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The second step of the RCP proof makes it usually difficult to prove and to
understand. In first-order logic, there is a more direct proof of RCP which uses
the deep concept of recursively saturated models [3]. In this paper, we propose to
make the proof of this result simpler by directly building (i.e. without generating
the three chains of elementary morphisms) a model M′

i with i = 1, 2 such that:

1. M0
i ≡Li

M′
i

2. M′
i|L

= M0
j |L

with j 6= i and j ∈ {1, 2}

In the paper, we will say that the pushout S of L ⊆ L1 and L ⊆ L2 has the
weak Robinson property (WRP) for M1 and M2.

In Section 4, we will apply this proof process in the standard model theory
but also in modal logic, first with local satisfaction and with global one. But
before, in Section 2, we will review the basic notions on institutions [9] which
we will use in this paper. In section 3, we will define WRP in the institution
framework. We will then show that for any institutions which has WRP and
the weak amalgamation property, RCP obviously holds for all theories T1 and
T2 which have a model Mi such that their forgetful on the common language
are elementary equivalent.

2 Institutions

Definition 2.1 (Institution) An institution I = (Sig, Sen,Mod, |=) consists
of

• a category Sig, objects of which are called signatures,

• a functor Sen : Sig → Set giving for each signature a set, elements of
which are called sentences,

• a contravariant functor Modop : Sig → Cat giving for each signature a
category, objects of which are called Σ-models, and

• a |Sig|-indexed family of relations |=Σ⊆ |Mod(Σ)| × Sen(Σ) called satis-
faction relation,

such that the following property, called the satisfaction relation, holds:
∀σ : Σ → Σ′, ∀M ∈Mod(Σ′), ∀ϕ ∈ Sen(Σ),

M |=Σ′ Sen(σ)(ϕ) ⇔Mod(σ)(M) |=Σ ϕ

In this paper, we are especially interested in the following examples of insti-
tutions (other examples can be found in [4, 9, 11]).
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• PL. The institution of propositional logic. Signatures and signature mor-
phisms are sets of propositional variables and functions between sets of
propositional variables.
Given a signature Σ, a Σ-model is a mapping ν from Σ to the truth-values
{0, 1}. Morphisms between Σ-models are identities. Given a signature
morphism σ : Σ → Σ′, the forgetful functor Mod(σ) maps a Σ′-model ν′

to the Σ-model ν : p ∈ Σ 7→ ν′(σ(p)).
The set of Σ-sentences is the least set of sentences obtained from proposi-
tional variables in Σ by applying a finite number of times Boolean connec-
tives in {∨,¬}. Sen(σ) translates Σ-formulæ to Σ′-formulæ by renaming
propositional variables according to the signature morphism σ : Σ → Σ′.
Finally, satisfaction is the usual propositional satisfaction.

• FOL. The institution of (many-sorted) first-order predicate logic (with
equality). The signature are pairs (S, F, P ) where S is a set of sorts, and
F and P are, respectively, function and predicate names with arity in S.
Signature morphisms σ = (σsort, σfun, σpred) : (S, F, P ) → (S′, F ′, P ′)
consists of three functions between sets of sorts, sets of functions and sets
of predicates which preserve arities.
Given a signature Σ = (S, F, P ), a Σ-model M is a family M = (Ms)s∈S

where Ms is a set for each s ∈ S, equipped with a function fM : Ms1
×

. . . ×Msn
→ Ms for each f : s1 × . . . × sn → s ∈ F and with a n-ary

relation pM ⊆ Ms1
× . . . ×Msn

for each p : s1 × . . . × sn ∈ P . Given a
signature morphism σ : Σ = (S, F, P ) → Σ′ = (S′, F ′, P ′) and a Σ′-model
M′, Mod(σ)(M′) is the Σ-model M defined for each s ∈ S by Ms = M ′

s,
and for each function name f ∈ F and each predicate name p ∈ P , by
fM = σ(f)M

′

and by pM = pM
′

.
The set of Σ-formulæ is the least set of formulæ obtained from atoms
of the form t1 = t2 where t1, t2 ∈ TF (X)s for s ∈ S and of the form
p(t1, . . . , tn) where ti ∈ TF (X)si

for each i, 1 1 ≤ i ≤ n, and p : s1 ×
. . .× sn ∈ P , by applying a finite number of times Boolean connectives in
{∨,¬} and the quantifier ∀. Sen(Σ) is the set of all closed Σ-formulæ. 2

Sen(σ) translates Σ-sentences by renaming function and predicate names
according to the signature morphism σ. Finally, satisfaction is the usual
first-order satisfaction.

