
HAL Id: hal-00342000
https://hal.science/hal-00342000

Submitted on 23 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Chasing of Network Intruders by Mobile
Agents

Lélia Blin, Pierre Fraigniaud, Nicolas Nisse, Sandrine Vial

To cite this version:
Lélia Blin, Pierre Fraigniaud, Nicolas Nisse, Sandrine Vial. Distributed Chasing of Network Intruders
by Mobile Agents. Proceedings of the 13th Colloquium on Structural Information and Communication
Complexity (SIROCCO 2006), 2006, Chester, United Kingdom. pp.70–84, �10.1007/11780823_7�.
�hal-00342000�

https://hal.science/hal-00342000
https://hal.archives-ouvertes.fr

Distributed Chasing of Network IntrudersL�elia Blin�IBISCUniversity of Evry91000 Evrylelia.blin�lami.univ-evry.fr Pierre FraigniaudyLRICNRS & University of Paris Sud91405 Orsay, Fran
epierre�lri.fr Ni
olas NisseyLRIUniversity of Paris Sud91405 Orsay, Fran
enisse�lri.frSandrine Vial�IBISCUniversity of Evry91000 Evrysandrine.vial�lami.univ-evry.frAbstra
tGraph sear
hing is one of the most popular tool for analyzing the
hase for a powerfuland hostile software agent (
alled the "intruder"), by a set of software agents (
alled the"sear
hers") in a network. The existing solutions for the graph sear
hing problem su�erhowever from a serious drawba
k: they are mostly
entralized and assume a global syn-
hronization me
hanism for the sear
hers. In parti
ular: (1) the sear
h strategy for everynetwork is
omputed based on the knowledge of the entire topology of the network, and (2)the moves of the sear
hers are
ontrolled by a
entralized me
hanism that de
ides at everystep whi
h sear
her has to move, and what movement it has to perform.This paper addresses the graph sear
hing problem in a distributed setting. We des
ribea distributed proto
ol that enables sear
hers with logarithmi
 size memory to
lear anynetwork, in a fully de
entralized manner. The sear
h strategy for the network in whi
h thesear
hers are laun
hed is
omputed online by the sear
hers themselves without knowing thetopology of the network in advan
e. It performs in an asyn
hronous environment, i.e., itimplements the ne
essary syn
hronization me
hanism in a de
entralized manner. In everynetwork, our proto
ol performs a
onne
ted strategy using at most k+1 sear
hers, where kis the minimum number of sear
hers required to
lear the network in a monotone
onne
tedway using a strategy
omputed in the
entralized and syn
hronous setting.Keywords: graph sear
hing, distributed algorithm, network se
urity.
yThese authors re
eived additional supports from the proje
t \PairAPair" of the ACI Masses de Donn�ees,from the proje
t \Fragile" of the ACI S�e
urit�e Informatique, and from the proje
t \Grand Large" of INRIA.�These authors re
eived additional supports from the proje
t \ALGOL" of the ACI Masses de Donn�ees, andfrom the proje
t \ROM-EO" of the RNRT program.

1 Introdu
tionGraph sear
hing [26℄ is one of the most popular tool for analyzing the
hase for a powerfuland hostile agent, by a set of software agents in a network. Roughly speaking, graph sear
hinginvolves an intruder and a set of sear
hers, all moving from node to node along the links of anetwork. The intruder is powerful in the sense that it is supposed to move arbitrarily fast, andto be permanently aware of the positions of the sear
hers. However, the intruder
annot
rossa node or an edge o

upied by a sear
her without being
aught. Conversely, the sear
hers areunaware of the position of the intruder. They are aiming at surrounding the intruder in thenetwork. The intruder is
aught by the sear
hers when a sear
her enters the node it o

upies.For instan
e, one sear
her
an
at
h an intruder in a path (by moving from one extremity of thepath to the other extremity), while two sear
hers are required to
at
h an intruder in a
y
le(starting from the same node, the two sear
hers move in opposite dire
tions). Another typi
alexample is the n-node square mesh, in whi
h �(pn) sear
hers are ne
essary and suÆ
ient for
at
hing an intruder. In addition to network se
urity, graph sear
hing has several other pra
ti
almotivations, su
h as res
uing speleologists in
aves [8℄ or de
ontaminating a set of pollutedpipes [27℄. It has also several appli
ations to the Graph Minor theory as it provides a dynami
approa
h to the analysis of stati
 graph parameters su
h as treewidth and pathwidth [6℄.The main question addressed by graph sear
hing is: given a graph G, what is the sear
hnumber of G? That is, what is the minimum number of sear
hers, s(G), required to
learthe graph G, i.e., to
apture the intruder? This question is motivated by, e.g., the need for
onsuming the minimum amount of
omputing resour
es of the network at any time, while
learing it. The de
ision problem
orresponding to
omputing the sear
h number of a graphis NP-hard [26℄, and NP-
ompleteness follows from [7, 24℄. Computing the sear
h number ishowever polynomial for trees [25, 26℄, and the
orresponding sear
h strategy
an be
omputedin linear time [30℄. In fa
t, the sear
h number of a graph is known to be roughly equal tothe pathwidth, pw, of the graph, and therefore the sear
h number of an n-node graph
an beapproximated in polynomial time, up to multipli
ative fa
tor O(lognplog tw) where tw denotesthe treewidth of the graph (see [14℄, and use the fa
t that pw=tw � O(log n)).The graph sear
hing problem has given rise to a vast literature (
f. Se
tion 1.2), in whi
hseveral variants of the problem are dis
ussed and solved. Nevertheless, from a distributedsystems point of view, the existing solutions for the graph sear
hing problem (
f., e.g., [25, 26,30℄) su�er from a serious drawba
k: they are mostly
entralized. In parti
ular, (1) the sear
hstrategy for every network is
omputed based on the knowledge of the entire topology of thenetwork, and (2) the moves of the sear
hers are
ontrolled by a
entralized me
hanism thatde
ides at every step whi
h sear
her has to move, and what movement it has to perform. Thesetwo fa
ts limit the appli
ability of the solutions. Indeed, as far as networking or speleology is
on
erned, the topology of the network is often unknown, or its map unpre
ise. The topology
aneven evolve with time (either slowly as for, e.g., Internet, or rapidly as for, e.g., P2P networks).Moreover, the mobile entities involved in the sear
h strategy
an hardly be
ontrolled by a
entral me
hanism di
tating their a
tions. All these
onstraints make
entralized algorithmsinappropriate for many pra
ti
al instan
es of the graph sear
hing problem.This paper addresses the graph sear
hing problem in a distributed setting, that is thesear
hers must
ompute their own sear
h strategy for the network in whi
h they are
urrentlyrunning. This distributed
omputation must not require knowing the topology of the networkin advan
e (not even its size), and the sear
hers must a
t in absen
e of any global syn
hro-nization me
hanism, hen
e they must be able to perform in a fully asyn
hronous environment.Distributed strategies have been proposed for spe
i�
 topologies only, su
h as trees [2℄, hyper-
ubes [16℄, and rings and tori [15℄. In this paper, we address the problem in arbitrary topologies.2

The sear
hers are modeled by autonomous mobile
omputing entities with distin
t IDs. Morepre
isely, they are labeled from 1 to the
urrent number k of sear
hers in the network (if a newsear
her has to join the team, it will take number k + 1). Otherwise sear
hers are all identi
al,and run the same program. The network and the sear
hers are asyn
hronous in the sense thatevery a
tion of a sear
her takes a �nite but unpredi
table amount of time. Moreover, motivatedby the fa
t that the intruder models a potentially hostile agent that
an, e.g.,
orrupt the nodememories, the sear
h strategy must perform independently from any lo
al information storedat nodes a priori, and even independently from the node IDs. We thus
onsider anonymousnetworks, i.e., networks in whi
h nodes do not have labels, or these labels are not a

essible tothe sear
hers. The deg(u) edges in
ident to any node u are labeled from 1 to deg(u), so thatthe sear
hers
an distinguish the di�erent edges in
ident to a node. These labels are
alled portnumbers. Every node of the network has a whiteboard in whi
h sear
hers
an read, erase, andwrite symbols. (A whiteboard is modeling a spe
i�
 zone of the lo
al node memory that isreserved for the purpose of ex
hanging information between software agents). At every node,the lo
al whiteboard is assumed to be a

essible by the sear
hers in fair mutual ex
lusion. Sin
ethe
ontent of the whiteboard at every node a

essible by the intruder is
orruptible, it is therole of the sear
hers to prote
t information stored at nodes' whiteboards.The de
isions taken by a sear
her at a node (moving via port number p, writing the wordw on the whiteboard, et
.) is lo
al and depends only on (1) the
urrent state of the sear
her,and (2) the
ontent of the node's whiteboard (plus possibly (3) the in
oming port number, ifthe sear
her just entered the node).The powerful intruder is assumed to be aware of the edge-labeled network topology, andthus it does not need the whiteboards to navigate. In fa
t, as mentioned before, when theintruder enters a node that is not o

upied by a sear
her, then it
an modify or even removethe
ontent of the lo
al whiteboard.All sear
hers start from the same node u0,
alled the entran
e of the network, or the homebaseof the sear
hers. This node u0 is also a sour
e of sear
hers, in the sense that if the
urrent teamof sear
hers realize that they are not numerous enough for
learing the network, then they
anask for a new sear
her, that will appear at the sour
e. Initially, one sear
her spontaneouslyappears at the sour
e. The size of the team will in
rease until it be
omes large enough to
lear the network. Basi
ally, the sear
hers are aiming at expanding a
leared zone around theirhomebase u0, that is at expanding a
onne
ted sub-network of the network G,
ontaining u0,until the whole network is
lear. In parti
ular, as the entran
e u0 of the network is a
riti
alnode, it has to be permanently prote
ted from the intruder in the sense that the intruder mustnever be able to a

ess it.Among all sear
h strategies, monotone ones play an important role. A monotone strategyinsures that, on
e an edge has been
leared, it will always remain
lear. Monotone strategiesguaranty a polynomial number of moves: exa
tly one move for
learing every edge, plus fewmoves required by the sear
hers to set up their positions before
learing the next edge. In the
onne
ted setting (i.e., the
leared part of the network is always
onne
ted), the
orrespondinggraph sear
hing parameter is
alled monotone
onne
ted sear
h number starting at u0 (
f.,[2, 3, 16, 15, 21℄), and is denoted by m
s(G;u0).1.1 Our resultsWe des
ribe a distributed proto
ol,
alled dist sear
h, that enables the sear
hers to
learany asyn
hronous network in a fully de
entralized manner, i.e., the sear
h strategy is
omputedonline by the sear
hers themselves, after being laun
hed in the network without any informationabout its topology. This is the �rst distributed proto
ol that addresses the graph sear
hing3

problem in its whole generality, i.e., for arbitrary network topologies.The distributed sear
h strategy performed by the sear
hers in an asyn
hronous environmentuses a number of sear
hers that is optimal up to a logarithmi
 fa
tor. Indeed, we prove thatthe number of sear
hers involved in the strategy
omputed by our proto
ol in a network G isequal to 1 plus the minimum number of sear
hers required to
lear G by a monotone
onne
tedsear
h strategy starting at the homebase u0 2 V (G), i.e., is equal to m
s(G;u0) + 1. Sin
e it isknown [21℄ that, for any graph G and for any u0 2 V (G), we have m
s(G;u0) � s(G)dlog ne,we get that our proto
ol uses at most O(logn) times the optimal number of sear
hers. In fa
t,it is
onje
tured that m
s(G) � 2s(G) for all graph G (
f. [3℄). If this holds, then our proto
oluses at most twi
e the optimal number of sear
hers.Our proto
ol is spa
e-eÆ
ient from many respe
ts. First, it requires only O(log k) bits ofmemory for ea
h of the k sear
hers involved in the sear
h. In parti
ular, this amount of memoryis independent from the size n of the network. Se
ond, the amount of information stored atevery whiteboard never ex
eeds O(m log n) bits, where m is the number of edges of the network.To obtain our results, we had to address several problems.� First, sin
e the network is a priori unknown to the sear
hers, they have to explore it.However, this exploration
annot be a
hieved easily be
ause of the potential
orruptionof the whiteboards by the intruder. Our proto
ol insures that exploration and sear
hingare performed somehow simultaneously, and that the whiteboards of
leared nodes remainpermanently prote
ted unless there is no need to prote
t the stored information anymore.� Se
ond, as the sear
hers asyn
hronously spread out in the network, they be
ome rapidlyunaware of their relative positions. Our proto
ol syn
hronizes the sear
hers in a non trivialmanner so that an a
tion by a sear
her is not ruined by the a
tion of another sear
her.� Finally, to obtain spa
e-eÆ
ient solutions, our proto
ol takes advantage from the a

essesto the whiteboards, to store and read information useful to the sear
hers: it maintainsa sta
k at every whiteboard, and every sear
her at a node has a

ess only to the top ofa sta
k stored lo
ally on the
urrent node's whiteboard, and to few other variables alsostored on the whiteboard.1.2 Related WorksGraph sear
hing, originated by Parson in [27℄, has been extensively studied in the literature(see [6℄ for a survey). Variants of the problem have been de�ned by Kirousis and Papadimitriouin [22, 23℄, and by Biensto
k and Seymour in [7℄. The notion of
rusade allowed Biensto
kand Seymour to simplify the proof of LaPaugh [24℄ about monotone graph sear
hing: for anygraph, there exists a minimal sear
h strategy that is monotone (i.e., re
ontamination does nothelp). The notion of
onne
ted sear
h strategy has been introdu
ed by Barri�ere et al. [2, 3℄. [2℄des
ribes a linear-time algorithm that
omputes minimal monotone
onne
ted sear
h strategyfor trees. [3℄ proves that, for any tree T , m
s(T) � 2 s(T) � 2 and this bound is tight. [31℄shows that there exist graphs for whi
h no minimal
onne
ted sear
h strategies are monotone.On the other hand, [2℄ proves that re
ontamination does not help for
onne
ted sear
h in trees.Several proto
ols for
learing some spe
i�
 networks in distributed setting have been pro-posed in the literature. Flo

hini et al. have proposed proto
ols that address the graph sear-
hing problem in trees [2℄, hyper
ubes [16℄, tori and
hordal rings [15℄. For ea
h of these
lassesof graphs, the authors have designed a proto
ol using m
s(G;u0) + 1 sear
hers with O(log n)bits of memory and whiteboards of size O(log n) bits, that monotonously
lears the graph in4

