
HAL Id: hal-00341983
https://hal.science/hal-00341983

Submitted on 17 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic generation of functional programs from
CASL specifications

Agnès Arnould, Marc Aiguier, Laurent Fuchs, Thibaud Brunet

To cite this version:
Agnès Arnould, Marc Aiguier, Laurent Fuchs, Thibaud Brunet. Automatic generation of functional
programs from CASL specifications. International Conference on Software Engineering Advances
(ICSEA 2006), Oct 2006, Tahiti, French Polynesia. (elec. proc.), �10.1109/ICSEA.2006.261290�. �hal-
00341983�

https://hal.science/hal-00341983
https://hal.archives-ouvertes.fr

Automatic generation of functional programs from

CASL specifications

Agnès Arnould∗, Laurent Fuchs∗, Marc Aiguier† and Thibaud Brunet∗

∗ SIC, Université de Poitiers, SP2MI, 86962 Futuroscope, France, Email: {arnould,fuchs}@sic.univ-poitiers.fr
† LaMI, CNRS-UMR 842, Université d’Évry, 91000 Évry, France, Email: aiguier@lami.univ-poitiers.fr

Abstract—In this paper, we present a code generator trans-
forming a class of CASL specifications into O’Caml programs.
This code generator is dedicated to rapid prototyping of CASL
specifications especially in the area of geometric modeling where
algebraic formalisms have been used since the last decade.

A large class of constructive equational specifications is han-
dled by this generator while insuring the correctness of generated
O’Caml programs. In particular, CASL specifications with many
interpretation models (i.e. incomplete) are automatically supple-
mented in order to produce a program that implements one of
them. Underlying properties, such as termination, completeness
and confluence hold when equations satisfy some syntactic
criteria given in the paper.

I. INTRODUCTION

Formal methods are no longer confined to specify critical

systems (transport, energy, space). They are also intensively

used in various competitive areas such as telephony, electron-

ics trades, micro-electronics. The reason is they are equipped

with various tools (proof, test, code generation, etc.) that allow

to develop working-order software with an optimal trade-off

of cost, deadline and performance. For several years, various

authors [1], [2], [3], [4], [5], use specification formalisms to

specify systems in geometric modeling (mechanical computer-

assisted designing, cartoon movies, surgical simulators). Dif-

ferent specification case studies have been undertaken in

geometric modeling using respectively the oriented-model

language B [5] and the last-born of algebraic languages CASL

(the Common Algebraic Language Specification) [4], [6].

These different case studies have shown a better adequacy

of the language CASL to specify systems in this area. This is

due to basic mathematical structures which are manipulated

in geometric modeling (such as G-maps [7] or simploidal

sets [8]). Indeed, these mathematical structures are algebraic

structures (i.e. sets together with functions and distinguished

elements), and CASL is an algebraic language dedicated to

specification of algebraic structures. Moreover, CASL allows

to specify more abstractly systems than B but also to refine

specifications up to obtaining concrete ones. This need of

abstraction becomes essential in geometric modeling where

complexity of manipulated data and related algorithms is

always increasing to be closer to reality.

