N

N

Relating Model-Based Adaptation and Implementation
Platforms: A Case Study with WF/.NET 3.0

Javier Cubo, Gwen Salatlin, Carlos Canal, Ernesto Pimentel, Pascal Poizat

» To cite this version:

Javier Cubo, Gwen Salaiin, Carlos Canal, Ernesto Pimentel, Pascal Poizat. Relating Model-Based
Adaptation and Implementation Platforms: A Case Study with WF/.NET 3.0. 12th International
Workshop on Component-Oriented Programming (WCOP 2007), Jul 2007, Berlin, Germany. pp.9-13.
hal-00342068

HAL Id: hal-00342068
https://hal.science/hal-00342068v1

Submitted on 15 Apr 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00342068v1
https://hal.archives-ouvertes.fr

Relating Model-Based Adaptation and
Implementation Platforms:
A Case Study with WF/.NET 3.0

Javier Cubo, Gwen Sdia, Pascal Poizat
Carlos Canal, Ernesto Pimentel INRIA/ARLES Project-Team, France, and
Dept. of Computer Science, University ofalhga IBISC FRE 2873 CNRS - Univer&’a’td’Evry, France
Campus de Teatinos, 29071,aMga, Spain Email: pascal.poizat@inria.fr

Emails: {cubo,salaun,canal,ernes@I|cc.uma.es

Abstract—In this paper, we propose to relate model-based WF makes the implementation of services easier thanks to its
adaptation approaches with the Windows Workflow Foundation orkflow-based graphical support. Last, by using with WF,

(WF) implementation platform, through a simple case study. We o5t of the code is automatically generated, which is not the
successively introduce a client/server system with mismatching . ’
case with BPEL platforms.

components implemented in WF, our formal approach to work i . .
mismatch cases out, and the resulting WF adaptor. We end with ~ The remainder of the paper is organised as follows. We
some conclusions and a list of open issues. give a quick overview of WF in Section Il. We present in

Section Il a simple example of on-line computer sale, and
the WF components on which it will rely on. In Section IV,

Software Adaptation [1] is a promising research area whiehe apply successively the main steps that are necessary to
aims at supporting the building of component systems [2] lypmpose and adapt these WF components: extraction of be-
reusing software entities. These can be adapted in order tchfivioural interfaces from WF workflows, mismatch detection,
specific needs within different systems. In such a way, applixiting of the mapping, generation of adaptor protocol, and
cation development is mainly concerned with the selectioimplementation of the adaptor component from its abstract
adaptation and composition of different pieces of softwadescription. In Section V, we draw up some conclusions, and
rather than with the programming of applications from scratctiscuss issues that we will tackle in future work.
Many approaches dedicated to model-based adaptation [3], [4],
[5], [6], [7] focus on the behavioural interoperability level, and
aim at generating new components calithptorswhich are In this section we present the WF constructs that we use
used to solve mismatch in a non-intrusive way. This process this work: Code, Ter ni nat e, | nvokeWebSer vi ce,
is completely automated being given adaptation mapping WebSer vi cel nput, WebSer vi ceQut put, Sequence,
which is an abstract description of how mismatch can bd El se, Listen with EventDriven activities, and
solved with respect to behavioural interfaces of componenthi | e. The reader interested in more details may refer
However, very few of these approaches relate their results with[10].
existing programming languages and platforms. To the best ofWF belongs to the .NET Framework 3.0, and is supported
our knowledge, the only attempts in this direction have beday Visual Studio 2005. The available programming languages
carried out using COM/DCOM [5] and BPEL [8]. to implement the workflows in Visual Studio 2005 aresual

In this paper, we propose to relate adaptor generation p@asic and C#. In this work, C# has been chosen as the
posals with existing implementation platforms. BPEL [9] an@mplementation language.
Windows Workflow Foundation (WF) [10] are very relevant The Code activity is meant to execute user code pro-
platforms because they support the behavioural descriptionsviwfed for execution within the workflow. Th&er ni nat e
components/services. Implementing BPEL services is possibldivity is used to finalise the execution of a workflow. A
with the Java Application Server included in Netbeans EntéaF | nvokeWebSer vi ce activity calls a Web service and
prise. On the other hand, WF belongs to the .NET Framewaméceives the requested service result back. If such an invoke
3.0 developed by Microsd®. Here, we have chosen WFhas to be accessed by another compor@nit has to be
to achieve our goal because the .NET Framework is widgbyeceded by &ébSer vi cel nput activity, and followed by
used in private companies whereas BPEL is a language thaébSer vi ceQut put activity. Hence C will interact with
recently emerged and for which tool support is being releasékis new service using these two input/output activities that
In addition, WF can be used to implement Web services, asitable and disable the data reception and sending, respectively,
is the case for BPEL, but also any kind of software componentith respect to the invoked Web service. WF-based XML Web