polynomial time and polynomial number of moves. [16℄ proved that any distributed proto-
ol
learing an asyn
hronous network in a monotone
onne
ted way requires m
s(G;u0) + 1sear
hers. Moreover, this remains true even if the topology of the network is known in advan
e.Our problem is also very mu
h related to graph exploration and mapping. In absen
e ofwhiteboards, it is known that network exploration is impossible using a �nite team of �niteautomata [20, 29℄. In fa
t, it is known that no �nite team of �nite automata is able to exploreall graphs, even if these automata are given powerful
ommuni
ation fa
ilities (
f., e.g., [10℄).However, exploring trees is relatively easy [11℄, and a pre-
omputed labeling of the nodes withonly three di�erent labels enables just one �nite automaton to explore all graphs [9℄. In there
ent paper of Reingold proving that SL = L [28℄, a log-spa
e
onstru
tible universal explo-ration sequen
e exploring all d-regular n-node graphs is des
ribed. Finally, [4, 5, 19℄ investigatedexploration of dire
ted graphs.In [12, 13℄, the obje
tive of the authors is to determine the position of a bla
khole in anetwork. A bla
khole is an harmful node that destroys any agent visiting that node withoutletting any tra
e. On the other hand, the bla
khole
annot move. [12, 13℄ have proved that� + 1 agents are ne
essary and suÆ
ient to �nd a bla
khole in any network, where � is themaximum degree of the network.2 Model, Formal Statement, and Main ResultIn this se
tion, we spe
ify our problem, and we state formally our main result.2.1 Our problemWe summarize our problem setting. A network is an anonymous edge-labeled graph G. Thedeg(u) edges in
ident to any node u are labeled by distin
t integers from 1 to deg(u). Theselabels are
alled port numbers. A sear
her is a mobile
omputing entity that
an move alongthe edges of the network. At every node of the network, there is a whiteboard a

essible to thesear
hers
urrently o

upying this node. A whiteboard is a zone of the node's memory reservedto the sear
hers to read, write, and erase information. The a

ess to every whiteboard isassumed to be performed under the
ontrol of a fair mutual ex
lusion me
hanism. The de
isiontaken by a sear
her at a node depends on its internal state, the
ontent of the lo
al whiteboard,and the in
oming port number. A de
ision results in either leaving the node through someport p, or waiting at the node until it has (again) a

ess to the whiteboard. The sear
hersare generated by a unique node u0 2 V ,
alled the homebase. The homebase is a sour
e ofsear
hers, in the following sense. New sear
hers
an be generated at the homebase. For a newsear
her to be generated, at least one sear
her must be o

upying the homebase, and
allingfor a new sear
her. The ith sear
her generated at the homebase is given label i. The sear
hersare asyn
hronous in the sense that every a
tion of a sear
her takes a �nite but unpredi
tableamount of time. When they are laun
hed in a network, they ignore its topology, and have noinformation about it (they even ignore its size). The goal of the sear
hers is to
apture an"intruder".The intruder is a mali
ious mobile
omputing entity that
an move along the edges ofthe network. The intruder is arbitrarily fast, and is assumed to be permanently aware of thepositions of the sear
hers. It is invisible in the sense that the sear
hers are unaware of theposition of the intruder. On the other hand, the intruder knows the topology of the networkand is assumed to be permanently aware of the positions of the sear
hers. The intruder is
aughtif it meets a sear
her at a node or along an edge. The intruder has the ability to
orrupt thenodes, in
luding the
ontent of their whiteboards.5

A distributed sear
h proto
ol is a distributed program exe
uted by the sear
hers for
at
hingthe intruder. Initially, one sear
her is spontaneously generated at the homebase u0, and theintruder
an be pla
ed at any node or edge of the network. The sear
her
an start movingin the network or
alling for a new sear
her. The exe
ution of the sear
h proto
ol results ina team of sear
hers moving in the network, looking for the intruder. A sear
h proto
ol mustperform independently from any a priori knowledge about the network. Hen
e, initially, thesear
hers ignore in whi
h network they are running. On the other hand, the intruder is given apre
ise map of the edge-labeled network in whi
h it has been pla
ed, and it knows where in thenetwork it has been pla
ed. Again, all previous works [2, 16, 15℄
ompute the sear
h strategyfrom the entire knowledge of the network, and the strategy performs in syn
hronous steps. Inour setting, the sear
h strategy is
omputed by the sear
hers applying the sear
h proto
ol, inabsen
e of any a priori knowledge about the network, and in an asyn
hronous environment.Clearly, n+1 sear
hers
an easily
apture the intruder in any n-node network (the team ofsear
hers expand from the homebase until they o

upy all the nodes, while one extra sear
her"
lear" all the edges). A sear
h proto
ol is minimal if, for any network G, and for any nodeu0 2 V (G), the number of sear
hers required by the proto
ol to
apture the intruder in Gstarting from the homebase u0 is the smallest for this setting. This paper addresses the problemof designing a minimal distributed sear
h proto
ol. This problem has been widely investigatedin the literature in the framework of sear
h games. In the general setting of sear
h games, asear
h strategy for a network G is an ordered sequen
e of sear
h steps resulting in the intruderbeing
aught, where ea
h step is of one of the following three types:1. pla
e a sear
her at a vertex v 2 V (G);2. remove a sear
her from a vertex v 2 V (G);3. move a sear
her along an edge e 2 E(G).A k-sear
h strategy is a sear
h strategy in whi
h at most k sear
hers are present in the networkat every step. The sear
h number s(G) of a network G is the smallest k for whi
h there exists ak-sear
h strategy forG. Several sear
h games as been de�ned in the literature [2, 3, 7, 22, 23, 31℄.We
onsider the most realisti
 one as far as network se
urity is
on
erned.� A sear
h strategy is internal if it does not
ontain any removal step. Internal sear
hstrategies are desired in
ommuni
ation networks sin
e an agent
annot easily be pla
edat or removed from any node.� A sear
h strategy is monotone if it performs so that the intruder never o

upies a nodeor an edge that has been previously visited by a sear
her. Monotone sear
h strategies aredesired for they insure that the number of sear
her moves is polynomial in the size of thenetwork.� A sear
h strategy is
onne
ted if, at any step, the "
leared zone" of the network (i.e., theset of nodes and edges that has been
leared so far, and prote
ted from re
ontaminationby the intruder) is
onne
ted. Conne
ted sear
h strategies are desired be
ause they insurethat
ommuni
ations between the sear
hers
an be performed without risk of
orruptionby the intruder. A
onne
ted strategy is obviously internal.If there exists a monotone
onne
ted k-sear
h strategy for the network G, then there existssu
h a strategy in whi
h the k sear
hers are initially pla
ed at a same node, and all steps
onsist in moving sear
hers along the edges of the network (
f., e.g., [3℄). In the following, allour strategies are
onne
ted. Given a network G, and a node u0 2 V (G), the smallest k forwhi
h there exists a monotone
onne
ted k-sear
h strategy for G where all sear
hers are initiallypla
ed at u0 is denoted by m
s(G;u0). 6

2.2 Main ResultsOur main result is the design of a provably distributed sear
h proto
ol, dist sear
h, for ateam of sear
hers as de�ned in Se
tion 2.1. The performan
es of our proto
ol are
ompared tothe ones of monotone
onne
ted sear
h strategies. The following theorem summarizes the main
hara
teristi
s of dist sear
h.Theorem 1 For any
onne
ted, asyn
hronous, and anonymous network G, and any u0 2 V (G),dist sear
h enables
apturing an intruder in G using sear
hers, in a
onne
ted way, startingfrom the homebase u0, and initially unaware of G. The main
hara
teristi
s of dist sear
hare the following:� dist sear
h uses at most k = m
s(G;u0) + 1 sear
hers if m
s(G;u0) > 1, and k = 1sear
her if m
s(G;u0) = 1;� Every sear
her involved in the sear
h strategy
omputed by dist sear
h uses O(log k) bitsof memory, where k is the number of sear
hers;� During the exe
ution of dist sear
h, at most O(m(log k+log�)) bits of information arestored at every whiteboard, where � and m are respe
tively the mawimum degree and thenumber of edges of G, and k is the number of sear
hers.Remarks.� Note that the theorem above implies that, for networks sear
hable by a monotone
on-ne
ted sear
h strategy using a
onstant number of sear
hers, the proto
ol dist sear
h
an be implemented using �nite state automata.� The strategy performed by the sear
hers is
onne
ted but not ne
esseraly monotone.However, it is easy to
he
k that, on
e the whole graph has been
leared by sear
hersapplying dist sear
h, the des
ription of a sear
h strategy S is stored in a distributedway on the nodes' whiteboards of G. S is a monotone
onne
ted sear
h strategy for G,starting from u0, and using at most m
s(G;u0)+1 sear
hers. Moreover, an automaton withat most O(log n) bits of memory
an
olle
t S, assuming that no intruders
an
orruptthe information on the graph while S is
olle
ted.� Note also that the sear
h strategy S
omputed by proto
ol dist sear
h is optimal inthe following sense. For any k � 1, there exists a network G and u0 2 V (G) su
h that,k = m
s(G;u0) and for any distributed proto
ol P designed for
apturing a fugitive in amonotone
onne
ted way, starting from u0, P requires k + 1 sear
hers [16℄.2.3 Sket
h of Proto
ol dist sear
h and of its proofGiven a
onne
ted network G, and X � E(G), we denote by Æ(X) the nodes in V (G) that arein
ident to an edge in X and an edge in E(G) n X. Given k � 1, we
all k-
on�guration anyset X � E(G) su
h that jÆ(X)j � k. The k-
on�guration digraph Ck of G is de�ned as follows.V (Ck) is the set of all possible k-
on�gurations. There is an ar
 from X to X 0 in Ck if the
on�guration X 0
an be rea
hed from X by one step (i.e., pla
e, move or remove a sear
her)of a monotone
onne
ted sear
h strategy using at most k sear
hers. The obje
tive of Proto
oldist sear
h is essentially to try, for su

essive k = 1; 2; : : :, whether the
on�guration graphCk
an be traversed from ; to E(G) under the
onstraint that the sear
hers starts at u0. Ifyes, then dist sear
h
ompletes after having
aptured the intruder using at most k sear
hers.Otherwise, dist sear
h tries with k + 1 sear
hers.7

Remark. This approa
h is similar to the (
entralized) parametrized algorithms of the litera-ture (
f., e.g., [1, 17, 18℄). However, the diÆ
ulty of our approa
h is to dis
over whether the
on�guration digraph Ck
an be traversed from ; to E(G) in a de
entralized manner.For a �xed k, the obje
tive of dist sear
h is to organize the movements of the sear
hers sothat they perform a DFS of Ck (again, ignoring the topology of G, and in an asyn
hronous envi-ronment). This obje
tive is a
hieved a

ording to an order spe
i�ed by a virtual sta
k in whi
hare stored information related to the moves of the sear
hers. Roughly, Proto
ol dist sear
h
onstru
ts all possible states for the virtual sta
k, a

ording to a lexi
ographi
 order on thestates of the sta
k. The diÆ
ulty of the proto
ol is to distribute the virtual sta
k on the white-boards so that when a sear
her visits a node, it �nds on the whiteboard enough informationfor
omputing the next step of the sear
h strategy that it should perform. Sin
e the intruder
an
orrupt the whiteboards, withdrawals from previously visited nodes must be s
heduled sothat to make sure that no information will be lost. Note here that, albeit the sear
h strategyeventually
omputed by the sear
hers is monotone (in the sense that the
ontents of all thewhiteboards des
ribe a monotone sear
h strategy when the proto
ol
ompletes), failing sear
hstrategies investigated before (a

ording to the lexi
ographi
 order on the states of the virtualsta
k) lead to withdrawals, and therefore to re
ontamination. If all strategies with k sear
hershave failed, then the sear
hers terminate at the homebase,
all a new sear
her, and restartsear
hing the network with k + 1 sear
hers.The additional sear
her used by dist sear
h,
ompared to m
s(G;u0), is used for avoidingdeadlo
ks su
h as the one des
ribed in [16℄. It is also used to s
hedule the moves of the othersear
hers and to transmit information between the sear
hers. It
ould be repla
ed by simple
ommuni
ation fa
ilities. For instan
e, if the sear
hers would have the ability to send to andread from a mailbox available at the homebase, this additional sear
her
ould be avoided. Inparti
ular, in the Internet, ea
h sear
her would just have to keep in its memory the IP addressof the homebase.The proof of
orre
tness of Proto
ol dist sear
h is twofold. First, we prove the
orre
tnessof an algorithm, denoted by A, that uses a
entralized sta
k for traversing the
on�gurationdigraph Ck. The se
ond part of the proof
onsists in proving a one-to-one
orresponden
ebetween every exe
ution of dist sear
h using a virtual (i.e., de
entralized) sta
k, and everyexe
ution of A using a
entralized sta
k.3 Sear
h strategy using a
entralized sta
kIn this se
tion, we des
ribe the algorithmA enabling a team of sear
hers laun
hed in an unknownnetwork to
apture an intruder hidden in this network. Algorithm A is not fully distributedbe
ause it uses a
entralized sta
k whose top is a

essible from every node by every sear
hers.3.1 Algorithm AAlgorithm A uses the notion of extended moves, that are triples (ai; aj ; p) where ai and ajdenote sear
hers, and p is a port number.De�nition 1 An extended move (ai; aj ; p)
orresponds to the following: (1) sear
her ai joinssear
her aj, and (2) the sear
her with the smallest ID among ai and aj leaves the node nowo

upied by the two sear
hers via port p. (Note that i = j is allowed, in whi
h
ase ai leaves thenode it o