CASL is still equipped with few tools (mainly because of the

youth of the language). For prototyping CASL specifications,

two tools exist. The first tool has been obtained by connecting

to CASL the system ELAN that performs rewriting systems

associated to “concrete” specifications [9]. The problem with

this tool is it cannot be directly used in our geometric modeling

applications. In the targeted applications, the generated codes

must be interfaced with existing modelers (usually written in

C or C++), particularly with their graphic interface. Recently,

in [10] a second tool has been developed which allows to gen-

erate functional programs written in Haskell from a subclass

of CASL specifications. Interest of functional programming

languages, such as Haskell or O’Caml, comes from their

syntactical proximity to CASL and enable interfacing with

other programming languages. This second tool implements

a previous work of T. Mossakowski [11] where two sub-

languages of CASL have been defined whose specifications

satisfying a set of syntactical constraints can be directly trans-

formed into convergent rewriting systems (i.e. confluent and

terminating). Specifications written in these two sub-languages

are, roughly speaking, complete specifications manipulating

defining equations (see Section III). The drawback with the

tool developed in [10] is the subclass of CASL specifications

considered to generate Haskell programs is larger than the

two sub-languages developed in [11]. Generated programs are

then no longer insured to be correct with respect to their

specifications, and terminating. However, no condition or proof

obligation have been imposed or generated to insure such

a correctness. In this paper, we then propose to extend this

work in order to answer this drawback. Hence, we propose to

develop a code generator which transforms a subclass of CASL

specifications into O’Caml programs1. This will be achieved

both by extending the two sub-languages developed in [11]

to incomplete specifications and by automatically checking

correctness of generated programs. Incomplete specifications

are considered because in geometric modeling we are often

confronted with such specifications. For instance, the rounding

operation2 is standard and classically used in mechanical

design. However, it is naturally incomplete, and then may

produce many different rounding surfaces. The choice of one

of them is arbitrary and depends on esthetic criteria. Of course,

when dealing with incomplete specifications, many models and

then implementations are possible. To choose one of them,

unspecified cases of total operations will then be supplemented

by allocating them to any correct value (see Section IV-B.3).

The paper is structured as follows: in Section II, both syntax

1The choice of O’Caml is because applications in geometric modeling
developed in the laboratory of the two first authors of this paper are written
in O’Caml.
2This operation consists on replacing a sharp edge by a curved surface.

and semantic of the useful part of CASL is briefly presented.

Section III is devoted to detail the two constructive sub-

languages from which O’Caml programs are generated. First,

the initial proposition of CASL sub-languages defined by T.

Mossakowski [11] is presented. After, to deal with a larger

family of specifications, our extension of these languages is

detailed. Some hints on fundamentals results (termination,

completeness, and confluence) insuring correctness of gener-

ated programs are given. Rigorous proofs of these results can

be found in [12]. Finally, in Section IV, the implementation

of code generator is presented.

II. PRESENTATION OF CASL

In this Section, we briefly present the aspects of CASL

language that we use in the paper. For a complete presentation

of CASL, interested readers can refer to [13]. All concepts are

illustrated by the same didactic example from which O’Caml

code will be generated. For lack of space, we cannot give

examples of geometric modeling. However, examples of such

specifications can be found in [2], [4], [5], [6]

sorts Basic, Color
ops Red, Blue, Green : Basic;

Black : Color;
mix : Basic × Color → Color;

@ : Color × Color → Color;
basic : Color →? Basic

pred basic : Color

Fig. 1. Signature

First, a CASL specification is defined by a signature and

a set (usually finite) of well-formed formulæ, called axioms

built on this signature. Signatures consist of:

• a set of sorts which are names of data types introduced by

the keyword sort(s) . In our example, Fig. 1, we have

two sorts, Basic and Color that respectively represent

basic colors and general colors,

• a set of operation names introduced by the keyword op(s)

. In the above example we have 4 constants, Red, Blue,

Green that are basic colors and black that is a color,

2 total operations mix and @ which respectively

make possible to mix a basic color and general color

with another general color, and a partial operation basic,

denoted by →?, that returns the basic color of a color
made up of only one basic color,

• a set of predicate names introduced by the keyword

pred(s) . In our example we have a predicate basic which

holds when a color is restricted to a basic one.

Both operation and predicate names are equipped with profiles

of the form s1× . . .×sn → sn+1 for operations and s1× . . .×
sn for predicates. In CASL, multifixe symbols can be defined,

such as the operation @ , and names can be overloaded as

basic which represents both the operation and the predicate.

Mathematical meaning of signature elements are; for each

sort, a set of values, for each total (resp. partial) operation, a

total (resp. partial) mapping defined on the sets of values by

respecting operation profile, and for each predicate, a relation

defined on the Cartesian product of value sets by respecting

predicate profile.

