launch and run
potentially dangerous Java application programs (such as programs downloaded from
untrusted remote Internet sites) in a restrained environment.

Sun Microsystem’s platform Java Web Start was designed in order to meet this
demand. Yet, because this platform relies on the security model of the standard Java
Runtime Environment (JRE) platform, it shows a number of limitations. For example,
security in Java Web Start can only be obtained by restraining the access to a strictly
pre-defined set of system resource types (namely, network sockets and files). Moreover,
security is based solely on access permissions. In our opinion, this approach does not
permit sufficient control over the behaviour of application programs.

With JAMUS (Java Accommodation of Mobile Untrusted Software) we give some
solution to the above-mentioned. Resource access control in JAMUS can be applied
to a larger (and easily extensible) variety of resource types (including the CPU and
memory), and this control can be performed at a finer grain (for example, restrictions
can be imposed of the amount of CPU time or memory consumed by each Java thread).

JAMUS implements a contractual approach of resource management and access con-
trol. Application programs are expected to evaluate and specify their own needs regard-
ing the resources they wish to use at runtime. Based on this information, the platform



can decide whether a candidate program should be accepted or rejected. Moreover,
when a program has been accepted for running on the platform, its behaviour is moni-
tored, so that any violation of the contract it subscribed with the platform can be readily
detected and dealt with.

It is worth mentioning that JAMUS is not exclusively dedicated to enforcing a secu-
rity policy. It also strives to meet the specific requirements of each of these programs.
To achieve this goal the platform implements a resource-reservation scheme. Whenever
a program subscribes a contract with the platform, resources are actually reserved for
this program from the platform’s viewpoint.

The remainder of this paper is organised as follows. Related work is presented in
Section 2, which also discusses some of the limitations we observed in other security-
oriented projects and middleware platforms. Section 3 presents the general architecture
of the JAMUS platform. Section 4 focuses on resource contracting. It shows how con-
tracts can be defined by application programs, and subscribed with the platform. It
also shows how the information contained in contracts is used by a resource broker,
which implements a reservation scheme in order to satisfy the programs’ requirements.
Section 5 shows how JAMUS was implemented on top of RAJE (Resource-Aware Java
Environment), an object-oriented framework we designed, and which provides many
facilities for resource monitoring and control in Java. Section 7 concludes this paper,
enumerating some of the topics we plan to address in the near future.

2 Lessons learned from related work

Security in the Java Runtime Environment (JRE) relies on the so-called “sandbox”
model. With this model, any program runs in a restrained environment, whose bound-
aries somehow define the evolution space of this program. In the first versions of the
standard JRE (as proposed by Sun Microsystems), two alternative configurations were
defined. On the one hand, plain Java applications were considered as safe code, and
were therefore granted full access to system resources (such as network sockets and
files). On the other hand, Java applets (ie code downloaded from remote Internet sites)
were considered as potentially malicious pieces of code, and were only granted access
to a strictly limited subset of resources [6]. With later releases of the Java platform (up
to the current Java 2 platform), this simplistic security model was extended in order to
implement the concept of protection domain [7,6]. A protection domain is a runtime
environment whose security policy can be specified as a set of permissions.

The security model implemented in the traditional JRE relies on stateless mecha-
nisms. A major limitation of this approach is that access to a specific resource cannot
be conditioned by whether the same resource was accessed previously, or by how much
of this resource has already been consumed. As a consequence, quantitative restrictions
(such as shares of CPU time, or I/O quotas) cannot be set on the resources accessed
from protection domains. With this limitation, the security mechanisms implemented
in the JRE cannot prevent an over-consumption of resources, such as that observed in
denial of service attacks, or with many faulty program codes.



In our opinion, a safe deployment environment for programs of dubious origin
should allow that access restrictions be specified in both qualitative and quantitative
terms (ie access permissions and access quotas). Environments such as JRes [4], GVM [2]
and KaffeOS [1] extend the traditional JRE along this line. They implement mecha-
nisms that make it possible to evaluate how much memory and CPU time is used by an
active entity (a thread for JRes, a process for GVM and KaffeOS). With JRes, one can
additionally count the number of bytes sent and received through the network.