upies by port p). 8

The
entral sta
k stores extended moves and thus des
ribes a sequen
e of operations per-formed by the sear
hers. More pre
isely, reading the sta
k bottom-up de�nes a sequen
e ofoperations that des
ribes a partial exe
ution of a sear
h strategy.De�nition 2 For a �x parameter k � 1, a state of the virtual sta
k is valid if there existsa monotone
onne
ted sear
h strategy using at most k sear
hers whose partial exe
ution isdes
ribed by this state.By some abuse of terminology, we sometime say that a sta
k Q is valid, meaning that the
urrent state S of the sta
k Q is valid. Given a valid state S of a sta
k Q, we denote by XSthe
on�guration indu
ed by S, that is XS is the set of
lear edges after the exe
ution of theextended moves in S.The prin
iple of Algorithm A is the same as the one des
ribed in Se
tion 2.3. That is, ittries, for ea
h k = 1; 2; : : :, every possible monotone
onne
ted sear
h strategy using k sear
hers,until one rea
hes a situation in whi
h either the whole network is
lear, or all sear
h strategieshave been exhausted. In the latter
ase, Algorithm A pro
eeds with k + 1 sear
hers by
allingfor a new sear
her at the homebase u0. From now on, we assume that k is �xed. The k sear
hersare denoted by a1; : : : ; ak, where the ID of ai is simply its index i. Algorithm A is des
ribedin Figure 1. We detail its stru
ture. Algorithm A returns a boolean possible. If possible istrue then
learing the network with k sear
hers is possible, in whi
h
ase the sta
k Q returnedby Algorithm A is valid, and
ontains a monotone
onne
ted sear
h strategy
learing G with ksear
hers.In Algorithm A, the sta
k Q is initially empty, and only a1 is pla
ed at u0. the othersear
hers a2; : : : ; ak are available. In addition to the
entralized sta
k Q, Algorithm A usesa global variable state that takes two possible values
lear or ba
ktra
k whose meaningwill appear
lear later on. Finally, Algorithm A uses a boolean variable de
ided that is falseuntil either a monotone
onne
ted sear
h strategy using k sear
hers
learing the network isdis
overed, or all possible monotone
onne
ted sear
h strategies using k sear
hers have been
onsidered. Hen
e the main while-loop of Algorithm A is based on the value of de
ided (
f.Figure 1). This main while-loop mainly
ontains two blo
ks of instru
tions. These blo
ks areexe
uted depending on the value of state (
lear or ba
ktra
k).The algorithm enters one of these two blo
ks unless all sear
hers are available, in whi
h
ase a sear
h strategy has been found. Initially, a1 is pla
ed at u0 and is thus not available.Case
lear
orresponds to a situation in whi
h Algorithm A has just
leared an edge, i.e., thelast exe
ution of the main while-loop has resulted in pushing some extended move in Q. Caseba
ktra
k
orresponds to a situation when the last exe
ution of main while-loop has resultedin popping the sta
k Q, i.e., in re
ontaminating an edge.Let us fo
us on the
ase state =
lear. Algorithm A fo
uses on spe
i�
 extended moves,only those that do not imply re
ontamination (this is be
auseA eventually
omputes a monotonestrategy). More formally, let us
onsider a valid state S of the sta
k Q, i.e., S is a sequen
e ofextended moves denoted by M1j : : : jMr. Pushing an extended move M in Q results in a newstate, denoted by SjM . We say that a extended move M is valid a

ording to Q if S0 = SjM isa valid state. Note that A does not maintain the set X of
lear edges and the set of availablesear
hers. Indeed, given a valid state S of the sta
k Q, one
an easily
onstru
t XS by exe
utingthe partial sear
h strategy des
ribed by S. A sear
her is then available if either it stands at anode not in Æ(XS) or it stands at a node o

upied by another sear
her, of lower index. Thereis therefore a simple
hara
terization of a valid extended move M a

ording to a valid state Sof Q:� If S = ;, then M is valid a

ording to Q if and only if either u0 is a 1-degree node andM = (a1; a1; 1), or k > 1 and M = (a2; a1; 1).9

� If S 6= ;, M = (ai; aj ; p) is valid a

ording to Q if and only if either i = j, ai stands at anode u 2 Æ(XS), and p is the only
ontaminated port of node u, or i 6= j, ai is available,aj stands at a node u 2 Æ(XS), and p is a
ontaminated port of node u.The �rst instru
tion of the
ase state =
lear
onsists in
he
king whether there exists avalid extended move a

ording to Q. The key issue is to
hoose whi
h extended move to apply,among all possible valid extended moves. For this
hoi
e, the extended moves are ordered inlexi
ographi
 order.De�nition 3 Let M = (ai; aj ; p) and M 0 = (ai0 ; aj0 ; p0) be two extended moves. We de�neM �M 0 if and only if either (i < i0), or (i = i0, and j < j0), or (i = i0, j = j0, and p < p0).If there is an extended move that is valid a

ording to Q then Algorithm A
hooses theone that has minimum lexi
ographi
 order among all extended moves that are valid a

ordingto Q. If there is no extended moves that are valid a

ording to Q, then A swit
hes to thestate ba
ktra
k. For this purpose, the last move in Q is popped out, and stored in theglobal variable Mlast. If fa
t, if Q = ;, then ba
ktra
king is not possible, and A de
ides that ksear
hers are not suÆ
ient to
lear the network.Let us now fo
us on the
ase state = ba
ktra
k. A
onsiders the move Mlast. If there isan extend move M � Mlast that is valid a

ording to the sta
k, then A performs the smallestsu
h move by pushing M in the sta
k, and going ba
k to state
lear. Otherwise A
arries onba
ktra
king by popping out the last extended move from the sta
k.3.2 Proof of
orre
tness of Algorithm ALemma 1 After any exe
ution of the while-loop in Algorithm A, the state of the sta
k is valid.Proof. Initially, the sta
k is empty,
orresponding to the strategy in whi
h a1 is o

upyingnode u0, and hen
e is valid. Assume that the state of Q before exe
uting the while-loop isvalid, and
onsider the state of Q after the loop. Independently from whether state =
learor state = ba
ktra
k, there are two
ases depending on a push or a pop is performed. Theresult of the push is a valid state be
ause only extended moves that are valid a

ording to Qare pushed in Q. The result of the pop is also valid state sin
e it
orresponds to the partialsear
h strategy des
ribed by Q before the loop, in whi
h the last extended move is removed.The next lemma requires to order the states of the sta
k, the same way, we ordered extendedmoves.De�nition 4 Given two states of the sta
k Q, S =M1j � � � jMr and S0 =M 01j � � � jM 0r0 , we de�neS � S0 if and only if there exists i � minfr; r0g su
h that Mi �M 0i and, for any j < i, Mj =M 0j.The order on the sta
ks de�ned above is a total order. Sin
e the extended move pushed in thesta
k in the
ase
lear of Algorithm A is the minimum extended move a

ording to the
urrentstate of the sta
k, we get that the sequen
e of sta
ks
onstru
ted by Algorithm A respe
ts thistotal order. Pre
isely, we have:Lemma 2 All valid states
onstru
ted by Algorithm A are
ompatible with the total order ofDe�nition 4, in the sense that if r is the �rst exe
ution of the while loop at whi
h some state Sappears, then all valid states S0 � S appeared before, and no valid state S00 � S appeared before.We say that a valid sequen
e of extended moves is
omplete if the
orresponding sear
hstrategy
lears the whole network. The following is a dire
t
onsequen
e of Lemma 210

| The Algorithm A |Input: k � 1 sear
hers a1; a2; � � � ; ak and a node u0 of a graph G:a1 is pla
ed at u0; a2; � � � ; ak are available.Output: a boolean possible, and a sta
k Q of extended moves.beginQ ;;state
lear;de
ided false;while not de
ided doif all sear
hers are available thende
ided true;possible true;else/*
ase state =
lear */if state =
lear thenif there exists a valid extended move a

ording to Q then(ai; aj ; p) minimum valid extended move a

ording to Q;push(ai; aj ; p);elseif Q 6= ; thenMlast pop();state ba
ktra
k;elsede
ided true;possible false;endifendif/*
ase state = ba
ktra
k */elseLet Mlast = (ai; aj ; p);if there exists a valid extended move a

ording to Q larger than (ai; aj ; p) then(a0i; a0j ; p0) minimum valid extended move a

ording to Q, and larger than (ai; aj ; p);push(a0i; a0j ; p0);state
lear;elseif Q 6= ; then Mlast pop();elsede
ided true;possible false;endifendifendifendifendwhilereturn(possible;Q);end. Figure 1: The Algorithm A
11

Lemma 3 Let S = M1j : : : jMr be a sequen
e of extended moves
orresponding to a partialexe
ution of a sear
h strategy using at most k sear
hers. Either there exists a
omplete sequen
eS0 of extended moves with S0 � S, or Algorithm A eventually
omputes state S of the sta
k.Lemma 4 If m
s(G;u0) > k then Algorithm A returns (false; ;) for k.Proof. Let S be the maximum valid sequen
e of extended moves a

ording to the orderof De�nition 4. Sin
e the graph
annot be
leared using k sear
hers, starting from u0, weget that, for any valid sequen
e S0 � S, S0 is not
omplete. By Lemma 3, Algorithm Aeventually
omputes the state S of the sta
k. After that, the algorithm always remains in the
ase ba
ktra
k and it su

essively pops all extended moves out of the sta
k. Thus, we rea
hthe situation where Q = ; and there is no more valid extended move. Thus, Algorithm Areturns (false; ;).Lemma 5 Assume m
s(G;u0) = k. Let S be the smallest
omplete sequen
e of valid extendedmoves
orresponding to a monotone
onne
ted sear
h strategy starting from u0. Algorithm Areturns (true;Q) for k, where Q is in state S.Proof. By Lemma 3, sin
e S is the smallest
omplete sequen
e of valid extended moves,Algorithm A
omputes S. At this step of Algorithm A, all nodes of the graph are
lean. Thus,all the sear
hers are available, and therefore Algorithm A returns (true;Q).As a dire
t
onsequen
e of the previous lemmas, we get:Theorem 2 Algorithm A
ompletes for k = m
s(G;u0), and then the sta
k Q des
ribes amonotone
onne
ted sear
h strategy starting at u0 and using k sear
hers.4 Fully Distributed Sear
h StrategyIn this se
tion, we des
ribe the main features of proto
ol dist sear
h. In this des
ription, weassume that sear
hers are able to
ommuni
ate by ex
hanging messages of size O(log k) bitswhere k is the number of sear
hers
urrently involved in the sear
h. With this fa
ility, wewill show that dist sear
h
aptures the intruder with m
s(G;u0) sear
hers. Using an addi-tional sear
her for implementing the
ommuni
ations between the m
s(G;u0) other sear
hers,dist sear
h
aptures the intruder with m
s(G;u0) + 1 sear
hers. Assuming that the sear
hers
an
ommuni
ate by ex
hanging messages is only for the purpose of simplifying the presentation.The fa
t that an additionnal sear
her
an implement the
ommuni
ations between sear
hers willappear
lear while des
ribing the proto
ol dist sear
h. The main reasons for whi
h this
anbe done is that �nding its way in the
lear part of the network is easy thanks to the informationstored on the whiteboards. The sender of a message is always the sear
her that has performedthe last a
tion, and an a
tion is always the result of a re
eption of a message.Moreover, for the sake of simpli
ity, we assume that two sear
hers on the same node
an"see" ea
h other and ex
hange their states. This is not a restri
tive assumption sin
e this
anbe implemented with the whiteboards, but it would unne
essarily
ompli
ate the presentation.First, we des
ribe the data stru
ture used by dist sear
h.4.1 Data Stru
ture of dist sear
hEvery sear
her has a lo
al state variable that
an take k + 2 di�erent values where k is the
urrent number of sear
hers. These k + 2 states are:
lear, ba
ktra
k, and (help; j), forj = 1; : : : ; k. Initially, all sear
hers are in state
lear. During the exe
ution of the proto
ol,we have: 12

� a sear
her is in state
lear if it has just
leared an edge;� a sear
her is in state ba
ktra
k if it has just ba
ktra
ked through an edge that it haspreviously
leared;� a sear
her is in state (help; j) if it is aiming at joining sear
her j to help him
learingthe network (i.e., one of the two sear
hers will guard a node, while the other will
lear anedge in
ident to this node).The messages that sear
hers
an ex
hange are of four types: start, move, help and sorry.� start is an initialization message, that is only used to start Proto
ol dist sear
h (onlysear
her a1 re
eives this message, at the very beginning of the proto
ole exe
ution).� If a sear
her i re
eives a message (move; j) from sear
her aj , then it is the turn of sear
herai to pro
eed. (As it should appear
lear later, the sear
hers s
hedule themselves so thatexa
tly one sear
her performs an a
tion at a time).� If a sear
her ai re
eives a message (help; j) from sear
her aj, then aj is
urrently justarriving at the same node as ai to help ai. (Note that ai and aj
ould use the whiteboardto
ommuni
ate, and this type of messages is just used for a purpose of uni�
ation withthe other message types).� If a sear
her ai had re
eived a message (move; j) or (help; j) from sear
her aj and, afterhaving possibly performed several a
tions, it turns out that these a
tions are useless, thenai sends a message (sorry; i) ba
k to sear
her aj .The whiteboard of every node
ontains a lo
al sta
k, and two ve
tors dire
tion[℄ and
leared port[℄. The proto
ol insures that, after the node has been visited by a sear
her,dire
tion[0℄ indi
ates the port number to take for rea
hing the homebase, and, for i > 0,dire
tion[i℄ is the port number of the edge that sear
her ai has used to leave the
urrent nodethe last time it was at this node. At node v, for any 1 � p � deg(v),
leared port[p℄ = 1 if andonly if the edge
orresponding to the port number p is
lear, otherwise
leared port[p℄ = 0.When a sear
her at a node v de
ides to perform any a
tion, it saves a tra
e of this a
tion inthe lo
al sta
k of the node. A tra
e is a triple (X; a; x) where X is a symbol, a is a sear
her'sID, and x is either a port number, or a sear
her's ID, depending on symbol X. More pre
isely:� (CC; i; p) means that p is the only
ontaminated (C) port, and sear
her ai de
ided to
lear(C) the edge that
orresponds to p;� (CJ; i; p) means that some sear
her joined (J) ai at this node, and ai de
ided to
lear (C)the edge that
orresponds to p;� (JJ; i; j) means that sear
her ai de
ided to join (J) sear
her aj;� (RT; i; j) means that sear
her ai re
eived (R) a message from sear
her aj ;� (ST; i; j) means that sear
her ai de
ided to send (S) a message to sear
her aj ;� (AC; i; p) means that sear
her ai arrived (A) at v by port p after
learing (C) the
orre-sponding edge;� (AH; i; p) means that sear
her ai arrived (A) at v by port p in order to join another (H)sear
her. 13

Program of sear
her i at node v.begin/* Sear
her i re
eives a message */Case:message = startde
ide();message = (move; j)push(RT; i; j);de
ide();message = (help; j)push(RT; i; j);p smallest
ontaminated port;
lear edge(CJ; i; p)message = (sorry; j)ba
k();