Thus the signature of Fig. 1 has many possible models such

as the following one: Basic is a set of paint tubes containing

at least three ones respectively labeled Red, Blue and Green;

Color is the set of all the colors that one can obtain on the

pallet by mixing together tubes of paint; black is the empty

pallet before any addition of painting; mix adds an amount

of a paint tube on a pallet; @ mixes the content of two

pallets; and the operation basic removes the pallet content

when it is only composed of a basic color. Another model

of above signature is a computer screen with liquid crystals:

Basic is then the set of three kinds of screen crystals (Red,

Blue and Green); the set of values associated to the sort

Color is obtained by varying the intensity of crystals light

(mixtures are recomposed by human eye).

∀ b: Basic; c, c1, c2: Color
• Black @ c = c %(@Black)%
• mix(b, c1) @ c2 = mix(b, c1 @ c2) %(@mix)%

Fig. 2. Axioms

Axioms are first-order formulæ. They are built on signature

elements. They express the required properties of the specified

system. For example, in Fig. 2, two axioms built on the

signature of Fig. 1 are given, that recursively define @
from both operations Black and mix. In order to refer to the

axioms, names can be given (respectively @Black and @mix

in our example, see Fig. 2).

A model of a CASL specification is then a model of the

signature that satisfies all its axioms (according the standard

satisfaction relation |= in the first-order logic). In our example,
the first model of the painting pallet satisfies all the axioms.

So, the empty pallet Black is neutral for mix and the

order of application of mix and @ to compose pallets is

insignificant. Similarly, our second model also satisfies both

axioms of Fig. 2. Semantics of the specification is then “loose”

since it has, at least, these two models.
Together with axioms, generation constraints can be added
for one or many sorts with respect to some operations of
the signature. Generation constraints allow to cut down in
specification model class. All models that contain values
not corresponding to the evaluation of ground terms are
eliminated. In CASL, these constraints are introduced by the
keyword generated type. For example:

generated type Basic ::= Red | Blue | Green

we impose that values of the sort Basic are the meaning

of the three constants Red, Blue and Green. With this

supplementary constraint, any model of the pallet is no longer

a model of our specification when its number of paint tubes

exceeds three. On the opposite, the screen model is a model

that satisfies the generation constraint. Indeed, there is only

three different types of crystals. Black and white screens are

also possible models where the three constants Red, Blue and

Green are interpreted by the same kind of grey crystal.

Generation constraints can be reinforced by imposing that
sorts are freely generated by some operations. In this case,
these operations are usually called generators. In CASL, this
is introduced by the keyword free type. For example, writing

free type Basic ::= Red | Blue | Green

means that all models of the specification have a value set for

the sort Basic with exactly three values, each one being the

interpretation of the three constants Red, Blue and Green.

Hence, the value set in any model is isomorphic to the ground

terms of the sort only built from the associated generators.

CASL offers various syntactic facilities and structuring

elements. Structured specifications can be normalized to basic

specifications described above by using the Hets analysis tool.

Here, we do not detail these features as we do not take them

directly into account during the code generation, suggested

reference for interested reader is [13].

III. CONSTRUCTIVE SUB-LANGUAGE OF CASL

A. State of the art

Here, we present the two sub-languages of CASL as defined

in [11]. Both are restricted to free types, operations (predicates

are not considered) and equations. Moreover, equations are

equipped with the following particular form:

f(u1, ..., un) = t

where u1..., un are terms only built from generators and their

variables have only one occurrence, and t is a term built on

the signature such that its variables are among the variables of

u1..., un. Such equations are called defining equations. These

equations are oriented from left to right. This gives rise to

a rewriting system. Supplementary syntactical constraints are

then imposed on defining equations to obtain rewriting systems

which are complete (i.e. any term containing non-constructors

is reducible), terminating (i.e. there does not exist infinite

descending by the closure of the rewriting relation
∗

→3) and

confluent4 (i.e. term reducing by rewriting is deterministic).

