
HAL Id: hal-00342132
https://hal.science/hal-00342132

Submitted on 26 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Middleware Support for the Deployment of
Resource-Aware Parallel Java Components on

Heterogeneous Distributed Platforms
Yves Mahéo, Frédéric Guidec, Luc Courtrai

To cite this version:
Yves Mahéo, Frédéric Guidec, Luc Courtrai. Middleware Support for the Deployment of Resource-
Aware Parallel Java Components on Heterogeneous Distributed Platforms. 30th Euromicro Conference
- Component-Based Software Engineering Track (CBSE’04), Sep 2004, Rennes, France. pp.144-151.
�hal-00342132�

https://hal.science/hal-00342132
https://hal.archives-ouvertes.fr

Middleware Support for the Deployment of Resource-Aware Parallel Java
Components on Heterogeneous Distributed Platforms

Yves Mahéo, Frédéric Guidec, Luc Courtrai
VALORIA Laboratory, Université de Bretagne-Sud, France

{Yves.Maheo|Luc.Courtrai|Frederic.Guidec}@univ-ubs.fr

Abstract

This paper reports the development of the Concerto
platform, which is dedicated to supporting the deployment
of resource-aware parallel Java components on heteroge-
neous distributed platforms, such as pools of workstations
in labs or offices. Our work aims at proposing a basic model
of a parallel Java component, together with mechanisms
and tools for managing the deployment of such a compo-
nent on a distributed platform. Moreover, we strive to pro-
vide components with means to perceive their runtime envi-
ronment, so they can for example dynamically adapt them-
selves to changes occurring in this environment. The Con-
certo platform was designed in order to allow the deploy-
ment of parallel components on a distributed platform. It
additionally defines and implements an open and extensi-
ble framework for distributed resource discovery and mon-
itoring in such an execution environment.

1. Introduction

There is a growing demand for distributed applications
that can be ported on a wide variety of platforms, includ-
ing the distributed platforms obtained by assembling regu-
lar workstations in labs and company offices. However, de-
veloping distributed applications from scratch is known to
be a difficult and tedious task, requiring much knowledge
and expertise. The component-oriented approach can help
significantly with this respect. This approach promotes the
development of so-called “software components”, that can
later serve as deployment units, and that can further be as-
sembled while developing more complex components, or
full-featured applications. Although the advantages of this
approach are now widely admitted, little effort has been in-
vested so far on the development of components specifically
designed for distributed platforms.

In our work we experiment with the development of
“parallel components”, that is, components that are meant

to be deployed on a distributed platform, and that each en-
capsulate a parallel code to be run on this kind of platform.
Moreover, since these components we consider are liable
to be deployed and executed on possibly unstable and het-
erogeneous platforms, we strive to provide these compo-
nents with means to perceive their execution environment,
so they can adapt dynamically to changes observed in this
environment. By doing so, we try to foster the development
of adaptive parallel components, that is, components whose
behavior is not defined statically, but components that can
instead adjust their behavior dynamically in order to react
to environmental variations.

Although component adaptability is our prime objec-
tive, this paper does not focus on this topic per se. Instead
it presents a Java-based middleware platform we have de-
signed in order to provide support for such components. The
platform Concerto implements a number of facilities for de-
ploying, launching, and controlling the execution of paral-
lel components on a distributed platform. To achieve these
goals it uses facilities we have implemented in D-RAJE
(Distributed Resource-Aware Java Environment), an open
and extensible framework that makes it possible to monitor
the state of the many resources offered in a distributed plat-
form. Figure 1 shows the overall organization of the Con-
certo platform.

The remaining of this paper is organized as follows. Sec-
tion 2 gives an overview of D-RAJE. Section 3 presents
the basic model of a parallel component we propose and
implement in Concerto, and it shows how this model can
be used to implement a demonstrator parallel component
that encapsulates an adaptive, distributed genetic algorithm.
This section also describes the facilities we implemented
for managing the deployment and the execution of parallel
components on a distributed platform. Section 4 discusses
related projects on distributed software components. Sec-
tion 5 concludes the paper.