/* Sear
her i arrives at node v by port p */Case:state =
learif no other sear
her is at v thenerase whiteboard;dire
tion[0℄ p;
leared port[p℄ 1;push(AC; i; p);if i 6= 1 thenpush(ST; i; 1);send message (move; i) to 1;else de
ide();state = (help; j)push(AH; i; p);join(j);state = ba
ktra
kba
k();endFigure 2: Skeleton of Proto
ol dist sear
h4.2 The algorithm dist sear
hThe proto
ol dist sear
h organizes the movements of the sear
hers, and the messages ex-
hanged between them, in a spe
i�
 order. Based on a lexi
ographi
 order of the sear
hers'a
tions, dist sear
h orders them to always exe
ute the smallest a
tion that
an be performed.As for Algorithm A, the prin
iple of dist sear
h is to try every possible monotone
onne
tedsear
h strategy using k sear
hers, until either the whole graph is
lear, or no sear
her
an movewithout implying re
ontamination. In the latter
ase, the sear
her that made the last moveba
ktra
ks, and dist sear
h tries the next a
tion a

ording to the lexi
ographi
 order on thea
tions.The termination of dist sear
h is insured as follows. The graph is
leared at time t if andonly if all sear
hers are o

upying
lear nodes at this time, i.e., nodes whose all in
ident edgesare
lear. This
on�guration is identi�ed by the sear
hers be
ause sear
her a1 tries to helpall the other sear
hers, from a2 to ak, but none of them need help. Conversely, the sear
hersidentify that k sear
hers are not suÆ
ient to
lear the graph when they are all o

upying thehomebase, and try to pop the lo
al sta
k that is empty. In this
ase, a1
alls for a new sear
her,and the k + 1 sear
hers are ready to try again
apturing the intruder from the homebase.A skeleton of the proto
ol dist sear
h is given in Figures 2-4. More pre
isely, Figure 2des
ribe the global behavior of a sear
hers, using subroutines des
ribed in Figures 3-4. Asear
her rea
ts to either the re
eption of a message (
f. left part of Figure 2), or to its arrivalat a node (
f. right part of Figure 2). The message type start is uniquely for the purposeof the initialization: initially, sear
her a1 re
eives a message start (and hen
e
alls pro
edurede
ide()).We now examine the overall des
ription od dist sear
h as it appears on Figure 2.If sear
her ai re
eives a message (move; j), then, by de�nition of su
h a message, it simplymeans that it is the turn of ai to pro
eed. Therefore, ai writes on the whiteboard of the nodewhere it is
urrently standing that it re
eived a message from sear
her aj giving it turn topro
eed. For this purpose, ai pushes (RT; i; j) in the lo
al sta
k. The nature of the next a
tionsof ai depends on the result of pro
edure de
ide(). Before des
ribing this latter pro
edure, let us14

list all other
ases depending on the message re
eived by ai. If ai re
eives a message (help; j)then it means that aj has just arrived at the same node as ai to help him. Thus, ai pushes(RT; i; j) in the lo
al sta
k, and
lears the edge with the smallest port number p among all
ontaminated edges in
ident to the node where ai is standing. This a
tion is performed by
alling pro
edure
lear edge(CJ; i; p). Finally, if ai re
eives a message (sorry; j), then it meansthat ai had sent a message (move; i) or a message (help; i) to aj but aj
ould not do anything,or all a
tions aj attempted lead to ba
ktra
king. Therefore, ai
alls pro
edure ba
k() to �gureout whi
h sear
her it
an help next.The a
tion of sear
her ai arriving at some node v by port p depends on its lo
al state.In state (help; j), ai aims at joining aj to help him
learing the network. Hen
e ai pushes(AH; i; p) in the lo
al sta
k to indi
ate that it arrived here by port p in order to join anothersear
her, and then
alls pro
edure join() to �gure out what to do next in order to join aj.In state ba
ktra
k, ai simply
alls pro
edure ba
k() to
arry on its ba
ktra
king. The
asewhere ai arrives at a node v in state
lear is more evolved. If there is no other sear
her atv then ai erases the whiteboard sin
e it was a

essible to the intruder, and thus its
ontent ismeaningless (when a sear
hers erases a whiteboard, it resets all lo
al variables to 0, and the lo
alsta
k to ;). Then ai sets dire
tion[0℄ to p to indi
ate that it arrived here via port p, and sets
leared port[p℄ to 1 to indi
ate that the edge of port p is
lear. It then pushes (AC; i; p) in thelo
al sta
k at v to indi
ate that indeed ai arrived at v by port p after
learing the
orrespondingedge. At this point, the behavior of ai depends on whether i = 1 or not. While a1 simply
allsde
ide() to �gure out what to do next, ai, for i > 1, proposes to a1 to pro
eed next. For thispurpose, ai sends a message (move; i) to a1. Of
ourse, to keep tra
e of this a
tion, ai pushes(ST; i; 1) in the lo
al sta
k.Remark. Before entering into the details of the pro
edures mentioned above, note that thea
tions are ordered. For instan
e, if several in
ident edges
an be
leared then the
leared oneis with the smallest port number. Similarly, after
learing an edge, ai proposes to the smallestsear
her a1 to pro
eed next. As we will see in the details of the pro
edures de
ide() and ba
k(),proto
ol dist sear
h always tries to perform the smallest a
tion. This is in parti
ular the roleof pro
edure next sear
her(i) des
ribed on the right hand side of Figure 3.We now des
ribe the pro
edures of Figures 3-4. Unless spe
i�ed otherwise, sear
her ai isthe one exe
uting the pro
edure.Pro
edure next sear
her()Pro
edure next sear
her() aims at determining whi
h sear
her aj pro
eeds next. In the
asewhere ai is the sear
her with smallest index o

upying the node, j = i+1. Otherwise, i.e., ai isnot the sear
her with smallest index o

upying the node, j is the smallest index > i su
h thataj is not o

upying the same node as ai. On
e j is found, ai o�ers to aj to pro
eed next, bysending it a message (move; i). As always, a tra
e of this a
tion is kept at the
urrent node bypushing (ST; i; j) in the lo
al sta
k. If there is no aj with j > i not o

upying the same nodeas ai, then ai
alls ba
k() for the purpose of ba
ktra
king.The pro
edures
lear edge() andmove() des
ribed in the left side of Figure 3 exe
ute
learingan edge, and traversing an edge, respe
tively. (Of
ourse,
learing an edge requires traversingit).Pro
edure
lear edge():The sear
her ai exe
uting Pro
edure
lear edge(X; i; p) �rst pushes the tra
e (X; i; p) on thelo
al sta
k, sets
leared port[p℄ to 1 for spe
ifying that the edge of port p is
lear, resets its15

lear edge(a
tion X, ID i, port p)/* X 2 fCC;CJg */beginpush(X; i; p);
leared port[p℄ 1;state
lear;move(p; i);endmove(port number p, ID i)begindire
tion[i℄ p;leave the
urrent vertex by port number p;end
next sear
her(sear
her ID i)beginj i+ 1;if i is not the smallest sear
her at node v thenwhile (j is at node v) and (j � k) doj j + 1;if j � k thenpush(ST; i; j);send (move; i) to j;elseba
k()endFigure 3: Pro
edures
lear edge, next sear
her and move.lo
al state to
lear, and �nally leaves the node through port p to
lear the
orresponding edge.Pro
edure move():The sear
her ai exe
uting Pro
edure move(p; i) simply leaves the
urrent node via port p. Butbefore doing so, it sets dire
tion[i℄ = p to spe
ify that, in order to rea
h ai from that node,one should take port p.We now des
ribe pro
edures de
ide(), ba
k(), and join() detailed in Figure 4.Pro
edure de
ide()Pro
edure de
ide() is
alled at a node when the
on
erned sear
her ai aims at de
iding whatsear
h a
tion it has to perform. Let v be the node where sear
her ai applies de
ide().If node v is
lear, or at least another sear
her a`, ` < i, stands at v, then ai is not requiredto guard node v. Thus ai tries to help another sear
her. A

ording to the order mentionedabove, ai tries to help the sear
her with the smallest ID. Hen
e, ai applies join(2) if i = 1, andjoin(1) otherwise. (The internal boolean variable terminated of a1 is set to true if i = 1; re
allthat this variable is used to insure termination of Proto
ol dist sear
h).If there is a single
ontaminated edge in
ident to v, then sear
her ai
lears it by applyingpro
edure
lear edge.Otherwise (i.e., ai is the sear
her with smallest ID
urrently standing at vertex v, and v hasmore than one in
ident
ontaminated edge), ai
annot move sin
e the proto
ol insures that itis the sear
her with smallest ID at a node that preserves it from re
ontamination. Therefore, ifi = k (i.e., all sear
hers have tried to progress, but none of them
an) then sear
her ai appliesba
k() in order to ba
ktra
k. On the other hand, if i < k then ai applies next sear
her(i) tolet another sear
her the
han
e to progress.Pro
edure ba
k()Pro
edure ba
k() is
alled for the purpose of ba
ktra
king, yielding re
ontamination in some
ases. Let v be a vertex where sear
her ai applies Pro
edure ba
k(). Sear
her ai �rst updates itsstate to ba
ktra
k, and pops the top of the lo
al sta
k, stored in the lo
al variable msg. The16

ba
k()beginstate ba
ktra
k;msg pop();
ase:msg = (RT; i; j)send (sorry; i) to j;msg = (JJ; i; j)if (i = k and j = i� 1) then ba
k();else if (i 6= k and j = k) thennext sear
her(i);elseif j + 1 6= i then ` j + 1;else ` j + 2;push(JJ; i; `);join(`);msg = (CC; i; p)
leared port[p℄ 0;if i = k then ba
k()else next sear
her(i);msg = (CJ; i; p)
leared port[p℄ 0;if 9q the smallest
ontaminated portwith q > p then
lean edge(CJ; i; q);elsemsg2 pop();if msg2 = (AH; i; p) then move(p; i);else msg2 = (RT; i; j) thensend (sorry; i) to j;msg = (AC; i; p)
leared port[p℄ 0;move(p; i);msg = (AH; i; p)move(p; i);msg = (ST; i; j)ba
k();msg = ;k k + 1;initialisation(k);end

de
ide()beginif node v is
learor there is another sear
her ` < i at v thenif i = 1 thenj 2;terminated true;else j 1;push(JJ; i; j);join(j);else if 9 unique
ontaminated port p then
lear edge(CC; i; p);else if i 6= k thennext sear
her(i);else ba
k();endjoin(j)beginstate (help; j);if j is present at v thenif v is
lean thenif i = 1 and terminated and j = kthen "The graph is
lear";else ba
k();elseif i = 1 then terminated false;Let q be the smallest
ontaminated port;if j < i thenpush(ST; i; j);send (help; i) to j;else
lear edge(CJ; i; q);elsep dire
tion[j℄;if p = 0 do p dire
tion[0℄;move(p; i);endFigure 4: Pro
edures ba
k, de
ide, and join, exe
uted by sear
her ai.behaviour of ai then depends on msg, and leads to eight
ases. These eight
ases
orrespondto the as many di�erent types of tra
es let at the top of the sta
k.� Case msg = (RT; i; j): it means that sear
her aj had sent a message to ai to let him a
han
e to progress. Sin
e ai applies ba
k(), it means that ai a
tually
annot do anythingnow (note however that ai might have done something before, and later ba
ktra
ked).Thus, ai sends message (sorry; i) to aj in order to de
line, and to let aj the possibility todo something else.� Case msg = (JJ; i; j): it means that, at some previous step of the strategy, sear
her ai,17

standing at vertex v, had de
ided to help sear
her aj . Sin
e ai applies ba
k(), it meansthat its attempt to help sear
her aj did not su

eded. Several situations must then be
onsidered:If there is another sear
her that ai has not tried to help yet (i.e., j < k and i 6= k, or,i = k and j < k � 1), then ai tries to help among those the sear
her that has smallest ID(denoted by a`), by applying join(`).Otherwise, if i = k (i.e., all sear
hers have tried to progress, but none of them
ould) thensear
her ai applies ba
k() again in order to ba
ktra
k again. But if i < k then sear
her aiapplies next sear
her(i) to let another sear
her the
han
e to progress.� Case msg = (CC; i; p): it means that ai is the sear
her with smallest ID at vertex v, andv has a single in
ident
ontaminated edge, with port p. Sin
e ai applies ba
k(), it meansthat ai just ba
ktra
ked from
learing this edge, letting it be re
ontaminated. Hen
e, ai
annot do anything else. Thus, either i = k (i.e., all sear
hers have tried to progress, butnone of them
ould) and then sear
her ai applies ba
k() again in order to ba
ktra
k again,or, i < k and then sear
her ai applies next sear
her(i) to let another sear
her the
han
eto progress.� Case msg = (CJ; i; p): it means that ai just ba
ktra
ked from
learing the edge
orre-sponding to port number p, letting it be re
ontaminated. Moreover, this
learing involvedanother sear
her aj (with j > i). Two
ases are then possible depending on whethersear
her ai had
ome at v to help sear
her aj or the other way around. The former
aseis
alled Case 1, and the latter Case 2.If there is an edge that ai has not try to
lear yet (i.e., a
ontaminated edge with portnumber q > p), then sear
her ai applies Pro
edure
lear edge(CJ; i; q) to
lear this edge(CJ indi
ates that su
h a move is possible be
ause of the presen
e of another sear
her atv).Otherwise, p is the largest port number asso
iated to a
ontaminated edge. Therefore, inCase 1, sear
her ai had tried to help aj (resp., in Case 2, aj had tried to help ai) withoutsu

ess. In both
ases, ai has to ba
ktra
k again, and thus, it pops the top of the lo
alsta
k in a lo
al variable
alled msg2. If msg2 = (AH; i; q), then we are in Case 1, andthus sear
her ai goes ba
k through the edge from whi
h it had
ome (i.e., the edge withport number q). If msg2 6= (AH; i; q), then the only possible
ase is msg2 = (RT; i; j),whi
h
orresponds to Case 2. That is, sear
her aj had
ome at v to help sear
her ai, and,sin
e i < j, sear
her aj had sent the message (help; j) to ai (
f. Pro
edure join()). Inthis latter
ase, sear
her ai informs sear
her aj that its help has been unsu

essfull, bysending message (sorry; i) to aj .� Case msg = (AC; i; p): it means that sear
her ai had
ome to this vertex by the edge withport number p, after
learing this edge. Sin
e sear
her ai is applying ba
k(), ai ba
ktra
ks,i.e., goes ba
k through the same edge letting this edge be re
ontaminated.� Case msg = (AH; i; p): it means that sear
her ai had
ome to this vertex by the edgewith port number p, in order to help a sear
her (i.e., this edge was already
lear). Sin
esear
her ai is applying ba
k(), ai ba
ktra
ks its move by going ba
k through the sameedge it
ame from.� Case msg = (ST; i; j): it means that sear
her ai had send a message to sear
her aj , andthat aj just had sent to ai the message (sorry; j), meaning that aj
ould not do anythingmore. Thus, ai applies ba
k() in order to ba
ktra
k again.18