Although JRes, GVM, and KaffeOS provide advanced facilities for resource con-
sumption accounting, this accounting is only possible at a rather coarse grain. For ex-
ample, network access accounting in JRes is performed on a per thread basis. Conse-
quently, JRes cannot count the number of bytes exchanged with a given remote host,
or with a specific remote port number. Yet, we consider that such fine-grain account-
ing would be an advantage when deploying untrusted programs, as it would permit the
definition and the enforcement of very precise security policies.

Naccio [5] and Ariel [9] are projects that permit such fine-grain resource access
accounting. They both define a language for defining a security policy, together with
mechanisms for enforcing this policy while an application program is running. Security
policy enforcement is carried out statically, by rewriting the application program byte-
code, as well as that of the standard Java API. An advantage of this approach is that
the cost of the supervision of a program is kept at a minimum since code segments that
check the access to a particular kind of resource are inserted in Java API classes only
if the selected security policy requires it. However, the generation of an API dedicated
to a specific security policy is a quite expensive procedure. The approach proposed in
Naccio and Ariel is thus mostly dedicated to the generation of predefined Java APIs that
each enforce a generic security policy.

In contrast, our work aims at providing each application program with a runtime
environment that fits its needs perfectly. In other words, we wish to launch each pro-
gram in a sandbox whose boundaries are defined based on information provided by the
program itself. Moreover, it must be possible to modify the boundaries of this sandbox
dynamically, thus altering the restrictions imposed on the program’s behaviour. This
condition is motivated by the observation that, in some circumstances, the exact needs
of a program can hardly be defined statically (consider for example a program that is
meant to read a file whose name will only be discovered at runtime). Another reason
is that the needs of a program are often liable to change at runtime, especially if this
program must run for a long time.

3 Overview of the JAMUS platform

The architecture of the JAMUS platform is shown in Figure 1. This figure shows many
elements, which cannot all be described in details in this paper for the sake of brevity.
Indeed, this paper most specifically focuses on those elements of the figure that directly
pertain to contract negotiation and contract monitoring. These topics are discussed fur-
ther in the remainder of this section, and details about their implementation are given
in the next sections.



ClassLoader
Jamus

Container
Resource Broker Resource Monitoring

Contract Manager

Contract

Framework
Resource Utilisation Profiles

JA
M

U
S

Operating System

R
A

JE

Observation and control mechanisms

System resourcesConceptual resources

Application 1 Application 2 Application 3

Figure 1. Architecture of the JAMUS platform.

3.1 A contract-based approach of resource control

JAMUS implements a contractual approach of resource utilisation and control. Before
getting launched on the platform, a candidate program must first subscribe a contract
with the contract manager of the platform, thus informing this manager about the re-
sources it plans to use at runtime. The contract manager is responsible for binding con-
tracts with candidate programs, and for the registration of all running contracts. It itself
relies on a resource broker, whose role is to keep track of the resources available on the
platform at any time, to perform some admission control on behalf of the contract man-
ager (eg examining submitted contracts and deciding if they can be accepted), and to
reserve resources for admitted programs. The implementation of the contract manager
and that of the resource broker are detailed in Section 4, which also gives examples of
typical interactions between these elements at runtime.

Since the exact needs of a program are liable to change at runtime, any program
running on the platform can ask that its contract be re-negotiated as and when needed.
Of course, in such a case the contract manager and resource broker are involved again,
as they must decide if the modified contract can still be supported by the platform.

3.2 Security through contract monitoring

The contract a program subscribes with the platform effectively defines the boundaries
of the sandbox in which this program should be launched and allowed to run. It also
implicitly defines how this program should be expected to behave with respect to the
resources offered by the platform. The information contained in a program’s contract
can thus be used at runtime to monitor this program, and to detect any violation of its
contract.