2. Support for resource modeling and moni-
toring

One of the main objectives of project Concerto is to pro-
vide parallel software components with means to perceive
their runtime environment, so that they can adapt to vari-
ations observed in its characteristics. Environment mod-
eling and monitoring in distributed systems has already
been addressed in numerous projects pertaining for exam-
ple to Grid computing or to network computing (such as
[5, 11, 10, 14]). In many of these projects, though, resource
modeling is performed at a rather coarse grain (e.g., com-
puting node, global free memory, network link), and infor-
mation about resources is often limited to system resources,
and collected using ad hoc methods. An important part of
Concerto is made of a software framework called D-RAJE.
This platform was designed so as to offer an extensible
model in which any kind of resource in a distributed en-
vironment can be reified as a Java object. It also provides
various facilities for monitoring these resources in a homo-
geneous way. A brief description of D-RAJE is given below.
A more detailed presentation can be found in [9].

2.1. Resource modeling

With D-RAJE a distributed system can be modeled and
monitored using Java objects that reify the various resources
offered in this system. As a general rule, we qualify as “re-
source” any hardware or software entity a software compo-
nent is liable to use during its execution. To date the types of
resources considered in D-RAJE –and thus in the Concerto
platform– include system resources (CPU, system memory,
swap, network interfaces, etc.) that chiefly characterize the
underlying hardware platform, as well as so-called “con-

Figure 1. Overview of the Concerto platform
(on one host)

Figure 2. Architecture of the distributed re-
source manager, which keeps track of all re-
source objects created on the various hosts
(or nodes) of the distributed platform.

ceptual” resources (sockets, processes, threads, directories,
files, RMI servers, etc.) that rather pertain to the applicative
environment in which a component is running. An exten-
sible hierarchy of classes models these resources. Any re-
source object (that is, any instance of one of these classes)
is capable of producing on demand an observation report,
which provides a summary of its state.

From the viewpoint of an application programmer, re-
source objects can be created explicitly, or one can rely on a
resource discovery monitor that is able to automatically in-
stantiate (and destroy) resource objects pertaining to some
classes of resources.

At creation time, references to resource objects are added
to a local resource register. A resource manager is dis-
tributed on the distributed platform so as to play the role
of a global register. This resource manager makes it pos-
sible to access information about distributed resources in a
homogeneous way, regardless of where these resources are
actually located in the system. Figure 2 shows the general
architecture of the distributed resource manager. Local in-
stances of this manager are created on each host, and these
instances interact with one another thanks to the Java RMI
mechanism. Moreover, each instance maintains a weak ref-
erence to any resource object created locally, so it can ob-
serve the state of any local resource at any time, and provide
remote instances of the manager with similar information
whenever required. Weak references are used –instead of
standard references– so as not to prevent application com-
ponents from deleting resource objects when these objects
are not needed anymore at application level.

D-RAJE somehow compares with the Common Informa-
tion Model [8] as far as resource modeling is concerned.

However, D-RAJE goes beyond pure modeling, as it addi-
tionally implements facilities for collecting and exploiting
information about the state of any system or conceptual re-
source (please see [9] for details on this topic).

2.2. Resource selection and observation

The resource manager can be consulted when looking
for a specific kind of resource in the distributed system, or
in order to request information about the status of any re-
source in this system. Since the population of resource ob-
jects can be quite large, a selection can be performed based
on their location (e.g. on a specific host, in the whole dis-
tributed system, or in neighboring hosts), their type, or any
other criterion. Resource filtering is obtained by using so-
called resource patterns. Any programmer can define new
patterns, although many patterns are already available as
predefined patterns in D-RAJE. With these patterns, one can
for example identify all objects modeling host CPUs, or net-
work interfaces, or TCP sockets. These objects can addi-
tionally be searched for on a specific host, or in the whole
distributed platform. One can even perform a more selec-
tive search, and look for example for TCP or UDP sock-
ets that have been bound to a local port whose number is
in a specific range (say, values between 0 than 1024), and
that maintain connections with remote hosts whose IP ad-
dresses conform to a specific pattern (say, all addresses in
domain 195.83.160/22). Resource identification can thus be
achieved at quite a fine grain if needed.

