Javier Cubo
email: cubo@lcc.uma.es

Gwen Salaün
email: salaun@lcc.uma.es

Carlos Canal
email: canal@lcc.uma.es

Ernesto Pimentel
email: ernesto@lcc.uma.es

Pascal Poizat
email: pascal.poizat@inria.fr

Relating Model-Based Adaptation and Implementation Platforms: A Case Study with WF/.NET 3.0

In this paper, we propose to relate model-based adaptation approaches with the Windows Workflow Foundation (WF) implementation platform, through a simple case study. We successively introduce a client/server system with mismatching components implemented in WF, our formal approach to work mismatch cases out, and the resulting WF adaptor. We end with some conclusions and a list of open issues.

I. INTRODUCTION

Software Adaptation [START_REF] Canal | Software Adaptation[END_REF] is a promising research area which aims at supporting the building of component systems [START_REF] Szyperski | Component Software: Beyond Object-Oriented Programming[END_REF] by reusing software entities. These can be adapted in order to fit specific needs within different systems. In such a way, application development is mainly concerned with the selection, adaptation and composition of different pieces of software rather than with the programming of applications from scratch. Many approaches dedicated to model-based adaptation [START_REF] Bracciali | A Formal Approach to Component Adaptation[END_REF], [START_REF] Canal | Synchronizing Behavioural Mismatch in Software Composition[END_REF], [START_REF] Inverardi | Deadlock-Free Software Architectures for COM/DCOM Applications[END_REF], [START_REF] Schmidt | Generating Adapters for Concurrent Component Protocol Synchronization[END_REF], [START_REF] Yellin | Protocol Specifications and Components Adaptors[END_REF] focus on the behavioural interoperability level, and aim at generating new components called adaptors which are used to solve mismatch in a non-intrusive way. This process is completely automated being given an adaptation mapping which is an abstract description of how mismatch can be solved with respect to behavioural interfaces of components. However, very few of these approaches relate their results with existing programming languages and platforms. To the best of our knowledge, the only attempts in this direction have been carried out using COM/DCOM [START_REF] Inverardi | Deadlock-Free Software Architectures for COM/DCOM Applications[END_REF] and BPEL [START_REF] Brogi | Automated Generation of BPEL Adapters[END_REF].

In this paper, we propose to relate adaptor generation proposals with existing implementation platforms. BPEL [START_REF] Andrews | Business Process Execution Language for Web Services (WSBPEL)[END_REF] and Windows Workflow Foundation (WF) [START_REF] Scribner | Microsoft Windows Workflow Foundation: Step by Step[END_REF] are very relevant platforms because they support the behavioural descriptions of components/services. Implementing BPEL services is possible with the Java Application Server included in Netbeans Enterprise. On the other hand, WF belongs to the .NET Framework 3.0 developed by Microsoft R . Here, we have chosen WF to achieve our goal because the .NET Framework is widely used in private companies whereas BPEL is a language that recently emerged and for which tool support is being released. In addition, WF can be used to implement Web services, as it is the case for BPEL, but also any kind of software component.

WF makes the implementation of services easier thanks to its workflow-based graphical support. Last, by using with WF, most of the code is automatically generated, which is not the case with BPEL platforms.

The remainder of the paper is organised as follows. We give a quick overview of WF in Section II. We present in Section III a simple example of on-line computer sale, and the WF components on which it will rely on. In Section IV, we apply successively the main steps that are necessary to compose and adapt these WF components: extraction of behavioural interfaces from WF workflows, mismatch detection, writing of the mapping, generation of adaptor protocol, and implementation of the adaptor component from its abstract description. In Section V, we draw up some conclusions, and discuss issues that we will tackle in future work.

II. WF OVERVIEW

In this section we present the WF constructs that we use in this work: Code, Terminate, InvokeWebService, WebServiceInput, WebServiceOutput, Sequence, IfElse, Listen with EventDriven activities, and While. The reader interested in more details may refer to [START_REF] Scribner | Microsoft Windows Workflow Foundation: Step by Step[END_REF].

WF belongs to the .NET Framework 3.0, and is supported by Visual Studio 2005. The available programming languages to implement the workflows in Visual Studio 2005 are Visual Basic and C#. In this work, C# has been chosen as the implementation language.