Notice that contract monitoring would not be necessary if the programs deployed
on the JAMUS platform could all be considered as trustworthy. If that was the case,



then any program could reasonably be expected to behave exactly as promised, that is,
to access only those resources it required explicitly when subscribing a contract with
the platform. However, JAMUS is dedicated to accommodating application programs of
dubious origin, such as programs downloaded from untrustable remote Internet sites.
Consequently, any application program deployed on the platform must be considered
as a potential threat throughout its execution. Once a program has been accepted by the
contract manager of the platform, the behaviour of this program must be monitored, so
that any violation of its contract can be detected and sanctioned.

Contract monitoring in JAMUS relies on facilities we implemented and assembled in
RAJE (Resource-Aware Java Environment), an open and extensible Java-based frame-
work for resource consumption monitoring and control. RAJE is discussed further in
Section 5.

4 Resource contracting

4.1 Specification of resource access conditions
JAMUS implements an object model that makes it possible to reify a program’s basic
requirements or a platform’s restrictions as so-called ”resource utilisation profiles”. In
this model, an instance of class ResourceUtilisationProfile is meant to define specific
access conditions to a particular resource –or collection of resources– in both qualitative
and quantitative terms (eg access permissions and quotas). Basically, a ResourceUtil-
isationProfile object simply aggregates three objects that implement the ResourcePat-
tern, ResourcePermission, and ResourceQuota interfaces respectively. JAMUS provides
specific implementations of these interfaces for each basic resource type (Socket, Data-
gramSocket, File, Thread, CPU, etc.).

int MB = 1024*1024;

ResourceUtilisationProfile P1, P2, P3,;

P1 = new ResourceUtilisationProfile(

new SocketPattern(”http://www.music.com”),

new SocketPermission(SocketPermission.ALL),

new SocketQuota(15*MB, 1*MB));

P2 = new ResourceUtilisationProfile(

new FilePattern(”/opt/music”),

new FilePermission(FilePermission.WRITE_ONLY),

new FileQuota(0, 40*MB));

P3 = new ResourceUtilisationProfile

new MemoryPattern(),

new MemoryPermission(MemoryPermission.ALL),

new MemoryQuota(2*MB));

Figure 2. Definition of resource utilisation profiles.

Figure 2 shows how resource utilisation profiles can be defined in Java. By includ-
ing a given type of ResourcePattern in a ResourceUtilisationProfile, one indicates that



the access conditions defined in this profile are only relevant for those resources whose
characteristics match the pattern. For example, the SocketPattern in profile P1 (see Fig-
ure 2) indicates that this profile defines conditions for accessing the specified Internet
site through a socket-based connection. The SocketPermission and SocketQuota objects
combined in profile P1 bring additional information: they indicate that once a connec-
tion has been established with the remote site, the amounts of bytes sent and received
through this connection should remain below the limits specified. The other two profiles
similarly specify conditions for accessing a given directory in the filesystem (P2), and
for consuming memory (P3).

By defining profiles such as those shown in Figure 2, an application program can
specify its own requirements regarding the resources it plans to use at runtime. For
example, by inserting profiles P1, P2 and P3 in a contract, a program may simulta-
neously require access to a remote Internet site (with specific access permissions and
quotas) and to a given part of the filesystem (again with specific access permissions and
quotas), while requiring a certain amount of memory for its sole usage.

Besides serving as a way to describe application programs’ requirements, resource
utilisation profiles are also used in JAMUS to set limitations on the resources the plat-
form must offer. At startup the resource broker of the platform is given a collection of
resource utilisation profiles, that describe which resources should be made available to
hosted programs, and in what conditions.

Since JAMUS must be able to negotiate contracts dynamically with Java application
programs, we decided that contracts and resource utilisation profiles (which actually
serve as contract clauses) should be considered as first-class objects in our model (as
suggested in [3]). This is the reason why JAMUS relies on an object model in which
contracts and profiles can be defined and managed directly as Java objects. Yet, we also
defined an XML dialect for specifying profiles in a more human-readable form, and
for storing this kind of information in files. JAMUS implements routines for parsing
an XML file, and for instantiating profiles contracts based on the information found in
this file. The administrator of a JAMUS platform can thus configure and manage this
platform, without ever writing any source code.