Once a resource has been identified, information on its
status can be obtained through any one of two observation
mechanisms. The first of these mechanisms allows direct
observation of the resource considered: the resource man-
ager can be asked to collect and return an observation report
concerning a specific resource, wherever this resource is lo-
cated in the system. The second observation scheme relies
on an event-based model: local or distant monitors are au-
tomatically created when needed. These monitors can ob-
serve the resource considered periodically, and notify the
user when user-specified events occur. A thorough descrip-
tion of these topics can be found in [9].

3. Parallel Components

The Concerto platform is dedicated to supporting adap-
tive parallel components. Our aim is to propose a basic
component model suited for parallel and distributed appli-
cations, and to provide an infrastructure that enforces the
adaptability of components. We propose below a definition
of what we mean by parallel component in Concerto.

A programmer who wishes to develop a parallel compo-
nent for Concerto must design his component as a set of co-
operating threads. He must also define the business part of

the component (name, interface, implementation). The plat-
form offers facilities for managing non-functional aspects
of the component.

3.1. Component model

3.1.1. Component interface Any parallel component
hosted by the Concerto platform must define the follow-
ing interfaces.

• Business interface: No constraint is put on the type of
the business interface. The programmer of a compo-
nent may for example propose an interface based on
Java RMI. The component is then an object imple-
menting the Remote interface, whose methods are to
be called remotely by the component’s clients (Sec-
tion 3.2 describes a demonstrator component that has
been designed along this line). The component may
also behave as a server listening to a specific TCP or
UDP port, with which a client program can communi-
cate. Alternatively, one may design a distributed inter-
face (that is to say, an interface associated with several
objects that each implement a part of the interface), so
the component can be connected in parallel with an-
other parallel component.

• Life-cycle interface: Through this interface, the differ-
ent steps of the life of the component can be controlled.
To date, this covers deploying the component on the
distributed platform, launching all the activities (i.e.,
starting the threads) of the components, and stopping
these activities. In the future we may include persis-
tence services in this interface.

• Resource interface: The component exhibits a resource
interface through which the user can access informa-
tion related to the resources used by the component.
Actually, the component itself is considered as a re-
source. Hence any component in Concerto must im-
plement a method observe() that returns an observa-
tion report. By default, the observation report gener-
ated by a component simply aggregates the observa-
tion reports of all the resources it itself uses. For se-
curity reasons, the component’s programmer may find
it desirable to change this default implementation, for
example by restricting the amount of information dis-
closed to the component’s client.

3.1.2. Internal structure of a component When build-
ing a parallel component, the programmer develops a set
of Java threads (actually, a set of classes implementing the
Runnable interface). These threads cooperate to perform
functions specified in the component’s business interface.

Threads are grouped in placement (or distribution) en-
tities called fragments. A fragment is a set of threads that
belong to a single component, and that must run within

the same virtual machine on the same distributed platform
host. The threads of a fragment can thus share a common
object space. Communication and synchronization between
such threads can be performed just like in any other multi-
threaded Java program. On the other hand, threads that be-
long to different fragments must rely on external commu-
nication and synchronization mechanisms, such as sockets
and RMI.

Information on the component’s structure is available
through facilities implemented in D-RAJE, since threads,
fragments and the component itself are modeled as re-
sources in D-RAJE. As already mentioned, some of this
information is also available to other components through
each component’s resource interface.