The first and the second sub-language defined in [11] only

manipulate total and partial operations, respectively. Hence,

in the second sub-language, the partiality of operations means

that some values may yield nonterminating evaluations, and

then only the confluence property is checked on the associated

rewriting system. However, specifications must be under the

scope of a free extension [13], which is a structuring element

of CASL. In our context, this leads to consider that partial

operations are undefined for every value which is not specified.

Hence, any ground term with an infinite reduction or a normal

form which is not only built from generators, will be consid-

ered as undefined. The goal of T. Mossakowski in this first

work [11] was to propose sub-languages whose specifications

have a single computable model (up to isomorphism) that is

they are complete.

3that is it is a well founded relation.
4A binary relation→ included in A×A is confluent if and only if

∗

← ◦
∗

→

is included in
∗

→ ◦
∗

←, where “◦” and
∗

→ indicate, respectively, the relation
composition and the reflexive and transitive closure of →.

In the following, we extend this first work in order to

consider a larger sub-language by including incomplete spec-

ifications and predicates.

B. Data structures

As in [11], we consider only free types (i.e. sorts introduced

by free type - see Section II). Value sets are then isomorphic

to ground terms built on generators. Hence, CASL free types

exactly correspond to sum types of O’Caml.

free type
Basic ::= Red | Blue | Green ; %% Basic colors
Color ::= Black | mix(Basic; Color) %% Other colors

Fig. 3. Data type

Fig. 3 defines previous sorts Basic and Color (see Fig. 1)

as free types. For each set of generators, the (hidden) axioms

that determine free generation are imposed.

C. Total operations

In [11], both sub-languages are equipped with strong syn-

tactical constraints on equations. Then, this leads to specifica-

tions with a unique model (up to isomorphism). Here, these

syntactical constraints are weakened, especially completeness.

Consequently, a possible model in the model class of spec-

ifications must be chosen. This is done by supplementing

the specifications (see Section IV). Moreover, when both

termination and confluence fail, proof obligations will be

generated and left to specifier responsibility.

1) Termination: For total operations, the underlying

O’Caml program must necessarily be terminating to be correct.

This property is insured using a standard rewriting tech-

nique [14]: the recursive path ordering (rpo). This order

requires first a well-founded order, called precedence order

and denoted by <, on signature operations. In Section IV, we

will see how to generate this precedence order by building

a dependence graph of operations from specification under

prototyping. Hence, in addition to syntactical constraints asso-

ciated to defining equations, a supplementary one is imposed:

every defining equation f(u1..., un) = t must satisfy, for the

precedence order >, that no sub-term t′ of t is labeled with a

head operation g such that g > f . When this supplementary

condition is satisfied, we have shown in [12] that the underly-

ing rewriting system obtained by orienting from left to right

equations is terminating.
Axioms in Fig. 4 are defining equations that satisfy the
supplementary condition from the precedence ordering:

@ > mix, red > Black, red > Red, red > mix

and then, the underlying rewriting system is terminating.

When there does not exist a precedence order, >, on

signature operations, proof obligations are generated. These

proof obligations could be discharged by the user using either

the prover associated with CASL or some other specialized

tools (Cime).

ops @ : Color × Color → Color; %% Concatenation.
red : Color → Color %% Extract all reds of a color.

∀ b: Basic; c, c1, c2: Color
• c @ Black = c %(Black@)%
• Black @ c = c %(@Black)%
%% Basic cases
• mix(b, c1) @ c2 = mix(b, c1 @ c2) %(@mix)%
%% Recursive call

• red(Black) = Black %(redBlack)%
• red(mix(Red, c)) = mix(Red, red(c)) %(redRed)%
• red(mix(Blue, c)) = red(c) %(redBlue)%
• red(mix(Green, c)) = red(c) %(redGreen)%

Fig. 4. Total operations

2) Confluence: When the rewriting system associated to

defining equations is not confluent, this means that some

ground terms t have several different normal forms. If two

normal forms only built from generators exist for a ground

term, then the set of defining equations is inconsistent. In this

case, a correct program cannot be generated. In another case,

when the set of defining equations have some normal forms

with some non-generator operations f , then this means that f

is insufficiently specified.