• MFOL. The institution of the modal first order logic (with global sat-
isfaction). The signatures are just the FOL signatures. The set of Σ-
formulæ is the least set of formulæ obtained from atoms p(t1, . . . , tn) where
ti ∈ TF (X)si

for each i, 1 ≤ i ≤ n, and p : s1 × . . .× sn ∈ P , by applying
a finite number of times Boolean connectives in {∨,¬}, the modality �

and the quantifier ∀. Sen(Σ) is the set of all closed Σ-formulæ. Given
a signature Σ = (S, F, P ), a Σ-model (W,R), called Kripke frame, con-
sists of a family W = (W i)i∈I of possible words, which are Σ-models in

1TF (X) is the term algebra over F with variables from X.
2A Σ-formula ϕ is closed when all the occurrences of variables occurring in ϕ are in the

scope of the quantifier ∀.
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FOL such that (W i)s = (W j)s for each i, j ∈ I and each s ∈ S , and
an“accessibility” relation R ⊆ I × I. The satisfaction of formulæ by the
Kripke frames, noted (W,R) |= ϕ, is defined by (W,R) |=i ϕ for each
i ∈ I, where |=i is defined by induction on the structure of the formula ϕ
as follows:

– atoms, Boolean connectives and quantifier are handled as in FOL for
W i,

– (W,R) |=i
�ϕ when for each j ∈ I such that i R j, (W,R) |=j ϕ.

Modal propositional logic (MPL) is the sub-institution of MFOL deter-
mined by the signatures with empty set of sort symbols and empty set of
operation symbols.

• LMFOL. The institution of the modal first order logic (with local sat-
isfaction). Signatures and sentences are MFOL signatures and MFOL
sentences. Given a signature Σ = (S, F, P ), a Σ-model is a pointed Kripke
frame (W,R,W i) for i ∈ I. The satisfaction of a Σ-sentence ϕ by a Σ-
model (W,R,W i), noted (W,R,W i) |= ϕ, is defined by: (W,R,W i) |=
ϕ⇔ (W,R) |=i ϕ.

• LIMFOL. The institution of the modal first order logic (with local satis-
faction and infinite disjunction and conjunction). This institution extends
LMFOL to sentences of the form

∧

Φ and
∨

Φ where Φ is a set (possibly
infinite) of Σ-sentences. Given a pointed Kripke frame (W,R,W i),

– (W,R,W i) |=
∧

Φ ⇐⇒ ∀ϕ ∈ Φ, (W,R,W i) |= ϕ

– (W,R,W i) |=
∨

Φ ⇐⇒ ∃ϕ ∈ Φ, (W,R,W i) |= ϕ

Definition 2.2 (Weak amalgamation square) Let I be an institution. The
commuting square of signature morphisms in I

Σ
σ1−−−−→ Σ1

σ2





y





y

σ′

1

Σ2 −−−−→
σ′

2

Σ′

is a weak amalgamation square if and only if for each Σ1-model M1 and
each Σ2-model M2 such that Mod(σ1)(M1) = Mod(σ2)(M2), there exists a
Σ′-model M′ such that Mod(σ′

1)(M
′) = M1 and Mod(σ′

2)(M
′) = M2.

I has the weak amalgamation property if and only if every commuting square
is a weak amalgamation square.

Definition 2.3 (Elementary equivalence) Let I = (Sig, Sen,Mod, |=) be
an institution. Let Σ be a signature. Two Σ-models M1 and M2 are elementary
equivalent, noted M1 ≡Σ M2, if and only if the following condition holds:

∀ϕ ∈ Sen(Σ), M1 |=Σ ϕ⇐⇒ M2 |=Σ ϕ
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Definition 2.4 (Theory) Let I = (Sig, Sen,Mod, |=) be an institution. Let
Σ be a signature of |Sig|. Let T be a set of Σ-sentences. Let us note Mod(T ) the
full sub-category of Mod(Σ) whose objects are all Σ-models M such that for any
ϕ ∈ T , M |=Σ ϕ, and T • the subset of Sen(Σ), so-called semantic consequences
of T , defined as follows: T • = {ϕ | ∀M ∈ |Mod(T )|, M |=Σ ϕ}. T is a theory
if and only if T = T •.

Definition 2.5 (Consistency) A Σ-theory is consistent if and only if Mod(T ) 6=
∅.

Definition 2.6 (Robinson consistency property) Let I be an institution.
A commuting square S

Σ
σ1−−−−→ Σ1

σ2





y





y

σ′

1

Σ2 −−−−→
σ′

2

Σ′

has the Robinson consistency property (RCP) if and only if for every pair of
consistent theories T1 and T2 over Σ1 and Σ2, respectively, with “inter-consistent
reducts”, i.e. T1|σ1

∪T2|σ2

is consistent where Ti|σi
= {ϕ ∈ Sen(Σ)|Sen(σi)(ϕ) ∈

T1}, have inter-consistent Σ′-translations, i.e. Sen(σ′
1)(T1) ∪ Sen(σ′

2)(T2) is
consistent.