� Case msg = ;: it means that all a
tions that sear
hers might have done before havebeen ba
ktra
ked. Note that only sear
her a1
an be in su
h a situation. Sin
e it is instate ba
ktra
k, it means that all strategies using k sear
hers have been tried withoutsu

ess. Thus, the proto
ol
arries on with one more sear
her.Pro
edure join()Let v be a vertex where sear
her ai applies join(j). Applying this pro
edure means that sear
herai has de
ided to help sear
her aj . First, ai updates its state to (help; j).If aj is standing at v then the behaviour of sear
her ai depends on whether v is
lear or not.If v is
lear, i = 1, terminated is true, and j = k, then sear
her a1 has tried to help all thesear
hers but none of them need its help. Thus, the whole graph is
lear. Else, but still underthe assumption that v is
lear, sear
her ai ba
ktra
ks its attempt of helping aj by applyingba
k(), sin
e aj does not need any help. The last sub
ase is when aj is standing at a node vthat is not
lear. In this
ase, the sear
her of smallest ID between ai and aj has to
lear the
ontaminated edge with smallest port number (say q) in
ident to v. If i < j, then sear
herai applies
lear edge(CJ; i; q) to
lear the edge (CJ meaning that this
leaning
an be donethanks to the presen
e of another sear
her). If i > j, then sear
her ai sends (help; i) to aj , inorder to let sear
her aj know that it
an
lear some edge thanks to the presen
e of ai.If aj is not standing at v, then ai tries to join sear
her aj by following it (if aj has alreadyvisited node v), or by returning to the homebase. Pre
isely, ai uses indi
ations on whiteboards.Re
all that if aj was at a node, the whiteboard
ontains in dire
tion[j℄ the port numberthrough whi
h aj left that node. Agent ai returns to the homebase using dire
tion[0℄ until itpasses through a node where dire
tion[j℄ is set, in whi
h
ase ai starts following this dire
tionto eventually �nd aj .5 Proof of Corre
tness of dist sear
hAt any step of dist sear
h, there is only one operation performed, on only one of the sta
ksdistributed over all nodes of the network. Indeed, only the sear
her who has just re
eiveda message
an perform an a
tion, and, in parti
ular, modify a sta
k. Thus we
an de�nea
entralized virtual sta
k, Qvirtual, where we push or pop all the moves performed by thesear
hers, at the same time they are pushed or popped in and out of the distributed sta
ks.Pre
isely, a move is a pair (ai ! aj; p), to be interpreted as follows.� If i 6= j, then (ai ! aj ; p) means that ai leaves its
urrent node by port p with theobje
tive of joining aj;� The move (ai ! ai; p) means that ai leaves its
urrent node by port p,
learing the
orresponding edge.An extended move
orresponds to a sequen
e of moves. From the interpretation above, theextended move (ai; ai; p) is equivalent to the move (ai ! ai; p), and if i 6= j then the extendedmove (ai; aj ; p) is equivalent to the sequen
e of moves(ai ! aj; p1); (ai ! aj; p2); : : : ; (ai ! aj ; p`); (minfai; ajg ! minfai; ajg; p)where p1; : : : ; p` is a sequen
e of port numbers
orresponding to a path (in the
leared part ofthe graph) between the node o

upied by ai and the node o

upied by aj when the extendedmove (ai; aj ; p) is
onsidered. 19

Qvirtual is updated in the following way. At every exe
ution of the Pro
edure move(), wepush or pop a move in Qvirtual as follows. If ai applies move(p; i) during the exe
ution ofPro
edure
lear edge(X; i; p), then the move (ai ! ai; p) is pushed in Qvirtual. If ai appliesmove(p; i) during the exe
ution of Pro
edure join(j), then the move (ai ! aj ; p) is pushedin Qvirtual, where p is the port number set during the exe
ution of join(), before the
all ofpro
edure move(). Finally, if a sear
her applies move(p; i) during the exe
ution of Pro
edureba
k(), then Qvirtual is popped.With this de�nition of Qvirtual, we show that the sta
k Q of the
entralized algorithm A,and the virtual sta
k Qvirtual are equivalent in the following way. Let Q = M1j � � � jMr be avalid sequen
e of extended moves (possibly empty). We de�ne the following notions:� Qvirtual is strongly equivalent to Q if, for any 1 � j � r, there exists a sequen
e Sj ofmoves that is equivalent to Mj , su
h that Qvirtual = S1j � � � jSr.� Qvirtual is weakly equivalent to Q if, for any 1 � j � r, there exists a sequen
e Sj ofmoves that is equivalent to Mj , su
h that Qvirtual = S1j � � � jSrjSr+1 where Sr+1 = (ai !ai0 ; p1); (ai ! ai0 ; p2); : : : ; (ai ! ai0 ; p`) where p1; � � � ; p` is a sequen
e of port numbers
orresponding to a path between a sear
her ai and a sear
her ai0 , in the
leared part ofthe graph (in the
on�guration asso
iated to Q in state M1j � � � jMr).It is easy to
he
k that two strongly equivalent sta
ks
orrespond to exa
tly the same strategy(i.e., at the end of both strategies, the set of
leared edges, and the positions of the sear
hersare the same). If Q and Qvirtual are only weakly equivalent, then the strategy asso
iated toQvirtual
onsists in performing the strategy asso
iated to Q and then to move some sear
herto the node o

upied by some other sear
her (in the
leared part of the graph, and withoutre
ontamination). We will see later why this weaker version of equivalen
e is important in ourproof.The two sta
ks Qvirtual and Q are said equivalent if they are either strongly equivalent orweakly equivalent.The proof of dist sear
h pro
eeds by
onsidering the algorithm step by step, where a stepis a stage of the exe
ution where an edge is either
leared or re
ontaminated. That is, a step ofdist sear
h denotes a step of its exe
ution when a move of type (ai ! ai; p) is pushed in orpopped out Qvirtual.Formally, we prove that, for any t � 0, the virtual sta
k Qvirtual after step t of dist sear
his equivalent to the sta
k Q
onstru
ted by A. In other words, we prove that, at any step t � 0,both algorithms
onstru
t the same partial strategy. That is, at any step, the
leared subgraphand the positions of the sear
hers that guard the border of this
leared subgraph are the samefor both strategies. Simultaneously, we prove that for any step, when an extended move ispopped out in A, all the tra
es of the equivalent sequen
e of moves in dist sear
h are removedfrom the distributed whiteboardsOur proof is by indu
tion on the number t of steps. We assume that the
entralized sta
kQ and the virtual sta
k Qvirtual are equivalent up to step t, and we
onsider the next step forproving that they are again equivalent. The diÆ
ulty of the proof is due to the number ofdi�erent
ases to
onsider. There are a
tually exa
tly fourteen
ases to
onsider, grouped intwo groups:� Group A: Q and Qvirtual just
leared an edge e. One
ase
orresponds to the graph beingentirely
lear. Otherwise there are three
ases: (1) a sear
her
an
lear a new edge edge,or (2) a sear
her
an join another sear
her and one of them
an
lear a new edge, or (3)no other edge
an be
leared and the
learing of e has to be
an
eled. These
ases have20

to be
ombined with three other
ases depending on the way e has been
leared. ThusGroup A yields seven
ases in total.� Group B: Q and Qvirtual just
an
elled the
learing of an edge. Then, either another edgee
an be
leared, or no other edge
an be
leared (and the last
leared edge, say e0, has tobe
an
eled). In the former
ase, there are three sub
ases depending on the type of movethat has been popped out the sta
k (
an
eling
orresponding to popping out the sta
k).In the latter
ase, there are four sub
ases depending on the way e0 had been
leared. ThusGroup B yields seven other
ases.The proof
onsists in a
areful analysis of ea
h of these fourteen
ases. Before analysingthese
ases, we �rst prove that the sta
ks
omputed at the �rst step of both algorithms areequivalent. Initially, both Q and Qvirtual are empty. In dist sear
h, a1 exe
utes the de
idefun
tion.� If deg(u0) = 1, then Algorithm dist sear
h pushes (CC; 1; 1) and (AC; 1; p) on the dis-tributed whiteboards, while (a1 ! a1; 1) is pushed in Qvirtual. During the �rst exe
utionof the while loop in Algorithm A, sin
e deg(u0) = 1, we get Q = ((a1; a1; 1)). Moreover,in both
ases, the
leared subgraph is one edge (u0; w) in
ident to u0 with a1 at node w,and all the others at node u0.� If deg(u0) > 1 and k = 1, then both algorithms state that another sear
her is needed.The two sta
ks remain empty and only u0 is
lear.� If deg(u0) > 1 and k > 1, then Algorithm dist sear
h pushes (ST; 1; 2), (RT; 2; 1),(JJ; 2; 1), (ST; 2; 1), (RT; 1; 2), (CC; 1; 1) and (AC; 1; p) on the distributed whiteboards,while (a1 ! a1; 1) is pushed in Qvirtual. Algorithm A pushes (a2; a1; 1) in Q. Thus, bothsta
ks are strongly equivalent. Indeed, a2 and a1 were already at the same node (thehomebase) and thus there is no move asso
iated to the fa
t that a2 joins a1. Then, inboth sta
ks, a1
lears the edge with port number 1 at u0.Let us assume that after step t of both algorithms, the two sta
ks Q and Qvirtual areequivalent. We prove, for the fourteen
ases previously enumerated, that after the next stept+1 of both algorithms, the sear
h strategy will remain the same for both algorithms, i.e., bothsta
ks remain equivalent, and the same
on�gurations are a
hieved by both algorithms. Thenext two subse
tions
onsider separately the
ases in group A and in group B.5.1 Group AGroup A assumes that Q and Qvirtual have been rea
hed by
learing an edge. Let S and Svirtualbe the states of Q and Qvirtual at this step of both algorithms. Sin
e, Q and Qvirtual has beenrea
hed by
learing an edge, they are strongly equivalent. Thus, there exist a sequen
e S0 ofvalid extended moves, and a sequen
e S0virtual of moves, with S0 and S0virtual strongly equivalent,and there exist an extended move M , and a sequen
e M 0 of moves, with M 0 equivalent to M ,su
h that S = S0jM and Svirtual = S0virtualjM 0.We �rst prove that the next step of the exe
ution of Algorithm dist sear
h starts with a1applying Pro
edure de
ide(). Let 1 � j � k be the ID of the sear
her that has just
leared thelast
ontaminated edge. Sear
her aj arrived at a node in state
lear. Either j = 1, and ajapplied Pro
edure de
ide(), or aj sent (move; j) to a1, who re
eived (move; j) from j. In both
ases, a1 applies Pro
edure de
ide().Now, we
onsider the sub
ases of Group A.21

5.1.1 Case A.1In Case A.1, the whole graph is assumed to be
leared. In this
ase, by Lemma 5, AlgorithmA terminates. Let us prove it is also the
ase for Algorithm dist sear
h. Sear
her a1 appliesPro
edure de
ide(). Sin
e the graph is
lear, the vertex v1 where a1 stands, is
lear. Thus, a1pushes (JJ; 1; 2) and applies Pro
edure join(2) after having set terminated to true. ApplyingPro
edure join(), a1
omputes a port number p1 that is either dire
tion[2℄ if a2 has alreadybeen at vertex v1, and dire
tion[0℄ otherwise (re
all that dire
tion[0℄ is the dire
tion of thehomebase). The former
ase is identi�ed by the fa
t that dire
tion[2℄ 6= 0. We push (1! 2; p1)in Qvirtual. Then, a1 takes the edge
orresponding to port p1 at v1, and arrives at a new nodev2 by port q1, in state (help; 2). At v2, sear
her a1 writes (AH; 1; q1) on the whiteboard, andapplies again the join() pro
edure. This is repeated until a1 eventually joins a2, at a node vt.Let P = v1; v2; : : : ; vt be the path followed by a1 from v1 until it rea
hes a2 at vt. Let pi (resp.,qi) be the port number of the edge fvi; vi+1g at vi (resp., vi+1). At every node vi, i � 2, sear
hera1 writes (AH; 1; qi�1) during the exe
ution of join(). In Qvirtual, we push (a1 ! a2; pi) fori = 1; : : : ; t� 1. Sin
e vt is
lear, sear
her a2 does not need help, and thus a1 applies Pro
edureba
k(). Therefore, it pops (AH; 1; qt�1) from the whiteboard of vt, and returns to vt�1. At everynode vi, for i = t � 1; : : : ; 2, sear
her a1 arrives in state ba
ktra
k, and thus pops the lo
alsta
k, that
ontains (AH; 1; qi�1). As a result, it goes to vi�1 using port qi�1. Simultaneously,we pop (a1 ! a2; pi) that we had previously pushed in Qvirtual. Eventually, a1 is ba
k at v1 isstate ba
ktra
k. At v1, sear
her a1 applies Pro
edure ba
k(), and thus pops (JJ; 1; 2) fromthe lo
al sta
k. This pro
edure asks a1 to try helping every possible sear
her ai, for 3 � i � k.For this purpose, a1 su

essively applies Pro
edure join(i) for i = 3; : : : ; k. Sin
e the wholegraph is
lear, no sear
her needs help, and therefore the same situation as for a2 o