As in [11], confluence is insured by imposing that left

members of defining equations are not pairwise unifiable(recall

that unification is computable) that is the set of critical pairs is

empty. So, by Knuth-Bendix’s lemma, the underlying rewriting

system is locally confluent and then, when it is terminating, it

is also confluent by Newman’s lemma. For example, axioms

in Fig. 4 specify operations red on four distinct sub-domains

since left members of equations are not unifiable.

When this criterion does not hold, proof obligations defined

by the set of critical pairs, are produced. For example, in Fig. 4,

both axioms Black@ and @Black are obviously redundant

since their left-members can be unified on Black@Black. The

corresponding right members (here Black and Black) have

to be checked to be interpreted by the same value (what is

obvious here).

3) Completeness: As we said previously, completeness is

not imposed. Hence, we accept specifications with non iso-

morphic models. To deal with this situation, unspecified cases

of total operations will be supplemented by allocating them

to any correct value (see Section IV-B.3). By the confluence

property, no inconsistency will be introduced.

D. Predicates

As usual, predicates are considered as total operations with

boolean values as expected results. Predicate axioms must then

be defined by equivalences (see the Fig. 5):

p(u1, ..., un) ⇔ E

where E is a boolean expression, i.e. a first-order formula

only built with logical connectives, predicates and equalities

(i.e. without quantifier). These equivalences can be easily

transformed into defining equations by translating E into a

Boolean term. Actually, predefined O’Caml Boolean functions

are directly used for this translation (see Section IV).

pred basic : Color %{Tests if thesr only one basic color.}%
∀ b, b1, b2: Basic; c: Color
• ¬ basic(Black) %(basicBlack)%
• basic(mix(b, Black)) %(basicmixBlack)%
• basic(mix(b1, mix(b2, c))) ⇔ b1 = b2 ∧ basic(mix(b2, c))

%(basicmixmix)%

Fig. 5. Predicate

E. Partial operations

In [11], a sub-language based on free extensions is defined

for partial operations. Functions are considered as undefined

for unspecified input values. This sub-language is very at-

tractive because there is very few constraints. We adapt its

principles for basic specifications. Of course, termination is

not imposed for partial operations. As previously (see Sec-

tion III-C.2), confluence is required and proof obligations are

generated when it fails. Also completeness is not imposed and

specifications are supplemented when they are incomplete.

op basic : Color →? Basic

%{Returns basic color, if it is single.}%
∀ b: Basic; c: Color
• basic(mix(b, Black)) = b %(op basic mixBlack)%
• basic(mix(b, mix(b, c))) = basic(mix(b, c)) %(opbasicmixmix)%

Fig. 6. Partial operation

Another way in CASL to deal with partial operations is to

use definition a predicate introduced by the notation def (see

Fig. 7). To be handled in our sub-language, the definition pred-

icates must be similar to other predicates (see the Section III-

D). Hence, definition axioms must have the following form:

def f(u1, ..., un) ⇔ E

where f is a partial operation, u1..., un are terms built on

generators and E is a Boolean expression.