3.1.3. Component deployment The deployment of an
application on a distributed platform is known to be a te-
dious and error-prone task. In order to alleviate the de-
ployment of parallel components on such platforms, we
have developed an XML dialect that permits a compo-
nent programmer to describe the component’s structure,
placement directives for its fragments, and constraints im-
posed for the deployment to be feasible (availability of a
specific version of the JVM, of a RMI registry, etc.)

The Concerto platform includes an administration tool
with which a distributed platform can be managed, using ei-
ther a command line or a graphical user interface. Figure 3
shows an example of what can be displayed by the graphical
interface. With this administration tool, hosts can be added
to or removed from the distributed platform at any time. A
parallel component can be loaded in the platform by provid-
ing a .jar file that aggregates Java code for the component’s
threads, an XML deployment descriptor, and possibly addi-
tional documentation and data associated with the compo-
nent. During this loading operation, a new Component re-
source object is created in D-RAJE, and automatically reg-
istered with the resource manager. Once a component has
been loaded, it can be considered as a new resource in the
distributed platform. Another component can therefore trig-
ger its deployment and activation on the platform. Alterna-
tively, these operations can be triggered by any administra-
tor –or user– of the platform thanks to the above-mentioned
administration tool.

3.2. Example

This section illustrates the utilization of the Concerto
platform for building a genetic algorithm (GA) component
that can be deployed on a heterogeneous distributed plat-
form. In this particular example the GA component aims
at finding an arithmetic expression that approximates a
function that can be numerically evaluated. Of course our
GA component deals with a population of individuals that
are submitted to genetic operators such as mutation and

crossover. A selection mechanism makes it possible to iden-
tify the best individuals in the population, so that they can
participate in the production of new individuals.

3.2.1. Business interface In order to develop a Concerto
component based on this genetic algorithm, the program-
mer must first specify the business part of the component.
In this particular case, the business interface is the interface
of a RMI server. As illustrated in Figure 4, this interface of-
fers methods for initializing the population, for launching
the reproduction process, for obtaining the current genera-
tion, and for halting the reproduction process.

import java.rmi.*;
public interface GeneticAlgorithm extends Remote {

public void setInitialPopulation(Population pop)
throws RemoteException;

public void startReproduction()
throws RemoteException;

public Population getCurrentGeneration()
throws RemoteException;

public void stopReproduction()
throws RemoteException;

}

Figure 4. Business interface of a Concerto
component.

3.2.2. Parallel implementation The master-slave
paradigm is used for implementing a parallel ver-
sion of the algorithm. Notice that in this particular case our
aim is not to produce the best possible parallel genetic al-
gorithm, but simply to illustrate the utilization of Con-
certo. Therefore, no in-depth optimization has been applied
to the original parallel algorithm, nor to its parallel imple-
mentation. The population in the GA component is to be
distributed on a set of distributed hosts, which will be con-
sidered as slave hosts. Each slave will deal with its own
sub-population, and will make it evolve through crossovers,
mutations, and selections. A particular host, called the mas-
ter, will periodically gather all the sub-populations, perform
a selection phase on the whole population, and scat-
ter it again over the slave hosts.

The resulting GA component is thus composed of a set of
slave threads, conducted by a unique master thread. Each of
these threads is placed in a distinct fragment. Communica-
tion between the slaves and the master is performed through
RMI calls. In order to simplify the architecture, the mas-
ter thread also behaves as an RMI server, implementing the
business interface of the GA component.

3.2.3. Deployment Deployment directives are specified in
a Concerto component descriptor that comes in the form of
an XML file (see Figure 5). When the deployment of the

Figure 3. Snapshot of the Concerto graphical administration tool

genetic algorithm component is triggered –for example via
the Concerto administration tool–, a succession of opera-
tions is performed that consists in analyzing the XML de-
scriptor, checking the requirements specified (in this case,
verifying the presence of an RMI registry), loading classes
ThMaster and ThSlave on the different JVMs, and creating
all the fragments and threads (that will consequently be reg-
istered as resources in D-RAJE). These threads will actually
be started when the component is activated.