urs fori = 3; : : : ; k� 1, i.e., a1 joins ai, and goes ba
k to v1 sin
e ai does not need help. The sequen
eof pushes and pops is the same for ai as for a2. When a1 eventually rea
hs ak, the state variableterminated of a1 is still equal to true, and thus Algorithm dist sear
h terminates. The virtualsta
k satis�es Qvirtual = Svirtualj(a1 ! ak; r1)j � � � j(a1 ! ak; r`) where r1; : : : ; r` is the sequen
eof port numbers from v1 to the node where a1 meets ak. The sta
k Q is again in state S be
auseno extended moves have been pushed in it. Sin
e, by the indu
tion hypothesis, both sta
ks Qand Qvirtual were equivalent before these sequen
e of moves, the new state S of sta
k Q, andthe new state Svirtualj(a1 ! ak; p1)j � � � j(a1 ! ak; p`) of sta
k Qvirtual, are weakly equivalent.5.1.2 Case A.2Case A.2 assumes that a valid extended move
an be performed in the
urrent
on�guration ofthe sear
h strategy. In this
ase, Algorithm A pushes in Q the smallest valid extended move M(thus, the state of Q be
omes SjM). Let us prove it is also the
ase for Algorithm dist sear
h,independentely from the type of M . We prove that there exists a sequen
e M 0 of moves that isequivalent to M , and su
h that, after the next step, the state of Qvirtual be
omes SvirtualjM 0.� Case A.2.1: M is of type (ai; ai; p).We
onsider only the
ase i > 1, as the
ase i = 1 easily follows. For any 1 � j < i, ajis guarding some node vj that has more than one in
ident
ontaminated edge, and aj isthe sear
her with the smallest ID at vj . Moreover, the node vi where sear
her ai standshas only one in
ident
ontaminated edge. Let p be the port number
orresponding tothis unique
ontaminated edge. In Algorithm dist sear
h, a1 applies de
ide(). Applyingthis pro
edure, sear
her a1 writes (ST; 1; 2) and sends (move; 1) to a2. For any 2 �j � i, sear
her aj re
eives (move; j � 1) from aj�1 and writes (RT; j; j � 1). ApplyingPro
edure de
ide(), sear
her aj writes (ST; j; j + 1) and sends (move; j) to aj+1. When22

ai re
eives the message (move; i � 1) from ai�1, it applies de
ide() that
alls Pro
edure
lear edge(CC; i; p). Thus, ai writes (CC; i; p) on the whiteboard of vi and takes the edge
orresponding to port p of vi,
learing this edge. Then, sear
her ai arrives at a new nodev. Finally, ai writes (AC; i; q) and (ST; i; 1) on the whiteboard of v. We push the move(ai ! ai; p) in Qvirtual. Thus, the state of Qvirtual be
omes Svirtualj(ai ! ai; p) whi
h isstrongly equivalent to the state Sj(ai; ai; p) of Q.� Case A.2.2: M is of type (a1; aj ; p) with j > 1.In this
ase, sear
her aj is the sear
her with the smallest ID, that stands at a
ontaminatedvertex, say vj . In parti
ular, sear
her a1 stands at a
lear vertex, say v1, and is aiming athelping sear
her aj . a1 applies Pro
edure de
ide(). Sin
e the vertex v1 is
lear, a1 pushes(JJ; 1; 2) and applies Pro
edure join(2) after having set terminate to true. Similarily tothe Case A.1, this pro
edure asks a1 to try helping every possible sear
her ai, for 3 � i � j.For any i = 3; : : : ; j�1, sin
e sear
her ai does not need help, sear
her a1 applies Pro
edureba
k() after having rea
hed ai. Then a1 goes ba
k to v1 and applies join(i+1) (
f., CaseA.1). When a1 eventually rea
hs aj at vj , the state variable terminated of a1 is set tofalse. The virtual sta
k satis�es Qvirtual = Svirtualj(a1 ! aj; r1)j � � � j(a1 ! aj ; r`) wherer1; : : : ; r` is the sequen
e of port numbers from v1 to the node where a1 meets aj. Let p bethe smallest port number of a
ontaminated edge in
ident to vj. Then, sear
her a1 appliesPro
edure
lear edge(CJ; 1; p), that is, it writes (CJ; 1; p) and
lears the
orrespondingedge. The move (a1 ! a1; p) is pushed in Qvirtual. Thus, the smallest valid extendedmove is performed in both algorithms. Moreover, after this step, the state of Qvirtual isSvirtualj(a1 ! aj; r1)j � � � j(a1 ! aj ; r`)j(a1 ! a1; p), whi
h is strongly equivalent to thestate Sj(a1; aj ; p) of Q.� Case A.2.3: M is of type (ai; a1; p) with i > 1.In this
ase, for any ` < i, sear
her a` is alone at a vertex v` with more than one
on-taminated in
ident edge. Moreover, sear
her ai stands at vi, a
lear vertex or a vertexo

upied by a sear
her a`, with ` < i. In the distributed algorithm dist sear
h, a1applies Pro
edure de
ide(). Applying this pro
edure, sear
her a1 writes (ST; 1; 2) andsends (move; 1) to a2. For any 2 � j � i, sear
her aj re
eives (move; j � 1) from aj�1 andwrites (RT; j; j � 1). Applying Pro
edure de
ide(), sear
her aj writes (ST; j; j + 1) andsends (move; j) to aj+1. When ai re
eives the message (move; i � 1) from ai�1, it appliesde
ide() that
alls Pro
edure join(1). This pro
edure is
alled until ai eventually joinsa1. Let P = w1; w2; : : : ; wr be the path followed by ai from w1 = vi until wr = v1. Let pj(resp., qj) be the port number of the edge fwj ; wj+1g at wj (resp., wj+1). At every nodewj , j � 2, sear
her ai writes (AH; i; qj�1) during the exe
ution of join(). In Qvirtual, wepush (ai ! a1; pj) for j = 1; : : : ; r � 1. At wr, sear
her ai writes (ST; i; 1) and sends themessage (help; i) to sear
her a1. Then, a1 writes (RT; 1; i) and (CJ; 1; p), and
lears the
orresponding edge. The move (a1 ! a1; p) is pushed in Qvirtual. Thus, the smallest validextended move is performed in both algorithms. Moreover, after this step, the state ofQvirtual is Svirtualj(ai ! a1; p1)j � � � j(ai ! a1; pr)j(a1 ! a1; p), whi
h is strongly equivalentto the state Sj(ai; a1; p) of Q.5.1.3 Case A.3Case A.3 assumes that there does not exist any valid extended move a

ording to the
urrentstate of the sta
k Q. Therefore, AlgorithmA pops the last exe
uted extended moveM from S =S0jM . Let us prove that Algorithm dist sear
h does the same. Let us assume that ai, i � 1,23

has
leared the last edge e = (v; w) by taking the port p of v. Re
all that Svirtual = S0virtualjM 0with M 0 a sequen
e of moves equivalent to M . There are three
ases to be
onsidered:� Case A.3.1: M = (ai; ai; p). In this
ase, M 0 is the 1-element sequen
e (ai ! ai; p).� Case A.3.2: There exists s, i < s � k, su
h that M = (ai; as; p). In this
ase, sear
herai leaves a node, say vi to join sear
her as at node v. Then sear
her ai
lears the edge
orresponding to the port p of v. Let P = w1; w2; : : : ; wr be the path followed by ai fromw1 = vi until wr = v. Let pj (resp., qj) be the port number of the edge fwj ; wj+1g at wj(resp., wj+1). By the indu
tion hypothesis, M 0 = (ai ! as; p1)j � � � j(ai ! as; pr)j(ai !ai; p)� Case A.3.3: There exists s, i < s � k, su
h that M = (as; ai; p). In this
ase, sear
heras leaves a node, say vs to join sear
her ai at node v. Then sear
her ai
lears the edge
orresponding to the port p of v. Let P = w1; w2; : : : ; wr be the path followed by as fromw1 = vs until wr = v. Let pj (resp., qj) be the port number of the edge fwj ; wj+1g at wj(resp., wj+1). By the indu
tion hypothesis, M 0 = (as ! ai; p1)j � � � j(as ! ai; pr)j(ai !ai; p)Sear
her ai has arrived at the node w by port number, say q, and ai has pushed (AC; i; q).If i > 1, ai has also pushed (ST; i; 1) and sent (move; i) to a1, who has pushed (RT; 1; i) at its
urrent vertex. Then, sear
her a1 applied Pro
edure de
ide(). Sin
e there does not exist anyvalid extended move, it means that, for any 1 � j � k, sear
her aj is at a vertex vj whi
h hasmore than one in
ident
ontaminated edge, and for any 1 � j < ` � k, vj 6= v`. For any j < k,aj writes (ST; j; j + 1) and sends (move; j) to aj+1 by applying Pro
edure next sear
her(j)in Pro
edure de
ide(). Then sear
her aj+1 pushes (RT; j + 1; j) at its
urrent vertex beforeapplying Pro
edure de
ide() too. When ak re
eives the message (move; k � 1) from ak�1, itapplies Pro
edure de
ide() that
alls Pro
edure ba
k(). Then, ak pops (RT; k; k� 1) and sends(sorry; k) to sear
her ak�1. For any j > 1, aj re
eives (sorry; j +1) from aj+1. Then sear
heraj applies Pro
edure ba
k() that pops (ST; j; j+1), then pops (RT; j; j�1), and sends (sorry; j)to aj�1. When a1 re
eives (sorry; 2), a1 applies Pro
edure ba
k() that pops (ST; 1; 2), thenpops (RT; 1; i), and sends (sorry; 1) to ai. By applying Pro
edure ba
k(), ai pops (ST; i; 1),then (AC; i; q). Finally, ai puts
leared port[q℄ to false and goes ba
k to v (letting the edgee be re
ontaminated). Sear
her ai arrives in state ba
ktra
k by port number p. THus, themove (ai ! ai; p) is popped from Qvirtual. Then ai puts
leared port[p℄ to false. Thus, theedge e is known to have been re
ontaminated and ai has returned to his previous position.Thus, both algorithms have ba
ktra
ked the
learing of the last
leared edge. Note that in thethree sub
ases, we only popped the move (ai ! ai; p). Thus, the new state of Qvirtual dependson the
ase:� Case A.3.1: S0virtual� Case A.3.2: S0virtualj(ai ! as; p1)j � � � j(ai ! as; p`)� Case A.3.3: S0virtualj(as ! ai; p1)j � � � j(as ! ai; p`)Therefore, S0virtual is equivalent to the state S0 of Q (strongly equivalent in
ase A.3.1, andweakly equivalent in the two other
ases).5.2 Group BCases in Group B assumes that Q and Qvirtual have been a
hieved by ba
ktra
king the
learingof an edge. LetM be the extended move popped by AlgorithmA during the previous step. Let S24

and Svirtual be the states of Q and Qvirtual at this step in the two algorithms respe
tively. Thus,there exist i � 1, a vertex v, a port p of v
orresponding to an edge e, su
h that sear
her ai hasjust arrived in state ba
ktra
k, at vertex v, by port p, letting the edge e be re
ontaminated.Thus, in these
ases, the next step of the exe
ution of Algorithm dist sear
h starts with aiapplying Pro
edure ba
k().5.2.1 Case B.1Case B.1 assumes that there exists a valid extended move larger thanM . In this
ase, AlgorithmA pushes the smallest valid extended move M 0 �M in Q. In the following, M 0
an be of threedi�erent types de�ned bellow. Let us prove that Algorithm dist sear
h exe
utes a sequen
eof moves equivalent to M 0. There are three
ases depending on the type of the extended moveM .� Case B.1.1: M = (ai; ai; p). This
ase o

urs after the removal operation as in
ase A:3:1.Thus S and Svirtual are a
tually strongly equivalent. In this
ase, there exist i < j � ` � kand 0 � q � n su
h that the extended move M 0 = (aj ; a`; q) is larger thanM . That is, j isthe smallest ID larger than i su
h that aj
an perform a valid extended move. By applyingPro
edure ba
k(), ai pops (CC; i; p) at v. Thus, ai
alls pro
edure next sear
her(i), thenpushes (ST; i; i + 1) at v, and sends (move; i) to ai+1. In the same way as for Case A.2,the message (move; j � 1) is re
eived by aj whi
h
an perform a valid extended move. Asin Case A.2 again, sear
her aj performs this move and we push in Qvirtual a sequen
e ofmoves equivalent to M 0. Thus, both sta
ks remains strongly equivalent.� Case B.1.2: M = (ai; aj ; p) with i < j.This
ase o

urs after the removal operation as in
ase A:3:2. Thus S and Svirtual areweakly equivalent. More pre
isely, there exit a state S0virtual that is strongly equivalentto S, and a sequen
e (p1; : : : ; pt�1) of port numbers, su
h that Svirtual = S0virtualj(ai !aj ; p1)j � � � j(ai ! aj ; pt�1). Let vi (resp., vj) be the vertex where sear
her ai (resp.,aj) stands in the
on�guration asso
iated to S0virtual. Note that vj = v. The sequen
e(p1; : : : ; pt�1) is exa
tly the sequen
e of port numbers that sear
her ai has followed alonga path from vi to vj . Let P = w1; � � � ; wt be this path, with w1 = vi and wt = vj. Morepre
isely, the
on�guration asso
iated to Svirtual is got from the
on�guration asso
iatedto S0virtual (whi
h is also the
on�guration asso
iated to S) by moving sear
her ai alongthe path from vi to vj by following the sequen
e (p1; : : : ; pt�1) of port numbers. Let qbe the port number of vj
orresponding to the edge fwt�1; vjg. Re
all that, when it hadjoined aj at vj, sear
her ai had written (AH; i; q). Then, sin
e i < j, ai had written(CJ; i; p) and had
leared the edge.To prove that both sta
ks remain equivalent, we
onsider the type of the extended moveM 0. There are three
ases:{ Case B.1.2.a: there is a port number r of vj , larger than p su
h that the
orrespondingedge is
ontaminated. In this
ase, M 0 = (ai; aj ; r).{ Case B.1.2.b: there is a sear
her with ID ` � k, larger than j, at vertex v`, and aport number r of v` su
h that the
orresponding edge is
ontaminated. In this
ase,M 0 = (ai; a`; r).{ Case B.1.2.
: there is a sear
her with ID ` � k, larger than i, at vertex v`, that
an preform a valid extended move. That is, there exist ` < u � k and r su
h thatM 0 = (a`; au; r). 25