∀ b: Basic; c: Color
• def basic(c) ⇔ basic(c) %(opbasicdef)%
%% Definition domain given by the predicate basic (Fig. 5).
• basic(mix(b, Black)) = b %(opbasicmixBlack)%
• basic(mix(b, mix(b, c))) = basic(mix(b, c)) %(opbasicmixmix)%

Fig. 7. Definition predicate

The presence of definition axioms can supplement or con-

tradict other equations. For example, according to the axiom

%(opbasicdef)% in Fig. 7, the operation basic is undefined

for mixtures containing many basic colors. This supplements

the two following equations: %(opbasicmixBlack)% and %(op-

basicmixmix)%. Indeed, the equality in CASL is strong, it holds

if both members are either defined and yield the same value,

or it is undefined. Thus, defining equations and definition

predicate specify domains of partial operations. To carry out

these additional verifications, a second rewriting system, called

rewriting system of definition, is built. The definition axioms

are directed from left to right and the rule def f(u1..., un) →
def t is associated to every defining equation f(u1..., un) = t.

In this rewriting system, the term def t is reduced to

true or false if t is defined or not defined in all models

of the specification. Otherwise, def t is unspecified. Thus,

the rewriting system produced from the equations must be

supplemented in a coherent way with the rewriting system of

definition. So, if a term t has a unspecified value, it must be

computed (in the generated program) by any value if def t

is reduced to true and computed as undefined otherwise. As

previously, the confluence property of the definition system

is forced and it is checked by sufficient syntactic constraint

and/or proof obligation.

As it was mentioned in introduction, our goal is to simul-

taneously use predicates, total and partial operations. Hence,

additional verifications are necessary to ensure the consistency

of the whole and then generating correct programs. Indeed,

using total operations and predicates do not pose any problem,

it goes there differently from partial operations. In particular,

the use of partial operations in the right member of a defining

equation that specifies a total operation or a predicate, must

be respectively defined or terminating. These supplementary

constraints will give rise to supplementary proof obligations.

IV. GENERATOR IMPLEMENTATION

The syntactical analysis of CASL specifications is not car-

ried out by our code generator, but rather by the specialized

tool Hets [15]. However, we have to check that specifications

belong to the sub-language as defined in Section III.

Syntax of CASL and O’Caml are very close. This makes the

code generation easy. However, O’Caml is more constrained

than CASL, especially, with respect to type declaration order

and function declaration and identifiers building. In the follow-

ing, various treatments are detailed which have been realized to

generate correct O’Caml programs from CASL specifications.

A. Generation of types

free type
Tree ::= node(Color; Forest) ;
Forest ::= empty | cons(Tree; Forest)

Fig. 8. Mutually recursive type

In O’Caml, a type must occur after argument types of its

constructors or simultaneously when types are mutually recur-

sive. For example, the types Tree and Forest of Fig. 8 must

occur simultaneously (because they are mutually recursive) but

after the type Color used by them (see Fig. 3), which itself

must occur after the type Basic.

 Tree 4 Forest 4 Color 2Basic 1

Fig. 9. Dependence graph

To check that this order is respected, a dependence graph is

built (see Fig. 9). Each strongly connected component of this

graph contains mutually recursive types which will be declared

simultaneously.

type t_Basic = (* Basic colors *)
C_Red_Basic | C_Blue_Basic | C_Green_Basic;;

type t_Color = (* Other colors *)
C_Black_Color

| C_mix_Basic_Color_Color of t_Basic * t_Color;;

type t_Tree =
C_node_Basic_Forest_Tree of t_Basic * t_Forest

and t_Forest =
C_Vide_Forest

| C_cons_Tree_Forest_Forest of t_Tree * t_Forest;;

Fig. 10. Generated code for types

The dependence graph is topologically sorted in order to

obtain a generating order preserving the type dependences

(see numbering on Fig. 9). From this numbering, the code of

Fig. 10 is generated. Note that the comments resulting from the

specification are inserted in the corresponding O’Caml code.

B. Generation of functions

As for types, O’Caml functions must occur respecting

dependences. Moreover, recursive functions must carry the

rec note and mutually recursive functions must be simulta-

neously declared. The situation is thus very close to types.

Therefore, as previously, we build a dependence graph that is

topologically sorted and strongly connected components are

detected inside.

As in Section III, in order to ensure the correctness of

generated programs, CASL specifications have to be checked

belonging to the CASL sub-language.