3.2.4. Adaptation A first, straightforward adaptation of
the algorithm can be performed by having the master take
the actual number of slave threads into account. This num-
ber is determined during the deployment phase, based on
the actual number of hosts in the distributed platform at
deployment time. In the future we plan to insert a new
placement directive (ALL-ALWAYS) in our XML dialect, so
that replicated fragments can be automatically created and
started when hosts are inserted in the distributed platform
while a parallel component is running.

Figure 6 shows how the resource manager can be asked
to identify the slave fragments. In this example a resource
pattern called FragmentPattern is used in order to look for
resources that are actually component fragments. Moreover
a parameter is passed to this pattern in order to select only
those fragments named “GA-Slave”.

The real adaptation of the algorithm is performed by al-
lowing for the heterogeneity of the hosts on which the slave
threads are running, as well as for the variability of the CPU
workload on these hosts. Indeed, we cannot assume that the
CPU type is identical on all hosts in the distributed platform,
and that these hosts are all dedicated to running only the GA
component. The time a slave thread can spend applying ge-
netic operators on its sub-population may thus vary a lot. As

<?xml version=”1.0” encoding=”ISO-8859-1” ?>
<component>

<description>Genetic Algorithm Component</description>
<name>

<concerto-name>GenAlgoRes</concerto-name>
<rmi-name>GeneticAlgorithmServer</rmi-name>

</name>
<requirements>

<java kaffe=”1.0.7” d-raje=”1.0”/>
<concerto-vers=”1.0”/>
<rmiregistry/>

</requirements>
<file>GenAlgorithm.jar</file>
<fragment-list>

<fragment name=”GA-Master”>
<node>ANY</node>
<thread-list>

<runnable-class=”ThMaster”/>
</thread-list>

</fragment>
<fragment name=”GA-Slave”>

<node>ALL</node>
<thread-list>

<runnable-class=”ThSlave”/>
</thread-list>

</fragment>
</fragment-list>

</component>

Figure 5. Example of an XML deployment de-
scriptor.

a consequence, the master should be able to tune the size of
the sub-population it sends to a particular slave based on
the computation power that can be expected from this slave.
The CPU power available on a given host can be deduced
from the CPU frequency of this host, and from the amount
of time the CPU remains idle during an observation period
(a period of one second was chosen for this particular ap-

ResourceManager rm
= ResourceManager.getResourceManager();

Set slaveIdSet
= rm.getResourceIds(new FragmentPattern(”GA-Slave”),

new GlobalSearch());

Figure 6. Illustration of how the resource
manager can be used to look for specific re-
sources in the whole distributed platform. In
this example specific component fragments
are sought.

plication). Information about each CPU (including its fre-
quency) can be obtained by collecting reports from CPU
objects in D-RAJE. Likewise, D-RAJE makes it possible to
implement and to deploy monitors that observe the state of
a given resource periodically. With such monitors, calculat-
ing how much computing power is used on a host of the dis-
tributed platform is straightforward.

3.2.5. Measurements We have conducted a set of prelim-
inary measurements in order to evaluate the impact of the
utilization of Concerto –and that of the adaptation facili-
ties it offers– on the overall performance of our GA paral-
lel component. In this experiment the population consisted
of 1024 individuals. At each iteration step, each slave com-
puted 10 generations before sending back its sub-population
to the master. The overall process iterated 100 times. Ta-
ble 1 shows the execution times obtained for a varying
number of hosts. During this experiment we used evenly
loaded 2.4 GHz Pentium 4 PC hosts running Linux 2.4.20.
The speedup remains acceptable for the distributed platform
sizes considered. The impact of adaptation is showed in Ta-
ble 2. In this case a slower host (400 MHz Pentium PC) was
included voluntarily in the distributed platform, and a ran-
dom load was put on every CPU by running dummy pro-
cesses. In the case of one host, the table shows the execu-
tion times observed depending on whether the slow host
was used, or one of the fast hosts. Executions involving
more than one host systematically implied the slow host,
plus one or several additional fast hosts. Experiments were
performed with and without component adaptation. Results
show that a significant gain is obtained when adaptation is
performed.