Note that the extended move in Case B.1.2.a is smaller than the extended move in CaseB.1.2.b that is smaller than the extended move in Case B.1.2.
.Now, let us
onsider what is the exe
ution of Proto
ol dist sear
h after having ba
k-tra
ked the
learing of e. By applying Pro
edure ba
k(), ai pops (CJ; i; p). Then, Algo-rithm dist sear
h �rst
he
ks whether there exists a port number r > p of a
ontaminatededge in
ident to vj. Let us assume that su
h a port number exists. This
orresponds tothe Case B.1.2.a:{ Algorithm A pushes M 0 = (ai; aj ; r) in Q. Sear
her ai pushes (CJ; i; r) at vj and
lear the
orresponding edge, arriving at a new node by port, say o. Sear
her aipushes (AC; i; o) and (ST; i; 1) at the new node, and then send message (move; i) toa1. We push (ai ! ai; r) in Qvirtual. Thus, the state of Q is SjM 01 and the stateof Qvirtual is S0virtualj(ai ! aj ; p1)j � � � j(ai ! aj ; pt�1)j(ai ! ai; r). Therefore, bothsta
ks are strongly equivalent.Now, let us assume that there does not exist a port number of vj , larger than p,
orre-sponding to a
ontaminated edge. In this
ase, ai applies Pro
edure ba
k(). Therefore,it pops (AH; i; q) from the whiteboard of wt = vj, and returns to wt�1. At every nodewf , for f = t� 1; : : : ; 2, sear
her ai arrives in state ba
ktra
k, and thus pops the lo
alsta
k, that
ontains (AH; i; qf) where qf is the port number leading to wf�1. As a result,it goes to wf�1 using port qf�1. Simultaneously, we pop (ai ! aj; pf) that we had previ-ously pushed in Qvirtual. Eventually, ai is ba
k at vi in state ba
ktra
k. At this stageof the exe
ution of dist sear
h, the
urrent state of Qvirtual is S0virtual that is stronglyequivalent to S. Then, by applying Pro
edure ba
k(), ai pops (JJ; i; j). Then, Algorithmdist sear
h
he
ks whether sear
her ai
an help a sear
her with ID larger than j. Byapplying Pro
edure ba
k(), ai pushes (JJ; i; j + 1) and applies Pro
edure join(j + 1).Similarily to the Case A.1, this pro
edure asks ai to try helping every possible sear
herat, for j + 1 � t � k. Let us assume that there is a sear
her with ID ` � k, larger than j,at vertex v`, and a port number r of v` su
h that the
orresponding edge is
ontaminated.This
orresponds to the Case B.1.2.b:{ Algorithm A pushesM 0 = (ai; a`; r) in Q. For any f = j+1; : : : ; `�1, sin
e sear
heraf does not need help, sear
her ai applies Pro
edure ba
k() after having rea
hed af .Then ai goes ba
k to vi and applies join(f +1) (
f., Case A.1). When ai eventuallyrea
hs a` at v`, the virtual sta
k satis�es Qvirtual = Svirtualj(ai ! a`; p1)j � � � j(ai !a`; pt) where p1; : : : ; pt is the sequen
e of port numbers from vi to v`. Then, sear
herai applies Pro
edure
lear edge(CJ; i; r), that is, it writes (CJ; i; r) and
lears the
orresponding edge. The move (ai ! ai; r) is pushed in Qvirtual. Thus, the smallestvalid extended move is performed in both algorithms. Moreover, after this step,the state of Qvirtual is Svirtualj(ai ! a`; p1)j � � � j(ai ! a`; pt)j(ai ! ai; r), whi
h isstrongly equivalent to the state Sj(ai; a`; r) of Q.Now, we
onsider the
ase where there is no ` > j su
h that sear
her a` stands at a vertexv` in
ident to a
ontaminated edge. Thus, ai rea
hs ba
k vi after having tried to help allsear
hers a`, for j < ` � k (by iteratively applying Pro
edure join() as in the previous
ase). At this stage of the exe
ution dist sear
h, the
urrent state of Qvirtual is S0virtualthat is strongly equivalent to S (the
urrent state of Q). When ai rea
hs ba
k vi, it pops(JJ; i; k). Thus, Pro
edure ba
k()
alls Pro
edure next sear
her(i). Therefore, ai pushes(ST; i; i + 1) and sends (move; i) to sear
her ai+1. Let us assume that there is a sear
her26

with ID ` � k, larger than i, at vertex v`, that
an preform a valid extended move. This
orresponds to the Case B.1.2.
:{ In this
ase, there exist ` � u � k and r � n su
h that Algorithm A pushesM 0 = (a`; au; r) in Q. As for the
ase A:2:3, for any i � f � `, sear
her af re
eives(move; f � 1) from af�1 and writes (RT; f; f � 1). Applying Pro
edure de
ide(),sear
her af writes (ST; f; f + 1) and sends (move; f) to af+1. When a` re
eives themessage (move; ` � 1) from a`�1, it applies the de
ide() pro
edure. Then the movem0 is performed as for the
ase A.2. Thus, both sta
ks be
ome strongly equivalent.� Case B.1.3: M = (aj; ai; p) with i < j.This
ase o

urs after the removal operation as in
ase A:3:3. Thus S and Svirtual areweakly equivalent. More pre
isely, there exit a state S0virtual that is strongly equivalentto S, and a sequen
e (p1; : : : ; pt�1) of port numbers, su
h that Svirtual = S0virtualj(aj !ai; p1)j � � � j(aj ! ai; pt�1). Let vi (resp., vj) be the vertex where sear
her ai (resp.,aj) stands in the
on�guration asso
iated to S0virtual. Note that vi = v. The sequen
e(p1; : : : ; pt�1) is exa
tly the sequen
e of port numbers that sear
her aj has followed along apath from vj to vi. Let w1; � � � ; wt be this path, with w1 = vj and wt = vi. More pre
isely,the
on�guration asso
iated to Svirtual is got from the
on�guration asso
iated to S0virtual(whi
h is also the
on�guration asso
iated to S) by moving sear
her aj along the pathfrom vj to vi by following the sequen
e (p1; : : : ; pt�1) of port numbers. Let q be the portnumber of vi
orresponding to the edge fwt�1; vig. Re
all that, when it had joined ai atvi, sear
her aj had written (AH; j; q). Then, sin
e i < j, aj had pushed (ST; j; i) at viand sent (help; j) to sear
her ai. Then, sear
her ai has pushed (RT; i; j) and (CJ; i; p) atvi, and had
leared the edge.To prove that both sta
ks remain equivalent, we
onsider the type of the extended moveM 0. There are three
ases:{ Case B.1.3.a: there is a port number r of vi, larger than p su
h that the
orrespondingedge is
ontaminated. In this
ase, M 0 = (aj ; ai; r).{ Case B.1.3.b: there is a sear
her with ID ` � k, larger than i, at vertex v`, and aport number r of v` su
h that the
orresponding edge is
ontaminated. In this
ase,M 0 = (aj ; a`; r).{ Case B.1.3.
: there is a sear
her with ID ` � k, larger than j, at vertex v`, that
an preform a valid extended move. That is, there exist ` < u � k and r su
h thatM 0 = (a`; au; r).Note that the extended move in Case B.1.3.a is smaller than the extended move in CaseB.1.3.b that is smaller than the extended move in Case B.1.3.
.Now, let us
onsider what is the exe
ution of Proto
ol dist sear
h after having ba
k-tra
ked the
learing of e. By applying Pro
edure ba
k(), ai pops (CJ; i; p). Then, Algo-rithm dist sear
h �rst
he
ks whether there exists a port number r > p of a
ontaminatededge in
ident to vj. Let us assume that su
h a port number exists. This
orresponds tothe Case B.1.3.a.{ As for the
ase B.1.2..a, sear
her ai
lears the edge
orresponding to the port numberr and both sta
ks remain strongly equivalent.If there does not exist a port number of vj, larger than p,
orresponding to a
ontaminatededge, ai applies Pro
edure ba
k(). Sear
her ai pops (CJ; i; p), then (RT; i; j), and sends27

(sorry; i) to sear
her aj. Then, sear
her aj applies Pro
edure ba
k(). Therefore, it pops(ST; j; i) and (AH; i; q) from the whiteboard of wt = vi, and returns to wt�1. At everynode wf , for f = t� 1; : : : ; 2, sear
her aj arrives in state ba
ktra
k, and thus pops thelo
al sta
k, that
ontains (AH; j; qf) where qf is the port number of wf leading to wf�1.As a result, it goes to wf�1 using port qf�1. Simultaneously, we pop (aj ! ai; pf) thatwe had previously pushed in Qvirtual. Eventually, aj is ba
k at vj in state ba
ktra
k.At this stage of the exe
ution of dist sear
h, the
urrent state of Qvirtual is S0virtual thatis strongly equivalent to S. Then, by applying Pro
edure ba
k(), aj pops (JJ; j; i). Then,Algorithm dist sear
h
he
ks whether sear
her aj
an help a sear
her with ID largerthan i. Then, Case B.1.3.b is similar to Case B.1.2.b, and Case B.1.3.
 is similar to CaseB.1.2.
. Thus, both sta
ks be
ome strongly equivalent.5.2.2 Case B.2Case B.2 assumes that there does not exist a valid extended move greater than M . In this
ase, either S = ; or there is a valid move M 0 and a sequen
e of valid extended moves S0 su
hthat S = S0jM 0. In the former
ase, Algorithm A
laims that another sear
her is required. Inthe latter
ase, Algorithm A pops M 0 from Q. Let us prove it is also the
ase for Algorithmdist sear
h. There are four
ases a

ording to whether S = ; or not, and depending on thetype of M 0.� Case B.2.1 If S = ;, there are two
ases. Either k = 1 and u0 has more than onein
ident edge, or k > 1. In the former
ase, sear
her a1 applies Por
edure de
ide(), thenPro
edure ba
k() that asks for a se
ond sear
her. In the latter
ase, M must be the ex-tended move (ak; ak�1; p) where p is the greatest port number of u0. Indeed, if M is notthis extended move, then an extended move greater than M would be valid. In this
ase,sear
her ak�1 has just arrived in state ba
ktra
k, at vertex u0 by port p. Moreover,all sear
hers are standing at u0. Beside, the whiteboard of u0
ontains exa
tly the se-quen
e ((ST; 1; 2); (RT; 2; 1); � � � ; (ST; i; i+1); (RT; i+1; i); � � � ; (ST; k� 1; k); (RT; k; k �1); (JJ; k; k � 1); (ST; k; k � 1); (RT; k � 1; k); (CJ; k � 1; p)). Thus, Svirtual = ;. Thus, Qand Qvirtual are strongly equivalent. Moreover, it is easy to
he
k that Pro
edure ba
k()asks for a (k + 1)th sear
her.Let us assume that S 6= ;. Re
all that, in Case B., a sear
her ai has just arrived ba
k instate ba
ktra
k, at the vertex v, by port p, letting the edge e be re
ontaminated. Thus, inthese
ases, the next step of the exe
ution of Algorithm dist sear
h starts with the ai applyingPro
edure ba
k().Let f = (v0; w0) be the edge
leared by the move M 0. Let s � k be the ID of the sear
herthat has
leared f , arriving by port r0 of w0. Let r be the port number of v0
orresponding tof . Let us
onsider the three possible types for the move M 0:� Case B.2.2 M 0 = (as; as; r). In this
ase, there is a sequen
e of valid moves S0virtualstrongly equivalent to S0, and a sequen
e of valid moves Mvirtual equivalent to M su
hthat Svirtual = S0virtualj(as ! as; r)jMvirtual .� Case B.2.3 There exists s0 < s su
h that M 0 = (as; as0 ; r). In this
ase, there is a se-quen
e of valid moves S0virtual strongly equivalent to S0, a sequen
e of valid moves Mvirtualequivalent to M , and a sequen
e (p1; : : : ; pt�1) of port numbers, su
h that Svirtual =S0virtualj(as ! as0 ; p1)j � � � j(as ! as0 ; pt�1)j(as ! as; r)jMvirtual.� Case B.2.4 There exists s0 < s su
h that M 0 = (as0 ; as; r). In this
ase, there is a se-quen
e of valid moves S0virtual strongly equivalent to S0, a sequen
e of valid moves Mvirtual28

equivalent to M , and a sequen
e (p1; : : : ; pt�1) of port numbers, su
h that Svirtual =S0virtualj(as0 ! as; p1)j � � � j(as0 ! as; pt�1)j(as ! as; r)jMvirtual.After having
leared f , sear
her as has pushed (AH; s; r0), then (ST; s; 1), and sent (move; s)to sear
her a1. Then a1 applies de
ide(). Applying this pro
edure, sear
her a1 writes (ST; 1; 2)and sends (move; 1) to a2. For all 2 � j � i� 1, sear
her aj re
eives (move; j� 1) from aj�1 andwrites (RT; j; j � 1). Applying Pro
edure de
ide(), sear
her aj writes (ST; j; j + 1) and sends(move; j) to aj+1. When ai re
eives the message (move; i� 1) from ai�1, it pushes (RT; i; i� 1)at its
urrent vertex vi, and applies de
ide(). Let vi be the vertex where ai is standing at thisstage of the exe
ution of Proto
ol dist sear
h.Let us
onsider the type of the extended move M . Let p be the port number of v
or-responding to e. Sin
e there is no valid extended move larger than M , only three
ases arepossible:� M = (ai; ai; p) and for any i < j � k, sear
her aj stands alone at a vertex, say vj . Byba
ktra
king su
h a move, Proto
ol dist sear
h insures that Q and Qvirtual are stronglyequivalent (
f., Case A.3.1). Thus, v = vi. In this
ase, sear
her ai arrives ba
k at v instate ba
ktra
k. Applying ba
k(), ai pops (CC; i; p), pushes (ST; i; i + 1) at vi, andsends (move; i) to sear
her ai+1. For any i+ 1 � j � k, sear
her aj re
eives (move; j � 1)from aj�1 and writes (RT; j; j�1). Applying de
ide(), sear
her aj writes (ST; j; j+1) andsends (move; j) to aj+1. When ak re
eives the message (move; k�1) from ak�1, sear
her akapplies de
ide(), then ba
k(). Sear
her ak pops (ST; k; k�1) and sends (sorry; k) to ak�1.For any k > j > i, sear
her aj re
eives (sorry; j + 1) from aj+1 and pops (ST; j; j + 1).Applying ba
k(), sear
her aj pops (RT; j � 1; j) and sends (sorry; j) to aj�1. Whensear
her ai re
eives (sorry; i+ 1), it pops (ST; i; i+ 1), and then pops (RT; i; i� 1) fromthe lo
al sta
k of vi.� i < k, M = (ai; ak; p) and for any i < j � k, sear
her ak stands alone at a vertex,say vj . In this
ase, there exists a state S0virtual that is strongly equivalent to S and a se-quen
e (p1; : : : ; pt�1) of port numbers, su
h that Svirtual = S0virtualj(ai ! ak; p1)j � � � j(ai !ak; pt�1). Note that in the
on�guration asso
iated to S0virtual (resp., to Svirtual), sear
herai stands at vi (resp., v). Sear
her ak stands at v in both
on�gurations. The sequen
e(p1; : : : ; pt�1) is exa
tly the sequen
e of port numbers that sear
her ai has followed alonga path from vi to v. Let P = w1; � � � ; wt be this path, with w1 = vi and wt = v.For 2 � f � t, let qf br the port number leading of wf
orresponding to the edgefvf�1; wfg. Re
all that, ai had followed the path P to join ak. Then, sear
her a1 hadwritten (AH; i; qt). Then, sin
e i < j, ai had written (CJ; i; p) and had
leared the edge.Now, let us
onsider what is the exe
ution of Proto
ol dist sear
h after having ba
k-tra
ked M . Arriving at v, by port p, in state ba
ktra
k, ai applies Pro
edure ba
k().Therefore, it pops (AH; i; qt) from the whiteboard of v, and returns to wt�1. For f =t� 1; : : : ; 2, sear
her ai arrives in state ba
ktra
k at every node wf . Then, it pops thelo
al sta
k, that
ontains (AH; i; qf). As a result, it goes to wf�1 using port qf�1. Simul-taneously, we pop (ai ! ak; pf) that we had previously pushed in Qvirtual. Eventually,ai is ba
k at vi in state ba
ktra
k. At this stage of the exe
ution of dist sear
h, the
urrent state of Qvirtual is S0virtual that is strongly equivalent to S. Then, by applyingba
k(), ai pops (JJ; i; k), pushes (ST; i; i + 1) at vi, and sends move; i) to sear
her ai+1.For any i+1 � j � k, sear
her aj re
eives (move; j�1) from aj�1 and writes (RT; j; j�1).Applying de
ide(), sear
her aj writes (ST; j; j + 1) and sends (move; j) to aj+1. When akre
eives the message (move; k � 1) from ak�1, sear
her ak applies de
ide(), then ba
k().Sear
her ak pops (ST; k; k � 1) and sends (sorry; k) to ak�1. For any k > j > i, sear
her29