1) Termination: For termination property in Section III, it

is only imposed that rewriting systems are terminating for

total operations and predicates. So right members of definition

equations are smaller than left members by using symbol

precedence order (due to syntactical conditions). This prece-

dence order is the one defined by dependence graph. Regarding

the example of the operation red (Fig. 4), syntactical constraint

of termination is preserved.

2) Confluence: In Section III, it was imposed that the

resulting rewriting system is confluent. In order that this

property holds, left members of defining axioms have not to

be pairwise unifiable. When this fails, then the most general

unifier gives directly critical pairs that are the proof obligations

(see Section III-C.2).

As soon as both termination and/or confluence properties

have been checked or proof obligations have been produced,

the O’Caml code for operations and predicates is generated.

For example, the program given in Fig. 11 has been generated

for the total operation red (see Fig. 4).

3) Completeness: As explained in Section III complete-

ness of CASL specifications is not imposed. Nevertheless,

the generated O’Caml functions must be complete. For total

operations and predicates, this leads to systematically add a

default match case (->) which returns respectively any data

(* Function generated for op red : Color -> Color *)
(* Extract all reds of a color. *)
let rec f_red_Color_Color v_arg1_Color =

match (v_arg1_Color) with
(C_Black_Color) ->
(* Code of the axiom redBlack *)
C_Black_Color

| ((C_mix_Basic_Color_Color
(C_Red_Basic, v_c_Color))) ->

(* Code of the axiom redRed *)
(C_mix_Basic_Color_Color

(C_Red_Basic,
(f_red_Color_Color v_c_Color)))

| ((C_mix_Basic_Color_Color
(C_Blue_Basic, v_c_Color))) ->

(* Code of the axiom redBlue *)
(f_red_Color_Color v_c_Color)

| ((C_mix_Basic_Color_Color
(C_Green_Basic, v_c_Color))) ->

(* Code of the axiom redGreen *)
(f_red_Color_Color v_c_Color)

| _ -> C_Black_Color ;;

Fig. 11. Generated code for functions

(for operations) and false (for predicates). Hence, in our

example of Fig. 11, a default match case has been added and

returns any value of Color sort, here the value Black was

chosen. When the operation (or the predicate) are completely

specified (as this is the case in our example), this last match

case will be simply never performed.

For partial operations, the default match case raises excep-

tion Undef or returns a value depending on the specification

of definition domain.

V. CONCLUSION AND FUTURE WORK

The code generator presented in this article allows to

generate both correct and readable O’Caml code for a sub-

class of CASL specifications. These specifications are basic

specifications that can simultaneously contain total and partial

operations, and predicates.

Correctness of the produced code depends both on the

properties of termination and confluence of the rewriting

system associated with equational axioms directed from left to

right (see section III). This ensures the existence of a model

of the specification, and then its consistency. The system

completeness is not imposed. Thus, we can generate code

from a specification with many possible models. The code is

nevertheless correct and implements one of possible models.

Our generator automatically checks if specification axioms

respect some sufficient syntactic criteria. When they hold,

the correctness of generated code is automatically guaran-

teed. Otherwise, the generator produces proof obligations and

continues the code generation. The user is supposed to make

proofs using tools associated with the CASL language [15].

Of course, this step, which can be long, is not mandatory.

We tried as much as possible to take care over produced

code. Hence, translation of identifiers, addition of comments

and generation order of various O’Caml types and functions,

preserve the user syntactic choices of CASL specifications.

This makes the produced code more legible.

Further developments will continue to extend the CASL sub-

language presented here. Especially, conditional axioms must

be considered. They are of the form α1∧ ...∧αm ⇒ α, where

α1... αm are atomic formulas and α is a defining formula as

described in section III. To achieve this purpose, we will use

results relating to conditional rewriting [16], [17].