The Code activity is meant to execute user code provided for execution within the workflow. The Terminate activity is used to finalise the execution of a workflow. A WF InvokeWebService activity calls a Web service and receives the requested service result back. If such an invoke has to be accessed by another component C, it has to be preceded by a WebServiceInput activity, and followed by a WebServiceOutput activity. Hence, C will interact with this new service using these two input/output activities that enable and disable the data reception and sending, respectively, with respect to the invoked Web service. WF-based XML Web services require at least one WebServiceInput and one or more WebServiceOutput activities. The input and output activities are related, thus each output activity must be associated with an input activity. It is not possible to have an instance of WebServiceInput without associated outputs, as well as having outputs without at least one WebServiceInput.

The Sequence construct executes a group of activities in a precise order. The WF IfElse activity corresponds to an ifthen-else conditional expression. Depending on the condition evaluation, the IfElse activity launches the execution of one of its branches. If none of the conditions is true, the else branch is executed.

The Listen activity defines a set of EventDriven activities that wait for a specific event. One of the EventDriven activities is fired when the expected message is received. Last, the While construct defines a set of activities that are fired as many times as its condition is true.

III. CASE STUDY: ON-LINE COMPUTER SALE

In this section we introduce a simple case study of online computer sale. The example consists of a system whose purpose is to sell computer material such as PCs, laptops, or PDAs to clients. As a starting point we reuse two components: a Supplier and a Buyer. These components have been implemented using WF/.NET, and their workflows are presented in Figures 1 and2 respectively.

First, the Supplier receives a request under the form of two messages that indicate the type of the requested material, and the max price to pay (type and price). Then, it sends a response indicating if the request can be replied positively (reply). Next, the Supplier can terminate the session, receive and reply other requests, or receive an order of purchase (buy). In the latter case, a confirmation is sent (ack) pointing out if the purchase has been realised correctly or not.

The Buyer can submit a request (request), in which it indicates the type of material he wants to purchase and the max price to pay for that material. Next, once he/she has received a response (reply), the Buyer may realise another request, buy the requested product (purchase), or end the session (stop).

In both Supplier and Buyer we have split the workflows of Figures 1 and2, presenting them into two parts. On the left-hand side, we show the initial execution belonging to the first request, and on the right-hand side we present the loop offering the possibility of executing other requests, performing a purchase or finalising. We identify the names of certain activities, whose functionality is the same, with an index (such as type_1 and type_2, or invokeType_1 and invokeType_2 in Supplier), because WF does not accept activities identified using the same name. Note that in the Buyer component, the messages with the code suffix, such as request_1_code, correspond to the execution of C# code. Last, some WebServiceInput and WebServiceOutput activities may be meaningless with respect to the component functionality, and appear in the WF

IV. COMPOSITION AND ADAPTATION OF WF COMPONENTS

In this section, we focus on the composition and adaptation of the Buyer and Supplier components.

A. Extraction of the Behavioural Interfaces

First of all, we present in Figure 3 the LTS (Labelled Transition Systems) extracted from the workflow-based components presented in Section III. The main ideas of the obtaining of LTS from workflow constructs are the following:

• Code is interpreted as τ transition (internal);

• Terminate corresponds to a final state in LTS;

• InvokeWebService is split into two messages, one emission followed by a reception; • WebServiceInput and WebServiceOutput messages are translated similarly in LTS; • Sequence is translated so that it preserves the order of the involved activities in the resulting LTS; • IfElse corresponds to a choice, that is two transitions outgoing from the same state, which encodes both parts of the conditional construct; • Listen corresponds to a state with as many outgoing transitions as there are branches in the WF contruct; each transition holds a message that may be received; • While is translated as a looping behaviour in the LTS. LTS does not support the description of data expressions, consequently conditions appearing in While and IfElse constructs are abstracted during the LTS extraction stage. Likewise, WebServiceInput and WebServiceOutput activities identified with tau identifiers (see Figs. 1 and2) are translated as τ transitions in the corresponding LTS.

Initial and final states in the LTS come respectively from the explicit initial and final states that appear in the workflow. There is a single initial state that corresponds to the beginning of the workflow. Final states correspond either to a Terminate activity or to the end of the whole workflow. Accordingly, several final states may appear in the LTS because several branches in the workflow may lead to the final state. Initial and final states are respectively depicted in LTSs using bullet arrows and darkened states.

