
HAL Id: hal-00342134
https://hal.science/hal-00342134

Submitted on 26 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Resource-Aware Parallel Components
Yves Mahéo, Frédéric Guidec, Luc Courtrai

To cite this version:
Yves Mahéo, Frédéric Guidec, Luc Courtrai. Towards Resource-Aware Parallel Components.
PDPTA’04, Jun 2004, Las Vegas (NV), United States. pp.1006-1012. �hal-00342134�

https://hal.science/hal-00342134
https://hal.archives-ouvertes.fr

Towards Resource-Aware Parallel Java Components

Yves MAHÉO, Frédéric GUIDEC, Luc COURTRAI
VALORIA Laboratory, Université de Bretagne-Sud

BP 573, 56017 Vannes Cedex, France
Email: {Yves.Maheo|Frederic.Guidec|Luc.Courtrai}@univ-ubs.fr

Keywords : Parallel components, resource-awareness, distributed applications, monitoring, Java

Abstract

This paper reports the development of the Concerto platform, which is dedicated
to supporting the deployment of resource-aware parallel Java components on hetero-
geneous distributed platforms, such as pools of workstations in labs or offices. We
propose a basic model of a parallel Java component and present some tools that fa-
cilitate the management and the deployment of such a component on a distributed
architecture. The Concerto platform also defines and implements an open and exten-
sible framework dedicated to the observation of the distributed environment on which
a component is deployed. Support is provided for modeling the execution environment
as a set of resources and for monitoring these resources in a distributed way.

1 Introduction

Building distributed applications is known to be a difficult task, more especially as the
targeted architectures become more and more heterogeneous. Indeed, there is a growing
demand for distributed applications that can be ported on a wide variety of platforms. Such
a platform is for example a cluster obtained by assembling regular workstations in a lab,
and may include devices linked through wireless connections. The component-oriented
approach can help significantly in developing complex applications. So-called “software
components” can serve as deployment units, and further be assembled while developing
other components, or full-featured applications. Although the advantages of this approach
are now widely admitted, little effort has been invested so far on the development of com-
ponents specifically designed for distributed platforms.

We present in this paper a middleware platform for “parallel components”, that is, com-
ponents that are meant to be deployed on a cluster1 and that each encapsulate a parallel
and distributed code. Moreover, we provide these components with means to perceive their
execution environment, so they can adapt dynamically to the changes they can observe in
runtime conditions. By doing so, we try to foster the development of adaptive parallel
components.

Although component adaptability is our prime objective, this paper does not focus on
this topic per se. Instead it presents a Java-based middleware platform we designed in order
to provide support for such components. The platform Concerto thus implements a number

1In this paper, we use the term cluster to refer to the distributed platform targeted by the deployment of a
component. It is not restricted to a high-performance LAN but can be any heterogeneous network of computers.

of facilities for deploying, launching, and controlling the execution of parallel components
on a distributed system. Concerto relies on facilities we have implemented in D-RAJE

(Distributed Resource-Aware Java Environment), an open and extensible framework that
makes it possible to monitor the state of the many resources offered in a cluster.

2 Support for resource modeling and monitoring

One of the main objectives of project Concerto is to provide parallel software components
with means to perceive their runtime environment, so that they can adapt to variations ob-
served in its characteristics. Environment modeling and monitoring in distributed systems
has already been addressed in numerous projects pertaining for example to Grid computing
or to network computing (such as [5, 10, 9, 13]). In many of these projects, though, resource
modeling is performed at a rather coarse grain (eg computing node, global free memory,
network link), and information about resources is often limited to system resources, and
collected using ad hoc methods. An important part of Concerto is made of a software
framework called D-RAJE. This platform was designed so as to offer an extensible model
in which any kind of resource in a distributed environment can be reified as a Java object.
It also provides various facilities for monitoring these resources in a homogeneous way. A
brief description of D-RAJE is given below (see [8] for a more detailed presentation).