CASL structured specifications are not directly handled by

the code generator. However this is not really a restriction,

since the used Hets analysis tool [15], allows “to flat” most of

structured specifications. Nevertheless, it would be necessary

to extend our code generator to take into account encapsulation

principle (hidden symbols), what can be easily realized by the

use of O’Caml modules.

Lastly, our tool is intended for privileged use in the area

of geometric modeling. Later, the produced code will be

directly interfaced with geometric libraries that offer many

usual geometric operations. Thus, the generator will be used

for prototyping new operations or geometric algorithms.

ACKNOWLEDGMENTS

Special thanks are due to Till Mossakowski for many fruitful

and instructive discussions and useful comments.

REFERENCES

[1] Y. Bertrand, J.-F. Dufourd, J. Françon, and P. Lienhardt, “Algebraic
specification and development in geometric modeling,” in TAPSOFT’93,
ser. LNCS, vol. 668, 1993, pp. 75–89.

[2] L. Fuchs, D. Bechmann, Y. Bertrand, and J.-F. Dufourd, “Formal
specification for free-form curves and surfaces,” in Spring Conference
on Computer Graphics, Bratislava, Slovakia, 1996.

[3] J.-F. Dufourd, “Algebras and formal specifications in geometric model-
ing,” Vis. Comp., vol. 13, pp. 131–154, 1997, springer-Verlag.

[4] F. Ledoux, A. Arnould, P. L. Gall, and Y. Bertrand, “Geometric modeling
with CASL,” in WADT 2001, ser. LNCS, vol. 2267, 2001, pp. 176–200.

[5] F. Ledoux, J.-M. Mota, A. Arnould, C. Dubois, P. L. Gall, and
Y. Bertrand, “Spécifications formelles du chanfreinage,” Tech. et Sci.
Info., vol. 21, no. 8, pp. 1–26, 2002.

[6] F. Ledoux, “étude et spécifications formelles de l’arrondi d’objets
géométriques,” Thèse, Université d’Évry Val d’Essonne, décembre 2002.

[7] P. Lienhardt, “Topological models for boundary representation: a com-
parison with n-dimensional generalized maps,” Computer Aided Design,
vol. 23, no. 1, pp. 59–82, 1991.

[8] L. Fuchs and P. Lienhardt, “Topological structures and free-form spaces,”
in Journées de Géométrie Algorithmique, Barcelone, Spain, 1997.

[9] H. Kirchner and C. Ringeissen, “Executing CASL Equational Speci-
fications with the ELAN Rewrite Engine,” LORIA, Nancy (France),
Technical Report 99-R-278, 1999.

[10] L. Schröder and T. Mossakowski, “HasCASL: towards integrated spec-
ification and development of functional programs,” in AMST’02, ser.
LNCS, vol. 2422, 2002, pp. 99–116.

[11] T. Mossakowski, “Two ”Functional Programming” Sublanguages of
CASL,” CoFI Note L-9, 1998.

[12] A. Arnould, L. Fuchs, M. Aiguier, and T. Brunet, “Génération automa-
tique de code O’Caml à partir de spécifications CASL,” Univ. d’Évry,
France, Rapport LaMI 113, 2005.

[13] CoFI (The Common Framework Initiative), CASL Reference Manual,
ser. LNCS 2960 (IFIP Series). Springer, 2004.

[14] F. Baader and T. Nipkow, Term Rewriting and All That. C.U. Press,
1998.

[15] U. d. B. Groupe BKB, “Hets - the heterogeneous tool set,”
http://www.informatik.uni-bremen.de/agbkb/forschung/formal methods/
CoFI/hets/.

[16] N. Dershowitz and M. Okada, “A rationale for conditional equational
programming,” Th. Comp. Sci., vol. 75, pp. 111–138, 1990.

[17] J. Bergstra and J. Klop, “Conditional rewrite rules: Confluence and
termination,” J. of Comp. and Syst. Sciences, vol. 32, pp. 323–362, 1986.