4.2 Contract definition

Any resource utilisation profile defined by a program can be considered as expressing
either a real requirement of the program (meaning, the program actually requests guar-
antees about the accessibility of the resource considered in the profile), or as a simple
indication that the program may attempt to access the resource considered at runtime
(meaning, the program simply provides information about the boundaries of the sand-
box in which it wishes to be launched).

Since the resource broker of the platform implements a reservation scheme, we
decided to distinguish between a program’s true requirements (those that call for both
resource reservation and access monitoring), and simple indications of the program’s
planned behaviour (that call for monitoring only).

Contracts in JAMUS are thus defined as collections of resource utilisation profiles,
but these profiles are assembled in two distinct sets. Profiles in the first set call ex-
plicitely for resource reservation, whereas profiles in the second set do not.



Figure 3 shows the definition of two alternative contracts, that each combine several
profiles. The first contract in this figure combines profiles P1, P2 and P3, but only
the first two profiles should be considered as real requirements (meaning, they call for
resource reservation, whereas P3 does not). The second contract combines profiles P1,
P4, and P5, but only P1 calls for resource reservation.

A candidate program can thus instantiate one or several alternative Contract objects,
and submit these contracts to the platform. If one of the contracts is declared admissible
by the resource broker, then this contract can be subscribed by the program. If several
of the contracts are declared admissible by the resource broker, then the application
program can additionally choose which of these contracts it wishes to subscribe.

Contract contract1 = new Contract ({P1, P2}, {P3});

Contract contract2 = new Contract ({P1}, {P2, P3});

Figure 3. Definition of two possible contracts that each combine several resource utilisation pro-
files.

4.3 Contract negotiation

Contract negotiation in JAMUS is performed as a two-step process. In the first step, sev-
eral alternative contracts can be submitted to the platform by the same program. In the
second step, one of the contracts the platform has approved (assuming there is at least
one) must be selected by the program, and subscribed with the platform. Each contract
is examined by the resource broker, whose role it is to decide whether a contract is
acceptable or not, and to reserve resources when needed. Resource reservation is only
achieved (if and where needed) by the resource broker when a contract is subscribed by
a program. By reserving resources (or shares of a resource) a program obtains guaran-
tees that its requirements will be satisfied at runtime.

Figure 4 shows a possible sequence of interactions between a program and the plat-
form’s contract manager. It also shows that the resource broker is consulted whenever
the contract manager receives a contract submitted by the program. In this example the
first contract submitted by the program is rejected by the platform. Such a negative reply
might be justified by the detection of a conflict between one of the program’s require-
ment and one (or several) of the platform’s restrictions. Notice that whenever a contract
is rejected by the resource broker, the candidate program is returned a detailed report
that specifies which profiles in the contract could not be accepted by the platform. This
kind of information is expected to be useful for candidate programs that are capable of
choosing between several behavioural scenarios, or for programs that can adjust their
demand about resources based on information returned by the platform.

In Figure 4 the second contract submitted to the platform is accepted by the resource
broker. The candidate program can try to subscribe this contract. However, since the
platform may be carrying out several negotiations concurrently with as many candidate
programs, the status of available resources may change between the time a submitted



Resource Broker

submitContract(contract1)

Contract ManagerProgram

canAdmit(profilesOfContract1)

submitContract(contract2)
canAdmit(profilesOfContract2)

reasons : null

canAdmit(profilesOfContract2)

reasons : null

reserve(profilesOfContract2)

subscribeContract(contract2)

accept: (contract2,null)

reasons :[ResourceUtilisationProfiles]
reject: (contract1,reasons)

accept: true

Figure 4. Sequence of interactions between a candidate program and the platform’s contract man-
ager and resource broker.

contract is declared acceptable by the resource broker, and the time this contract is
subscribed. Consequently, whenever a program subscribes a contract, the terms of this
contract are examined again by the resource broker in order to check whether they are
still valid. If so, then the resources required by the candidate program are reserved for
this program, as explained in the next section.

The reason why contract submission and contract subscription have been differen-
tiated in the JAMUS platform is that it makes it possible for a candidate program to
request that the platform examine several possible contracts (corresponding to different
alternative combinations of resource requirements), before the program eventually de-
cides which of these contracts it actually wishes to subscribe with the platform. This
approach is meant to foster the development of application programs that can adjust
their behaviour (at launch time or dynamically), depending on the resources the plat-
form can offer.