2.1 Resource modeling

With D-RAJE a distributed system can be modeled and monitored using Java objects that
reify the various resources offered in this system. As a general rule, we qualify as “re-
source” any hardware or software entity a software component is liable to use during its
execution. To date the types of resources considered in D-RAJE –and thus in the Concerto
platform– include system resources (CPU, system memory, swap, network interfaces, etc.)
that chiefly characterize the underlying hardware platform, as well as so-called “concep-
tual” resources (sockets, processes, threads, directories, files, RMI servers, etc.) that rather
pertain to the applicative environment in which a component is running. An extensible hi-
erarchy of classes models these resources. Any resource object (that is, any instance of one
of these classes) is capable of producing on demand an observation report, which provides
a summary of its state.

From the viewpoint of an application programmer, resource objects can be created ex-
plicitely, or one can rely on a resource discovery monitor that is able to automatically in-
stantiate (and destroy) resource objects pertaining to some classes of resources.

At creation time, resource objects are added to a local resource register. A fully dis-
tributed resource manager, accessible on each node of the system, offers the view of a
global register and thus makes it possible to access to information about resources in the
same way, regardless of where the resources considered are actually located in the system.

D-RAJE somehow compares to the Common Information Model [7] as far as resource
modeling is concerned. However, D-RAJE goes beyond pure modeling as it additionally
implements facilities for collecting and exploiting information about the state of any system
or conceptual resource.

2.2 Resource selection and observation

The resource manager can be consulted when looking for a specific kind of resource in the
system, or in order to request information about the status of any resource in the system.
Since the population of resource objects can be quite large, a selection can be applied based
on their location (e.g. on a specific node, globally or in the neighbourhood), their types,
or any other criterion. Resource filtering is obtained by using so-called resource patterns.
Any programmer can define new patterns, although many patterns are already available as
predefined patterns in D-Raje. With these patterns, one can for example identify all objects
modeling CPUs, network interfaces or TCP sockets. These objects can additionally be
searched for on a specific cluster node, or in the whole cluster. If required one can even
perform a more selective search, and look for example for TCP or UDP sockets that have
been bound to a local port whose number is in a specific range (say, values between 0 than
1024), and that maintain connections with remote hosts whose IP addresses conform to a
specific pattern (say, all adresses in domain 195.83.160/22). Resource identification can
thus be achieved at quite a fine grain if needed.

Once a resource has been identified, information on its status can be obtained through
any one of two observation mechanisms. The first of these mechanisms allows direct obser-
vation of the resource considered: the resource manager can be asked to collect and return
an observation report concerning a specific resource, wherever this resource is located in
the system. The second obervation scheme relies on an event-based model: local or distant
monitors are automatically created when needed. These monitors can observe the resource
considered periodically, and notify the user when user-specified events occur. [8] provides
a thorough description of these topics.

3 Parallel Components

The Concerto platform is dedicated to supporting adaptive parallel components. Although
the concept of parallel component is central in our project, our aim is not to propose a
new component model, but to provide an infrastructure that enforces the adaptability of
components. We propose below a definition of what we mean by parallel component in
Concerto.

A programmer who wishes to develop a parallel component for Concerto must design
his component as a set of cooperating threads. He must also define the business part of the
component (name, interface, implementation). The platform offers facilities for managing
non-functional aspects of the component.

3.1 Component interface

Any parallel component hosted by the Concerto platform must defined the following inter-
faces.

• Business interface: No constraint is put on the type of the business interface. The
programmer of a component may for example propose an interface based on Java
RMI. The component is then an object implementing the Remote interface, whose
methods will be called remotely by the clients of the component. The component may
also behave as a server listening to a specific TCP or UDP port, with which a client
program can communicate. Alternatively, one may design a distributed interface (that

is to say, an interface associated with several objects that each implement a part of
the interface) in order to be connected in parallel with another parallel component.

• Life cycle interface: Through this interface, the different steps of the life of the com-
ponent can be controlled. To date, this covers deploying the component on the cluster,
launching all the activities (ie starting the threads) of the components and stopping
these activities. In the future we may include persistence services in this interface.

• Resource interface: The component exhibits a resource interface through which the
user can access information related to the resources used by the component. Ac-
tually, the component itself is considered as a resource. Hence any component in
Concerto must implement a method observe() that returns an observation report. By
default, the observation report generated by a component simply aggregates the obser-
vation reports of all the resources it itself uses. For security reasons, the component’s
programmer may change this default implementation, for example by restricting the
amount of information disclosed to the component’s client.