4. Related Work

The originality of the Concerto approach lies in the
fact that it combines a parallel component model together
with some support for distributed resource observation.
Component-based application development is already pos-
sible through the use of ”standard” component technolo-

of slaves Execution time
1 582 sec.
2 381 sec.
3 297 sec.
4 221 sec.

Table 1. Execution times of the GA on a ho-
mogeneous distributed platform

gies, such as Microsoft COM [12] or Sun’s Enterprise
Java Beans. The OMG (Object Management Group) also
developed its own solution with the CORBA Component
Model [13]. However these technologies were not specif-
ically designed to support parallel components, that is,
components that inherently involve parallel activities. Few
works have been carried out on models or platforms that
target parallel and distributed components. One of them is
the Common Component Architecture [1], which defines
a component model suited for parallel scientific applica-
tions. In this architecture, emphasis is put on the defini-
tion of a scientific interface definition language (SIDL), and
the specification of ports that permit component interop-
erabilty. The main objective in CCA is to allow the effi-
cient interoperability of pre-existing scientific codes. Like
in Concerto, few constraints are put on the way the func-
tional part of a parallel component is implemented. How-
ever, no support is provided in CCA for component adapta-
tion. Project Padico [7] bears similarities with CCA as it is
dedicated to coupling scientific codes. It extends the Corba
Component Model, and it relies on a specific communica-
tion toolkit in order to provide efficient communication be-
tween several SPMD parallel codes encapsulated in com-
ponents. Some form of adaptation is provided in the com-
munication layer, which allows for several commonly used
communication libraries.

The work described in [2] also focuses on parallel and
distributed components: an implementation of the Frac-
tal [3] hierarchical component model is proposed in order
to provide so-called Grid Components. This implementa-
tion is based on the Pro-Active library [4]. It provides facil-
ities for asynchronous communication, migration of activi-
ties, deployment and debugging. Like in Concerto, a paral-
lel component may be implemented according to the MIMD
model. Introspection on both the components structure and
placement is possible, though both kinds of introspection
rely on distinct mechanisms.

None of the above-mentioned works proposes a homo-
geneous way to get precise information about the environ-
ment of a component (including the system), and about its
sub-components.

In Concerto, we strove to associate Java facilities for

of slaves Execution time with adaptation Execution time without adaptation
1 (fast host) 400 sec. 407 sec.
1 (slow host) 2112 sec. 2150 sec.

2 344 sec. 1344 sec.
3 234 sec. 974 sec.
4 203 sec. 806 sec.

Table 2. Impact of adaptation on a heterogeneous distributed platform

resource observation with the implementation of an open
component model suited for adaptive application develop-
ment. In this respect, we share a similar goal with the frame-
work for adaptive components described in [6]. This frame-
work is based on Fractal and it defines context-awareness
services. Well-designed adaptation mechanisms are built in
this framework, but no specific support for distribution as-
pects is provided.

5. Conclusion

In this paper we have presented the Concerto platform,
which aims at allowing the deployment and the support
of parallel components on distributed platforms. Ongo-
ing work focuses on proposing a basic parallel component
model, as well as tools for the deployment of such compo-
nents. In a first stage, our objective is to adopt as simple and
flexible a model as possible.

The distributed platforms targeted by the Concerto
platform are primarily those composed by enlisting
non-dedicated, heterogeneous, and possibly unstable work-
stations in labs or offices. The runtime environment
offered to parallel components is therefore liable to ex-
hibit much heterogeneity and dynamicity. For this reason,
the Concerto platform implements facilities for discov-
ering how resources are distributed in the distributed
platform, and for monitoring these resources at run-
time.