I. INTRODUCTION

Il. WF OVERVIEW

services require at least oMébSer vi cel nput and one or . R
moreWebSer vi ceQut put activities. The input and output Supplier ; e;\ g
activities are related, thus each output activity must be associ- i
ated with an input activity. It is not possible to have an instance : = P
of WebSer vi cel nput without associated outputs, as well @ i B
as having outputs without at least owébSer vi cel nput . | i ,—‘—‘
The Sequence construct executes a group of activities in a e : EVE"thLV,fJ"HEW-- evem[’;fnﬁw
precise order. The WFf El se activity corresponds to aif- l i '|‘ '|’
then-elseconditional expression. Depending on the condition e |
evaluation, the f El se activity launches the execution of one i ! i s
of its branches. If none of the conditions is true, ¢ét&ebranch | : ! !
is executed. ECTRE e ke lES L
ThelLi st en activity defines a set divent Dri ven activ- | : | |
ities that wait for a specific event. One of theent Dri ven ol ol -
activities is fired when the expected message is received. Last, i
the Whi | e construct defines a set of activities that are fired | : ! | ! .
as many times as its condition is true. e b 5 pice_2 | Qteminse |
I1l. CASE STUDY: ON-LINE COMPUTER SALE ‘LreL : %‘klp
In this section we introduce a simple case study of on- ! : JHED‘I'Z
line computer sale. The example consists of a system whose e |
purpose is to sell computer material such as PCs, laptops, or v & ! &
PDAs to clients. As a starting point we reuse two components: | s : |
a Supplier and aBuyer. These components have been im- @ | '
plemented using WF/.NET, and their workflows are presented i
in Figures 1 and 2 respectively. :
First, the Supplier receives a request under the form of i

two messages that indicate the type of the requested material,
and the max price to payt ype and price). Then, it
sends a response indicating if the request can be replied
positively ¢ epl y). Next, the Supplier can terminate the
session, receive and reply other requests, or receive an ofgigfkflow only because WF obliges their presence before and
of purchase uy). In the latter case, a confirmation is sengfter | nvokeWebSer vi ce activities. In Figures 1 and 2

(ack) pointing out if the purchase has been realised correctiyese activities are identified withau identifiers.
or not.

The Buyer can submit a request équest), in which it IV. COMPOSITION AND ADAPTATION OF WF
indicates the type of material he wants to purchase and the max COMPONENTS
price to pay for that material. Next, once he/she has receivedn this section, we focus on the composition and adaptation
a responser(epl y), the Buyer may realise another requestpf the Buyer and Supplier components.
buy the requested produgpyr chase), or end the session
(st op).

In both Supplier and Buyer we have split the workflows First of all, we present in Figure 3 the LTS (Labelled Transi-
of Figures 1 and 2, presenting them into two parts. OGN Systems) extracted from the workflow-based components
the left-hand side, we show the initial execution belongingfesented in Section Ill. The main ideas of the obtaining of
to the first request, and on the right-hand side we preséddtS from workflow constructs are the following:
the loop offering the possibility of executing other requests, « Code is interpreted as transition (internal);
performing a purchase or finalising. We identify the names.« Ter ni nat e corresponds to a final state in LTS;
of certain activities, whose functionality is the same, with an « | nvokeWebSer vi ce is split into two messages, one
index (such ag ype_1 andtype_2, orinvokeType_1 emission followed by a reception;
and i nvokeType_2 in Supplier), because WF does not « WebServi cel nput andWbSer vi ceQut put mes-
accept activities identified using the same name. Note that sages are translated similarly in LTS;
in the Buyer component, the messages with tic®@de o Sequence is translated so that it preserves the order of
suffix, such asr equest _1 code, correspond to the exe- the involved activities in the resulting LTS;
cution of C# code. Last, somé&\¥bSer vi cel nput and « | f El se corresponds to a choice, that is two transitions
WebSer vi ceQut put activities may be meaningless with outgoing from the same state, which encodes both parts
respect to the component functionality, and appear in the WF of the conditional construct;