3.2 Internal Structure

When building a parallel component, the programmer develops a set of Java threads that
cooperate to perform the functions specified in the component’s business interface.Threads
are gathered into placement (or distribution) entities called fragments. A fragment is a set of
threads that belong to a single component, and that must run within the same virtual machine
on the same cluster node. The threads of a fragment will thus be able to share a common
object space. Communication and synchronization between such threads are performed just
like in any other multi-threaded Java program. On the other hand, threads that belong to
different fragments must rely on external communication and synchronization mechanisms,
such as sockets and RMI.

It must be noticed that information on the component’s structure is available through
facilities implemented in D-Raje, since threads, fragments and the component itself are
modeled as resources in D-Raje. As already mentioned, some of this information is also
available to other components through each component’s resource interface.

3.3 Deployment

The deployment of a distributed application on a parallel platform is known to be a te-
dious and error-prone task. In order to alleviate the deployment of parallel components on a
cluster of workstations, we have developed an XML dialect that permits a component pro-
grammer to describe the component’s structure, placement directives for its fragments, and
constraints imposed for the deployment to be feasible (availability of a specific version of
the JVM, of a RMI registry, etc.)

The Concerto platform includes an administration tool with which a cluster of work-
stations can be managed, using either a command line or a graphical user interface. With
this administration tool workstations can be added to or removed from the cluster at any
time. A parallel component can be loaded in the platform by providing a .jar file that aggre-
gates Java code for the component’s threads, an XML deployment descriptor, and possibly
additional documentation and data associated with to the component. During this loading
operation, a new Component resource object is created in D-RAJE, and automatically reg-
istered with the resource manager. Once a component has been loaded, it can be considered

as a new resource in the cluster. Another component can therefore trigger its deployment
and activation on the cluster. Alternatively, these operations can be triggered by any user of
the platform through the abovementioned administration tool.

4 Implementation and experimentation

The Concerto platform is still under development. The overall architecture of the Con-
certo middleware on one host is depicted in figure 1. The main part of Concerto consists
in portable Java code. A small part of D-Raje requires platform-specific native code to im-
plement system resource monitoring. Presently, only Linux is supported but thanks to the
design of D-Raje, porting to other systems should not be a difficult task. In the current pro-
totype, the support for monitoring of some conceptual resources (eg threads, sockets) relies
on a modified version of the Kaffe virtual machine and instrumented standard Java classes.

Figure 1: Overview of the Concerto platform (on one host)

Several experiments on distributed applications are currently carried out. We are devel-
oping for example a Concerto component that implements a parallel active router for wide
area networks. This component can dynamically apply an appropriate service (filtering,
compression, encryption,...) to each of the streams that passes through the router. The par-
allel router-component is deployed on a high-performance cluster in order to accept several
concurrent streams and to sustain acceptable bandwidth. In this case, the use of Concerto
eases developing multi-criteria adaptation strategies to perform load-balancing according to
resource availability.

5 Related Work

The originality of the Concerto approach lies in the fact that it combines a parallel compo-
nent model together with some support for distributed resource observation. Component-
based application development is already possible through the use of ”standard” component
technologies, such as Microsoft COM [11] or Sun’s Enterprise Java Beans. The OMG
(Object Management Group) also developed its own solution with the CORBA Component

Model [12]. However these technologies were not specifically designed to support paral-
lel components, that is, components that involve parallel activities. Few works have been
carried out on models or platforms that target parallel and distributed components. One of
them is the Common Component Architecture [1], which defines a component model suited
for parallel scientific applications. The main objective in CCA is to allow the efficient in-
teroperability of pre-existing scientific codes. Like in Concerto, few constraints are put on
the way the functional part of a parallel component is implemented. However, no support is
provided for component adaptation. Project Padico [6] bears similarities with CCA as it is
dedicated to coupling scientific codes. It extends the Corba Component Model, and relies
on a specific communication toolkit in order to provide efficient communication between
several SPMD parallel codes encapsulated in components. Some form of adaptation is pro-
vided in the communication layer that allows for several commonly used communication
libraries.