The messages that appear in the Buyer LTS come from the output and input parameters that appear in its invoke activities. As far as the Supplier component is concerned, the invoke activities are made abstract because they correspond to interactions with external components (in charge of the material database), and are not of interest for the composition at hand. Therefore, the observable messages in this case are coming from the input and output messages surrounding the invoke activities. All the τ transitions in both LTSs corresponding to C# code in the Buyer workflow, and to tau WebServiceOutput activities in the Supplier one have been removed (by τ * .a reduction [START_REF] Garavel | CADP 2006: A Toolbox for the Construction and Analysis of Distributed Processes[END_REF]) to favour readability. To identify unambiguously component messages in the adaptation process, their names are prefixed by the component identifier, respectively b for Buyer, and s for Supplier.

B. Mismatch Cases

In this simple example, we can emphasise three cases of mismatch:

1) name mismatch: the Buyer may buy the computer using purchase! whereas the Supplier may interact on buy?; 2) mismatching number of messages: the Buyer sends one message for each request (request!) while the Supplier expects two messages, one indicating the type (type?), and one indicating the max price (price?); 3) independent evolution: the Buyer may terminate with stop! but this message has no counterpart in the Supplier.

C. Adaptation Mapping

Now a mapping should be given to work the aforementioned cases of mismatch out. We use vectors that define some correspondences between messages. More expressive mapping notation exist in the literature, such as regular expressions of vectors [START_REF] Canal | Synchronizing Behavioural Mismatch in Software Composition[END_REF], but with respect to the example at hand, vectors are enough to automatically retrieve a solution adaptor.

V req = b : request!, s : type? V price = b : ε, s : price? V reply = b : reply?, s : reply! V stop = b : stop!, s : ε V buy = b : purchase!, s : buy? V ack = b : ack?, s : ack! The name mismatch can be solved by vector V buy . The correspondence between request! and messages type? and price? can be achieved using two vectors, V req and V price , where the second contains an independent evolution of component Supplier. The last mismatch is solved using V stop in which the message stop! is associated to nothing.

D. Generation of the Adaptor Protocol

Given a set of component LTSs (Section IV-A) and a mapping (Section IV-C), we can use existing approaches (here we rely on [START_REF] Canal | Synchronizing Behavioural Mismatch in Software Composition[END_REF]) to generate the adaptor protocol automatically. This is a strength of this proposal because in some cases, the adaptor protocol may be very hard to derive manually. Since the adaptor is an additional component through which all the messages transit, all the messages appearing in the adaptor protocol are reversed.

Figure 4 presents the Adaptor LTS. Note first that the adaptor receives the request coming from the Buyer, and splits the message into messages carrying the type and price information. This LTS also shows how the termination is possible along the stop? message, and how the adaptor may interact on different names (purchase? and buy!) to make the interaction possible.

E. Implementation of the WF Adaptor

From the adaptor LTS presented above, a corresponding WF component is obtained following the reversed process that we have sketched in Section IV-A, i.e., by generating a workflow from an LTS. Therefore, every emission followed by a reply is encoded as an InvokeWebService construct. Other input/output events are translated using WebServiceInput/WebServiceOutput activities. The decision of the Buyer is translated as a Listen construct, and the looping behaviour as a While activity. We present in Figure 5 the Adaptor workflow that has been encoded in WF.

Finally, we point out that the system presented in this section has been completely implemented using WF, and the Buyer and Supplier components works as required thanks to the use of the WF Adaptor component.

V. CONCLUSION

This paper has presented on a simple yet realistic example how existing model-based adaptation approaches can be related to implementation platforms such as WF in the .NET Framework 3.0. To make this work, we had to face and work out specificities of the WF platform such as the use of tau WebServiceOutput activities, or of several InvokeWebService activities in one session. This work is very promising because it shows that software adaptation is of real use, and can help the developer in building software applications by reusing software components or services.

We end with a list of future tasks we will tackle to make the adaptation stage as automated as possible: We would also like to carry out experiments on the implementation of adaptors using BPEL and the Netbeans Enterprise platform to compare on precise criteria the adequacy of both platforms to apply adaptation in practice.

Fig. 1 .

 1 Fig. 1. WF workflow for the Supplier component

Fig. 2 .

 2 Fig. 2. WF workflow for the Buyer component

Fig. 3 .

 3 Fig. 3. LTS interfaces of Supplier (top) and Buyer (bottom) components

Fig. 4 .

 4 Fig. 4. Adaptor protocol for the case study

Fig. 5 .

 5 Fig. 5. WF workflow for the Adaptor component

ACKNOWLEDGMENT

This work has been partially supported by the project TIN2004-07943-C04-01 funded by the Spanish Ministry of Education and Science (MEC), and the project P06-TIC-02250 funded by Junta de Andalucía.