Fig. 1. WF workflow for theSuppliercomponent

A. Extraction of the Behavioural Interfaces

: at hand. Therefore, the observable messages in this case are
Buyer | Gl;\ coming from the input and output messages surrounding the
i invoke activities. All ther transitions in both LTSs corre-
E = o sponding toC'# code in the Buyer workflow, and tot au
| sequencenequestbuyatop
i | WebSer vi ceQut put activities in the Supplier one have
! been removed (byx.a reduction [11]) to favour readability. To
}
@ ; e | identify unambiguously component messages in the adaptation
i | process, their names are prefixed by the component identifier,
Erer ‘; - R respectivelyb for Buyer, ands for Supplier.
i \ 4 |
iovhhenaal : branchRequest branchBuy branchStop s:price? sitype?
£ estRephy 1 I [E |ﬂ lﬂ X
l : | | s:itype? s:price?
|
|7f| ::plyj_cnd : | 5 ruedqeuest_Z_c | ‘"‘,I Eg;:hase_c | | CF stop_code ‘ seply!
Lo | | |
' uG\I T e by sop
| b ' l l l b:purchase!
E'] : I’r‘ r:DILE*COd | ‘ L § ack_code | i - tau_code ‘ b:request!
5 | |
: Queniaet | (@ eminae2 ‘ Fig. 3. LTS interfaces oBupplier(top) andBuyer (bottom) components
i
i .
i B. Mismatch Cases
| . . .
i In this simple example, we can emphasise three cases of
i mismatch:
1

1) name mismatch: th8uyer may buy the computer using
pur chase! whereas theSupplier may interact on
Fig. 2. WF workflow for theBuyer component buy?;
2) mismatching number of messages: tBaiyer sends
] i) one message for each requesequest!) while the
o Li sten corresponds to a state Wlth as many outgoing Supplier expects two messages, one indicating the type
transitions as there are branches in the WF contruct; each (t ype?), and one indicating the max pricer(i ce?);

transition holds a message that may be received; 3) independent evolution: th@uyer may terminate with
o Wi | e is translated as a looping behaviour in the LTS. stop! but this message has no counterpart in the
LTS does not support the description of data expressions, Supplier.
consequently conditions appearing \%hi | e and | f El se) .
constructs are abstracted during the LTS extraction stage./Adaptation Mapping

Likewise, WebSer vi cel nput and WebSer vi ceCQut put Now a mapping should be given to work the aforementioned
activities identified witht au identifiers (see Figs. 1 and 2)cases of mismatch out. We use vectors that define some
are translated as transitions in the corresponding LTS. correspondences between messages. More expressive mapping

Initial and final states in the LTS come respectively fromotation exist in the literature, such as regular expressions of
the explicit initial and final states that appear in the workrectors [4], but with respect to the example at hand, vectors
flow. There is a single initial state that corresponds to ttege enough to automatically retrieve a solution adaptor.
beginning of the workflow. Final states correspond either t0 V;oq = (b:request!, s:type?)
aTer ni nat e activity or to the end of the whole workflow. Vyyice = (b:e,s:price?)

Accordingly, several final states may appear in the LTS be-V,ep1y = (b:reply?,s:reply!)
cause several branches in the workflow may lead to the finalVg.., = (b:stop!,s:¢)

state. Initial and final states are respectively depicted in LTSsVy,, = (b:purchase!, s:buy?)
using bullet arrows and darkened states. Vaex = (b:ack?, s:ack!)

The messages that appear in tBayer LTS come from The name mismatch can be solved by vecigy,. The
the output and input parameters that appear in its invokerrespondence betwearequest! and messagetsype?
activities. As far as th&upplier component is concerned, theand pri ce? can be achieved using two vectofs,, and
invoke activities are made abstract because they correspaipd.., where the second contains an independent evolution of
to interactions with external components (in charge of trmponentSupplier. The last mismatch is solved usifg;.,
material database), and are not of interest for the compositionwhich the messagst op! is associated to nothing.

D. Generation of the Adaptor Protocol

Given a set of component LTSs (Section IV-A) and a
mapping (Section IV-C), we can use existing approaches (here
we rely on [4]) to generate the adaptor protocol automatically.
This is a strength of this proposal because in some cases, the
adaptor protocol may be very hard to derive manually. Since
the adaptor is an additional component through which all the
messages transit, all the messages appearing in the adapto
protocol are reversed.

Figure 4 presents theldaptor LTS. Note first that the
adaptor receives the request coming from tBeyer, and
splits the message into messages carrying the type and price
information. This LTS also shows how the termination is
possible along thet op? message, and how the adaptor may
interact on different nameg(r chase? andbuy!) to make
the interaction possible.