The work described in [2] is also focused on parallel and distributed components: an
implementation of the Fractal [3] hierarchical component model is proposed in order to pro-
vide so-called Grid components. This implementation is based on the Pro-Active library [4].
It provides facilities for asynchronous communication, migration of activities, deployment
and debugging. Like in Concerto, a parallel component may be implemented according to
the MIMD model. Introspection on both the components structure and placement is possi-
ble, though both kinds of introspection rely on disctinct mechanisms.

None of the abovementioned works proposes a homogeneous way to get precise infor-
mation about the environment of a component (including the system), and about its sub-
components.

6 Conclusion

In this paper we have presented the Concerto platform, which aims at allowing the deploy-
ment and the support of parallel components on clusters of workstations. Ongoing work
focuses on proposing a basic parallel component model, as well as tools for the deployment
of such components. In a first stage, our objective is to adopt as simple and flexible a model
as possible.

The clusters targeted by the Concerto platform are primarily those composed by en-
listing non-dedicated, heterogeneous, and possibly unstable workstations. The runtime en-
vironment offered to parallel components is therefore liable to exhibit much heterogeneity
and dynamicity. For this reason, the Concerto platform implements facilities for discovering
how resources are distributed in the cluster, and for monitoring these resources at runtime.

The development of the Concerto platform is still in progress. Moreover a number of
parallel components are also being developed. In the near future we plan to use the platform
for deploying instances of these components on different kinds of cluster platforms.

Aknowledgments

This work is supported by the French Ministry of Research in the framework of the ACI
GRID programme.

References

[1] R. Amstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, and
B. Smolinski. Towards a Common Component Architecture for High-Performance
Scientific Computing. In 8th Int. Symposium on High-Performance Computing, Re-
dondo Beach, California, August 1999.

[2] F. Baude, D. Caromel, and M. Morel. From Distributed Objects to Hierarchical Grid
Components. In Proc. of International Symposium on Distributed Objects and Appli-
cations (DOA’2003), LNCS, Catania, Sicily, November 2003.

[3] E. Bruneton, T. Coupaye, and J.-B. Stefani. Recursive and dynamic software composi-
tion with sharing. In Proc. of the 7th ECOOP International Workshop on Component-
Oriented Programming (WCOP’02), Malaga, Spain, June 2002.

[4] D. Caromel, W. Klauser, and J. Vayssiere. Towards Seamless Computing and Meta-
computing in Java. Concurrency Practice and Experience, 10(11–13), November
1998.

[5] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Services
for Distributed Resource Sharing. In 10th IEEE Int. Symposium on High-Performance
Distributed Computing. IEEE Press, August 2001.

[6] A. Denis, C. Pérez, T. Priol, and A. Ribes. Padico: A Component-Based Software
Infrastructure for Grid Computing. In 17th International Parallel and Distributed
Processing Symposium (IPDPS’2003), Nice, France, April 2003. IEEE Computer So-
ciety.

[7] DMTF. CIM specification v2.2. Technical Report DSP0004, Data Management Task
Force, http://www.dmtf.org 1999.

[8] F. Guidec, Y. Mahéo, and L. Courtrai. A Java Middleware Platform for Resource-
Aware Distributed Applications. In 2nd Int. Symposium on Parallel and Distributed
Computing, Ljubljana, Slovenia, October 2003.

[9] F. Kon, R. Campbell, M. D. Mickunas, K. Nahrstedt, and F. J. Ballesteros. 2K: A Dis-
tributed Operating System for Dynamic Heterogeneous Environments. In 9th IEEE
Int. Symposium on High Performance Distributed Computing, Pittsburgh, USA, Au-
gust 2000.

[10] K. Krauter, R. Buyya, and M. Maheswaran. A Taxonomy and Survey of Grid Resource
Management Systems for Distributed Computing. Sofware – Practice and Experience,
32(2):135–164, February 2002.

[11] Microsoft. The Component Object Model Specification. Technical report, Microsoft
Corporation, October 1995.

[12] OMG. CORBA Components. TC Document OMG-orbos-99-07-01, OMG, July 1999.

[13] F. Sacerdoti, M. Katz, M. Massie, and D. Culler. Wide Area Cluster Monitoring with
Ganglia. In Proc. of Int. Conference on Cluster Computing, Hong Kong, December
2003.