5 Contract Monitoring

5.1 Security through resource monitoring

As mentioned in Section 3, any program hosted by the JAMUS platform is considered
as not being trustworthy. As a consequence, the platform must monitor all running
contracts in order to detect and to sanction any violation of a contract. Since contracts
all pertain to the utilisation of resources, monitoring contracts actually comes down to
monitoring the way resources are accessed and used by hosted programs.

JAMUS is dedicated to hosting Java programs, which run in a virtual machine. In
this context, resource monitoring implies that all resources are reified as objects in the



JVM. To achieve this goal, JAMUS relies on the facilities offered by RAJE, an open and
extensible framework we designed in order to support the reification and the control of
any kind of resource using objects in Java (see Figure 1).

RAJE can be perceived as an extension of the traditional runtime environment of
the Java 2 platform. It relies on a modified version of the standard JVM Kaffe (version
1.0.7), which allows the accounting of memory consumption and CPU time consumed
by each Java thread. Some classes of the standard Java API (such as Socket, Data-
gramSocket, File, and Thread) were augmented so that any access to the resources they
model can be monitored at runtime. New classes were defined in order to model system
resources, such as the CPU, system memory, and system swap. Part of the code imple-
mented in RAJE thus consists of native code that permits the extraction of information
from the underlying OS, and the interaction with inner parts of the JVM.

More details about the facilities implemented in RAJE (including implementation
details) can be found in [8].

By implementing JAMUS on top of RAJE, resource monitoring and control can be
performed in JAMUS at a very fine grain. For example any socket or file opened by a Java
program can be considered as a specific resource, and any access to such a resource can
be accounted for, and restrained if needed. Any Java thread can likewise be considered
as a specific resource, and the amounts of CPU time or memory space consumed by
each Java thread can be monitored as well. RAJE also makes it possible to set locks
on resources, thus preventing any further utilisation of these resources by application
programs.

5.2 Component monitors and resource monitors

Every application program hosted by the JAMUS platform runs under the control of a
dedicated component monitor. This monitor uses the resource utilisation profiles con-
tained in the contract subscribed by the program in order to instantiate many resource
monitors. Their mission is to monitor the utilisation of the resource –or collection of
resources– considered in this profile, and to ensure that this utilisation conforms to the
access permissions and quotas defined in the profile.

JAMUS provides a specific implementation of a resource monitor for each basic
resource type considered to date in RAJE. Each resource monitor admits a resource
utilisation profile as a creation parameter. The role of a resource monitor is to supervise
the utilisation of the resource –or collection of resources– considered in this profile, and
to ensure that this utilisation conforms to the access permissions and quotas defined in
the profile.

The figure 5 shows how the resource monitors, the component monitors, the contract
manager and the resource broker interact.

When a resource monitor detects a contract violation, it reports to the component
monitor, which in turn applies the sanction defined in the platform’s configuration. In
the current implementation of the platform, several kinds of sanctions are actually ap-
plicable to faulty programs. These sanctions range from a simple warning addressed to
a faulty program (using an event based model), up to the immediate termination of this
program.



Container

Application program

ResourceBrokerContractManager

C
on

tr
ac

t

M
on

ito
r

N
ot

if
y

Sa
nc

tio
n

ComponentMonitor

Resource

Resource Monitor

Figure 5. Monitoring of applications

6 Performance results

When designing a deployment platform such as JAMUS, one can legitimately worry
about the overhead imposed by dynamic sandboxing and contract monitoring.

In order to evaluate how these mechanisms can impact on the performances of the
application programs launched on the platform, we recently initiated an evaluation pro-
cess. This process consists in running a series of demanding programs (that is, programs
that use resources extensively), while measuring their performances in different condi-
tions.