!
i = whileRequest
Adaptor :
ptor | 5
i a
i
1 = listenRequesiBuyStop
@ i Ecl
i |
, | | |
" eventDrivenRequ. eventDrivenBuy eventDrivenStop
[} request_1 i e A &
¥ ¥ ¥
Lo |
[}
!:fl_qlvukeType | @} request_2) buy 8}-stop
i
L | | |
irvokePrice. | | invokeType invokeBu
2 Raply1 ! B [yvekeE @invokeStop
[}
v ! ! !
i irvokePrice
Fharephy 1 | ﬁﬂeu\y_Z |9, ack W tau
Lo | | !
% whisRequ. | |
9 : {@reply 2 ‘olermmalej | ‘Qlermmale} |
[}
| a! |
@ | :
|
[}
}
1

s:price!

s:itype!

Fig. 4. Adaptor protocol for the case study

E. Implementation of the WF Adaptor

From the adaptor LTS presented above, a corresponding
WF component is obtained following the reversed process
that we have sketched in Section IV-Ag.,, by generating
a workflow from an LTS. Therefore, every emission fol-
lowed by a reply is encoded as damvokeWebSer vi ce .

Fig. 5. WF workflow for theAdaptor component

automating the LTS extraction from WF workflows;
automating the mismatch detection, and generating the
list of mismatch situations from a set of component LTSs;
beyond mismatch detection, tackling verification of WF
components;

supporting techniques to help the designer to write the
mapping out, and to generate automatically part of it;
generating WF workflows from the adaptor LTS.

construct. Other input/output events are translated usingwe would also like to carry out experiments on the imple-
VebSer vi cel nput/ WebSer vi ceCQut put activities. The mentation of adaptors using BPEL and the Netbeans Enterprise

decision of theBuyer is translated as &i st en construct, platform to compare on precise criteria the adequacy of both
and the looping behaviour as\ihi | e activity. We present in platforms to apply adaptation in practice.

Figure 5 theAdaptor workflow that has been encoded in WF.
Finally, we point out that the system presented in this

ACKNOWLEDGMENT

section has been completely implemented using WF, and theThis work has been partially supported by the project
Buyer and Supplier components works as required thank§IN2004-07943-C04-01 funded by the Spanish Ministry of

to the use of the WFAdaptor component.

V. CONCLUSION

This paper has presented on a simple yet realistic ex-
ample how existing model-based adaptation approaches can
be related to implementation platforms such as WF in the
.NET Framework 3.0. To make this work, we had to fac
and work out specificities of the WF platform such as th
use oft au WebSer vi ceQut put activities, or of several
I nvokeWebSer vi ce activities in one session. This work is
very promising because it shows that software adaptation [§]
of real use, and can help the developer in building software
applications by reusing software components or services. 5]

We end with a list of future tasks we will tackle to make
the adaptation stage as automated as possible:

2]

(3]

Education and Science (MEC), and the project PO6-TIC-02250
funded by Junta de Andalig

REFERENCES

C. Canal, J. Murillo, and P. Poizat, “Software Adaptatioh'Objet,
vol. 12, no. 1, 2006, special Issue on Coordination and Adaptation
Techniques for Software Entities.

C. SzyperskiComponent Software: Beyond Object-Oriented Program-
ming 2nd ed. Adisson-Wesley, 2003.

A. Bracciali, A. Brogi, and C. Canal, “A Formal Approach to Com-
ponent Adaptation,'Journal of Systems and Softwamol. 74, no. 1,
2005.

C. Canal, P. Poizat, and G. Salg “Synchronizing Behavioural Mis-
match in Software Composition,” iRroc. of FMOODS'06 ser. LNCS,
vol. 4037, 2006.

P. Inverardi and M. Tivoli, “Deadlock-Free Software Architectures for
COM/DCOM Applications,”Journal of Systems and Softwam|. 65,

no. 3, 2003.

(6]

(7]

(8]
(9]

[20]

(11]

H. W. Schmidt and R. H. Reussner, “Generating Adapters for Concur-
rent Component Protocol Synchronization,” froc. of FMOODS'02
Kluwer, 2002.

D. M. Yellin and R. E. Strom, “Protocol Specifications and Components
Adaptors,”ACM Transactions on Programming Languages and Systems
vol. 19, no. 2, 1997.

A. Brogi and R. Popescu, “Automated Generation of BPEL Adapters,”
in Proc. of ICSOC'06 ser. LNCS, vol. 4294, 2006.

T. Andrews et al, Business Process Execution Language for Web
Services (WSBPEL)BEA Systems, IBM, Microsoft, SAP AG, and
Siebel Systems, Feb. 2005.

K. Scribner, Microsoft Windows Workflow Foundation: Step by Step
Microsoft Press, 2007.

H. Garavel, R. Mateescu, F. Lang, and W. Serwe, “CADP 2006: A
Toolbox for the Construction and Analysis of Distributed Processes,” in
Proc. of CAV'07 ser. Lecture Notes in Computer Science, vol. 4590,
2007.