aj re
eives (sorry; j + 1) from aj+1 and pops (ST; j; j + 1). Applying ba
k(), sear
her ajpops (RT; j� 1; j) and sends (sorry; j) to aj�1. When sear
her ai re
eives (sorry; i+1),it pops (ST; i; i + 1), and then pops (RT; i; i � 1) from the lo
al sta
k of vi.� i = k and M 0 = (ai; ak�1; p). Similarily to the previous
ase, one
an prove that thereexists a round of the exe
ution of dist sear
h when ai pops (RT; i; i� 1) from the lo
alsta
k of vi.Thus, whatever be the type of M , there is a round of the exe
ution of dist sear
h whenai pops (RT; i; i � 1) from the lo
al sta
k of vi. Moreover, at this round, Q and Qvirtual arestrongly equivalent.If i = k, sear
her ak applies ba
k(). Otherwise, ai
alls next sear
her(i), pushes (ST; i; i+1)and sends (move; i) to ai+1. Then, for i < j < k, aj pushes (RT; j; j�1) and (ST; j; j+1) at its
urrent node, and sends (move; j) to aj+1. When ak re
eives message (move; k � 1), it appliesba
k(). Sear
her ak sends (sorry; k) to sear
her ak�1. Then, for k � j > i, aj pops (ST; j; j+1)and (RT; j; j� 1), and sends (sorry; j) to aj�1. Finally, ai re
eives (sorry; i+1) from sear
herai+1, and applies ba
k(). For all j, i � j > s, aj pops (ST; j; j+1) and (RT; j; j� 1), and sends(sorry; j) to aj�1. Finally, as re
eives (sorry; s + 1) from sear
her as+1 and applies ba
k().Then, sear
her as pops (AC; s; r0) from the lo
al sta
k of w0. Then, it goes ba
k to v0 in stateba
ktra
k, letting re
ontaminated the edge f . We pop (as ! as; r) from Qvirtual. Thus, inCase B.2.2 (resp., B.2.3 and B.2.4), Q and Qvirtual be
omes strongly equivalent (resp., weaklyequivalent).We have proved, that in any
ase, both sta
ks remain equivalent after a step of the exe
utionof Proto
ol dist sear
h (that is, they represent the same sear
h strategy). Moreover, bothalgorithms terminate in the same state. Thus, the proof of Theorem 1 follows dire
tly fromTheorem 2.5.3 Size of whiteboardsLemma 6 Let G be a
onne
ted n-node graph. Let m � 0 be the number of edges of G. Duringthe exe
ution of dist sear
h, starting from u0 2 V (G), at most O(m (log� + log k)) bits arestored in any node's whiteboard, where � is the maximum degree of G and k = m
s(G;u0) .Proof. First, note that during the exe
ution of Proto
ol dist sear
h, when a move is ba
k-tra
ked, all its tra
es are erased from the whiteboards. We
an only
onsider the tra
es of anextended move that has a
tually be performed. We study the
ase when a sear
her ai has tojoin another sear
her aj (j < i), and sear
her aj
lears an edge e. In this
ase, the numberof tra
es is the largest possible. Let f be the edge that has just been
leared by a sear
her,say a`. Let vi (resp., vj) be the node where ai (resp., aj) is standing after the
learing of f .After having
leared the edge f , a` sends the message move to a1. Then, for any 1 � t � i,the message move is transmitted from sear
her at to sear
her at+1 until message move rea
hs ai.By Pro
edure next sear
her(), if more than two sear
hers are on the same node, only the twosmallest of them re
eive the message. It is unne
essary to send the message to the other ones.Indeed, if the two smallest
annot do anything, the others as well. Thus, between the
learing ofthe two edges f and e, at most two tra
es of type (RT; `; s) and two tra
es of type (ST; `; s) arewritten on every whiteboard. When it re
eives move from sear
her ai�1, sear
her ai de
ides tojoin aj and pushes (JJ; i; j) at vi. By joining aj , ai writes routing tra
es. That is, ai pushes onetra
e (AH; i; j) on every whiteboard of the path between vi and vj. Finally, ai sends messagehelp to aj who
lears the edge. That is, sear
her ai pushes (ST; i; j) at vj. Then,sear
her ajpushes (RT; j; i) and (CJ; j; p) at vj. Finally aj
lears the edge e and (AC; j; q) and (ST; j; 1)30

at the other end of e. To summarize, on every whiteboard, it has been written at most threetra
es of type (RT; `; s), three of type (ST; `; s), one for ea
h of the types (JJ; i; j), (AH; i; j),(CJ; j; p) and (AC; j; q). Thus, when an extended move is performed, at most O(1) tra
es arewritten on every whiteboard. Sin
e there are m extended moves, at most O(m) tra
es of size(log� + log k) bits are written on every whiteboard.6 Con
lusionWe have des
ribed a distributed sear
h proto
ol that
aptures an intruder in any network,starting from any entry point in the network, and using a small number of sear
hers for thistask. This result opens a wide �eld of investigations. For instan
e, is it possible to a
hievethe same performan
es as proto
ol dist sear
h using sear
hers modeled by �nite automata?(In our
ase, the sear
hers have O(log k)-bit memory when k sear
hers are used). Also, is itpossible to design a distributed proto
ol that performs in polynomial time, at the pri
e of using anumber of sear
hers bounded by a polylogarithmi
 fun
tion of n times the sear
h number of thenetwork? Finally, is it possible to design a distributed proto
ol that
omputes a non-monotone
onne
ted sear
h strategy? �Referen
es[1℄ S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of �nding embeddings in ak-tree. SIAM J. Alg. Dis
. Meth. 8(2):277-284, 1987.[2℄ L. Barri�ere, P. Flo

hini, P. Fraigniaud, and N. Santoro. Capture of an intruder by mobileagents. In 14th ACM Symp. on Parallel Algorithms and Ar
hite
tures (SPAA), pages200-209, 2002.[3℄ L. Barri�ere, P. Fraigniaud, N. Santoro, and D. M. Thilikos. Sear
hing is not jumping. In29th Workshop on Graph Theoreti
 Con
epts in Computer S
ien
e (WG), Springer-Verlag,LNCS 2880, pages 34{45, 2003.[4℄ M. Bender, A. Fernandez, D. Ron, A. Sahai and S. Vadhan. The power of a pebble:Exploring and mapping dire
ted graphs. In 30th Ann. Symp. on Theory of Computing(STOC), pages 269-278, 1998.[5℄ M. Bender and D. Slonim. The power of team exploration: Two robots
an learn unlabeleddire
ted graphs. In 35th Ann. Symp. on Foundations of Computer S
ien
e (FOCS), pages75-85, 1994.[6℄ D. Biensto
k, Graph sear
hing, path-width, tree-width and related problems (a survey),DIMACS Ser. in Dis
rete Mathemati
s and Theoreti
al Computer S
ien
e, 5 (1991), pp. 33{49.[7℄ D. Biensto
k and P. Seymour. Monotoni
ity in graph sear
hing. Journal of Algorithms12:239{245, 1991.[8℄ R. Breis
h. An intuitive approa
h to speleotopology. Southwestern Cavers VI(5):72{78,1967.�Although non-monotone
onne
ted sear
h strategies may require less sear
hers than monotone ones [31℄, theyare mu
h more diÆ
ult to design, even in the
entralized setting. For instan
e, it is even unknown whether a1-
erti�
ate
he
kable in polynomial time exists for non-monotone
onne
ted graph sear
hing.31

[9℄ R. Cohen, P. Fraigniaud, D. Il
inkas, A. Korman, and D. Peleg. Label-Guided GraphExploration by a Finite Automaton. In 32nd Int. Colloquium on Automata, Languagesand Programming (ICALP), 2005.[10℄ S. Cook and C. Ra
ko�. Spa
e lower bounds for maze threadability on restri
ted ma
hines.SIAM J. on Computing 9(3):636{652, 1980.[11℄ K. Diks, P. Fraigniaud, E. Kranakis, and A. Pel
. Tree Exploration with Little Memory.In 13th Annual ACM-SIAM Symp. on Dis
rete Algorithms (SODA), pages 588-597, 2002.[12℄ S. Dobrev, P. Flo

hini, G. Pren
ipe, and N. Santoro. Mobile Sear
h for a Bla
k Hole inan Anonymous Ring. In 15th Int. Symposium on Distributed Computing (DISC), 2001.[13℄ S. Dobrev, P. Flo

hini, G. Pren
ipe, and N. Santoro. Sear
hing for a Bla
k Hole inArbitrary Networks: Optimal Mobile Agent Proto
ols. In 21st ACM Symp. on Prin
iplesof Distributed Computing (PODC), 2002.[14℄ U. Feige, M. Hajiaghayi, and J. Lee. Improved approximation algorithms for minimum-weight vertex separators. In 37th ACM Symposium on Theory of Computing (STOC),2005.[15℄ P. Flo

hini, F.L. Lu

io, and L. Song. De
ontamination of
hordal rings and tori. Pro
. of8th Workshop on Advan
es in Parallel and Distributed Computational Models (APDCM),2006.[16℄ P. Flo

hini, M. J. Huang, F.L. Lu

io. Contiguous sear
h in the hyper
ube for
apturingan intruder. Pro
. of 18th IEEE Int. Parallel and Distributed Pro
essing Symposium(IPDPS), 2005.[17℄ F. Fomin, P. Fraigniaud and N. Nisse. Nondeterministi
 Graph Sear
hing: From Pathwidthto Treewidth. In 30th International Symposium on Mathemati
al Foundations of ComputerS
ien
e (MFCS), LNCS 3618, pages 364-375, Springer, 2005.[18℄ F. V. Fomin, D. Krats
h, and I. Todin
a. Exa
t algorithms for treewidth and minimum�ll-in. In 31st Int. Colloquium on Automata, Languages and Programming (ICALP 2004),LNCS vol. 3142, Springer, pp. 568{580, 2004.[19℄ P. Fraigniaud, and D. Il
inkas. Digraphs Exploration with Little Memory. Pro
. 21stSymposium on Theoreti
al Aspe
ts of Computer S
ien
e (STACS), LNCS 2296, pages246-257, 2004.[20℄ P. Fraigniaud, D. Il
inkas, G. Peer, A. Pel
, and D. Peleg. Graph exploration by a �niteautomaton. Theoreti
al Computer S
ien
e 345(2-3): pages 331-344, 2005.[21℄ P. Fraigniaud and N. Nisse. Conne
ted Treewidth and Conne
ted Graph Sear
hing. In 7thLatin Ameri
an Theoreti
al Informati
s, LNCS 3887, pages 470-490, 2005.[22℄ L. Kirousis, C. Papadimitriou. Interval graphs and sear
hing. Dis
rete Math. 55, pages181-184, 1985.[23℄ L. Kirousis, C. Papadimitriou. Sear
hing and Pebbling. Theoreti
al Computer S
ien
e 47,pages 205-218, 1986.[24℄ A. Lapaugh. Re
ontamination does not help to sear
h a graph. Journal of the ACM40(2):224{245, 1993. 32

[25℄ F. S. Makedon and I. H. Sudborough, On minimizing width in linear layouts, Dis
reteAppl. Math., 23:243{265, 1989.[26℄ N. Megiddo, S. Hakimi, M. Garey, D. Johnson and C. Papadimitriou. The
omplexity ofsear
hing a graph. Journal of the ACM 35(1):18{44, 1988.[27℄ T. Parsons. Pursuit-evasion in a graph. Theory and Appli
ations of Graphs, Le
ture Notesin Mathemati
s, Springer-Verlag, pages 426{441, 1976.[28℄ O. Reingold. Undire
ted ST-Conne
tivity in Log-Spa
e. In 37th ACM Symp. on Theoryof Computing (STOC), 2005.[29℄ H.A. Rollik. Automaten in planaren Graphen. A
ta Informati
a 13:287-298, 1980 (also inLNCS 67, pages 266-275, 1979).[30℄ K. Skodinis Computing optimal linear layout of trees in linear time. In 8th EuropeanSymp. on Algorithms (ESA), Springer, LNCS 1879, pages 403-414, 2000. (Also, to appearin SIAM Journal on Computing).[31℄ B. Yang, D. Dyer, and B. Alspa
h. Sweeping Graphs with Large Clique Number. In15th Annual International Symposium on Algorithms and Computation (ISAAC), pages908-920, 2004.

33