For example we launched an FTP server (written in pure Java code) in JAMUS, and
we measured the network throughput observed while downloading large files from this
server. This experiment was conducted using two workstations (2.4 GHz Pentium 4
processor, 512 MB RAM) connected by a Fast Ethernet link (100 Mbps, Full Duplex).
The throughput observed during file transfers was measured when running the FTP
server with two standard JVMs (IBM’s and Kaffe), and with JAMUS (which relies on
a modified version of Kaffe). Moreover, in the latter case the FTP server was launched
with a varying number of requirements, so that at runtime its behaviour was observed
by a varying number of resource monitors (typically one monitor for filesystem access,
and one or several monitors for network access).

JVM Throughput (Mbps)
Kaffe (version 1.0.7) 89.5 (100 %)

IBM JVM (version 1.4.1) 89.3 (99.8 %)
JAMUS (no monitor) 88.9 (99.3 %)
JAMUS (2 monitors) 86.3 (96.4 %)
JAMUS (3 monitors) 84.6 (94.5 %)
JAMUS (5 monitors) 81.9 (91.5 %)

Table 1. Performances observed with an FTP server running either in a standard JVM or in
JAMUS (with a varying number of monitors).



The throughputs we observed are reported in Table 1. In this table the throughput
observed with the standard JVM Kaffe is used as a reference value.

We consider that these results are quite satisfactory. Obviously the monitoring in-
frastructure implemented in JAMUS significantly alters the performances of the applica-
tion programs launched in this platform. Yet, in our opinion the degradation of perfor-
mances observed while running the FTP server (which is a quite demanding program
as far as filesystem and network resources are concerned) remain acceptable.

Besides, it is worth mentioning that the source code pertaining to resource con-
sumption accounting in RAJE, and to contract monitoring in JAMUS, was primarily
developed so as to be readable and flexible. Parts of this code could probably be written
differently, though, in order to reduce the overhead imposed on the programs launched
on the JAMUS platform.

7 Conclusion

In this paper we have presented the architecture and the implementation of the JAMUS
platform, which is dedicated to hosting untrusted Java application programs, provided
that these programs can specify their own needs regarding the resources they plan to
use at runtime.

JAMUS actually constitutes a demonstrator platform, with which we experiment
with the idea of ”resource-aware” programs and deployment platforms, that is, pro-
grams that can identify and specify their own needs regarding resource utilisation,
and platforms that can use this kind of information in order to provide such programs
with differentiated services. Although JAMUS is specifically dedicated to hosting non-
trustable application programs, it is our conviction that many other application domains
and systems (such as agent-based systems, or adaptive systems) could benefit of —
or take inspiration from— the models and mechanisms we develop in this particular
context.

References

1. Godmar Back, Wilson C. Hsieh, and Jay Lepreau. Processes in KaffeOS: Isolation, Resource
Management, and Sharing in Java. In The 4th Symposium on Operating Systems Design and
Implementation, October 2000.

2. Godmar Back, Patrick Tullmann, Legh Stoller, Wilson C. Hsieh, and Jay Lepreau. Techniques
for the Design of Java Operating Systems. In USENIX Annual Technical Conference, June
2000.

3. Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien Watkins. Making com-
ponents contract-aware. In IEEE, editor, Computer, page 38 44. IEEE, June 1999.

4. Grzegorz Czajkowski and Thorsten von Eicken. JRes: a Resource Accounting Interface for
Java. In ACM OOPSLA Conference, 1998.

5. David Evans and Andrew Twyman. Flexible Policy-Directed Code Safety. In IEEE Security
and Privacy, May 1999.

6. Li Gong. Java Security: Present and Near Future. IEEE Micro, -:14–19, May 1997.
7. Li Gong and Roland Schemers. Implementing Protection Domains in the Java Development

Kit 1.2. In Internet Society Symposium on Network and Distributed System Scurity, March
1998.



8. Frédéric Guidec and Nicolas Le Sommer. Towards Resource Consumption Accounting and
Control in Java: a Practical Experience. In ECOOP’2002 (Workshop on Resource Manage-
ment for Safe Languages), June 2002. To be published.

9. Raju Pandey and Brant Hashii. Providing Fine-Grained Access Control for Java Programs. In
The 13th Conference on Object-Oriented Programming, ECOOP’99. Springer-Verlag, June
1999.