The development of the Concerto platform is still in
progress. Moreover a number of parallel components are
also being developed. In the near future we plan to use the
platform for deploying instances of these components on
different kinds of distributed platform. A series of experi-
ments will then be run, in order to evaluate the benefits of
designing parallel components that can monitor their envi-
ronment, and that can adjust their behavior to variations ob-
served in this environment.

Acknowledgments

This work is supported by the French Ministry of Re-
search in the framework of the ACI GRID programme.

References

[1] R. Amstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn,
L. McInnes, S. Parker, and B. Smolinski. Towards a
Common Component Architecture for High-Performance
Scientific Computing. In 8th Int. Symposium on High-
Performance Computing, Redondo Beach, California, Aug.
1999.

[2] F. Baude, D. Caromel, and M. Morel. From Distributed Ob-
jects to Hierarchical Grid Components. In Proc. of Interna-
tional Symposium on Distributed Objects and Applications
(DOA’2003), LNCS, Catania, Sicily, Nov. 2003.

[3] E. Bruneton, T. Coupaye, and J.-B. Stefani. Recursive
and dynamic software composition with sharing. In Proc.
of the 7th ECOOP International Workshop on Component-
Oriented Programming (WCOP’02), Malaga, Spain, June
2002.

[4] D. Caromel, W. Klauser, and J. Vayssiere. Towards Seam-
less Computing and Metacomputing in Java. Concurrency
Practice and Experience, 10(11–13), Nov. 1998.

[5] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman.
Grid Information Services for Distributed Resource Shar-
ing. In 10th IEEE Int. Symposium on High-Performance Dis-
tributed Computing. IEEE Press, August 2001.

[6] P.-C. David and T. Ledoux. Towards a framework for Self-
Adaptive Component-Based Applications. In 4th IFIP Inter-
national Conference on Distributed Applications and Inter-
operable Systems (DAIS’2003), Paris, France, Nov. 2003.

[7] A. Denis, C. Pérez, T. Priol, and A. Ribes. Padico: A
Component-Based Software Infrastructure for Grid Comput-
ing. In 17th International Parallel and Distributed Pro-
cessing Symposium (IPDPS’2003), Nice, France, Apr. 2003.
IEEE Computer Society.

[8] DMTF. CIM specification v2.2. Technical Report DSP0004,
Data Management Task Force, http://www.dmtf.org 1999.

[9] F. Guidec, Y. Mahéo, and L. Courtrai. A Java Middleware
Platform for Resource-Aware Distributed Applications. In
2nd Int. Symposium on Parallel and Distributed Computing,
Ljubljana, Slovenia, Oct. 2003.

[10] F. Kon, R. Campbell, M. D. Mickunas, K. Nahrstedt, and F. J.
Ballesteros. 2K: A Distributed Operating System for Dy-
namic Heterogeneous Environments. In 9th IEEE Int. Sym-
posium on High Performance Distributed Computing, Pitts-
burgh, USA, Aug. 2000.

[11] K. Krauter, R. Buyya, and M. Maheswaran. A Taxonomy
and Survey of Grid Resource Management Systems for Dis-

tributed Computing. Sofware – Practice and Experience,
32(2):135–164, Feb. 2002.

[12] Microsoft. The Component Object Model Specification.
Technical report, Microsoft Corporation, Oct. 1995.

[13] OMG. CORBA Components. Technical Report OMG-
orbos-99-07-01, OMG TC Documents, July 1999.

[14] F. Sacerdoti, M. Katz, M. Massie, and D. Culler. Wide Area
Cluster Monitoring with Ganglia. In Proc. of Int. Conference
on Cluster Computing, Hong Kong, Dec. 2003.