3 Weak Robinson property

Definition 3.1 (Weak Robinson property) Let I be an institution. Let S

Σ
σ1−−−−→ Σ1

σ2





y





y

σ′

1

Σ2 −−−−→
σ′

2

Σ′

be a commuting square. Let M1 ∈ |Mod(T1)| and M2 ∈ |Mod(T2)| be two
models such that Mod(σ1)(M1) ≡Σ Mod(σ2)(M2). S has the Weak Robinson
Property (WRP) for M1 and M2 if and only if there exists i ∈ {1, 2}, there
exists a Σi-model M′

i ∈ |Mod(Σi)| such that:

1. Mi ≡Σi
M′

i,

2. Mod(σi)(M′
i) = Mod(σj)(Mj) where j 6= i and j ∈ {1, 2}.

An institution I has WRP if every commuting square S has WRP for every
pair of models M1 and M2 such that Mod(σ1)(M1) ≡Σ Mod(σ2)(M2).

Obviously, we have the following result:
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Theorem 3.2 Let I be an institution which has WRP and the weak amalga-
mation property. Let S

Σ
σ1−−−−→ Σ1

σ2





y





y

σ′

1

Σ2 −−−−→
σ′

2

Σ′

be a commuting square. If for every consistent Σ1-theory T1 and every consis-
tent Σ2-theory with inter-consistent reducts, there is Mi ∈ |Mod(Ti)| such that
Mod(σ1)(M1) ≡Σ Mod(σ2)(M2), then S has RCP.

Proof By WRP, there then exists a Σi-model M′
i ∈ |Mod(Σi)| for i ∈ {1, 2}

such that:

1. Mi ≡Σi
M′

i,

2. Mod(σi)(M
′
i) = Mod(σj)(Mj) where j 6= i and j ∈ {1, 2}.

By the weak amalgamation property, there then exists M′ ∈ |Mod(Σ′)| such
that Mod(σ′

i)(M
′) = M′

i and Mod(σ′
j)(M

′) = Mj . By the satisfaction condi-
tion, we then have that M′ ∈ |Mod(Sen(σ′

1)(T1) ∪ Sen(σ2)(T2))|. �

Proposition 3.3 In PL, for every commuting square S, every consistent Σ1-
theory and every consistent Σ2-theory with inter-consistent reducts, there are
a Σ1-valuation ν1 and a Σ2-valuation ν2 such that ν1|σ1

≡Σ ν2|σ2

(and then
ν1|σ1

= ν2|σ2

).
In FOL, LMFOL, LIMFOL, and MFOL for every commuting square sat-
isfying the four conditions C1, C2, C

′
1 and C′

2 of Proposition 3 in [8], every
consistent Σ1-theory T1 and every consistent Σ2-theory T2 with inter-consistent
reducts, there are M1 ∈ |Mod(T1)| and M2 ∈ |Mod(T2)| such that Mod(σ1)(M1) ≡Σ

Mod(σ2)(M2).

Proof In PL, we find a Σ1-valuation ν1 |= T1 such that ν1|σ1

|= T2|σ2

. If
such a model does not exist, then by compactness there exists a finite set

{ϕ1, . . . , ϕn} ⊆ T2|σ2

such that T1 |= ¬
∧

i≥n

ϕi, making T1|σ1

∪T2|σ2

inconsistent,

a contracdiction. After, we find a Σ2-valuation ν2 such that ν1|σ1

≡Σ ν2|σ2

.
For this, let us consider the complete Σ-theory Th(ν1|σ1

) and find a Σ ∪ Σ2-

valuation ν′ of Th(ν1|σ1

)∪ T2. But if this is inconsistent, then by compactness,
we would find ϕ ∈ Th(ν1|σ1

) such that T2 |= ¬ϕ. This means that ¬ϕ ∈ T2|σ2

and then ¬ϕ ∈ Th(ν1|σ1

), contradicting the fact that ν1|σ1

|= ϕ. Consequently,

ν′|Σ2 →֒Σ∪Σ2◦σ2

≡Σ ν1|σ1

.

For FOL, instantiating the two first steps of Proposition 1 in [8] by replacing
A1 and A2 by M1 and M2.

In LMFOL and LIMFOL, for a signature Σ = (S, F,R), let us define the
FOL signature Σ = (S, F ,R) as follow:
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• S = S ∪ {ind}

• F = {f : ind× s1 × . . .× sn → s|f : s1 × . . .× sn → s ∈ F} ∪ {i :→ ind}

• R = {r : ind× s1 × . . .× sn|r : s1 × . . .× sn ∈ R} ∪ {R : ind× ind}

Given a pointed Kripke frame (W,R,W i) over Σ, let us define the FOL Σ-model
MW as follows:

• Mind = I and ∀s ∈ S,Ms = (W i)s

• iM = i and RM = R

• ∀f : ind× s1 × . . .× sn → s ∈ FW , ∀(j, a1, . . . , an) ∈ I ×Ms1
× . . .×Msn

,

fM(j, a1, . . . , an) = fW j

(a1, . . . , an)

• ∀r : ind× s1 × . . .× sn, (j, a1, . . . , an) ∈ rM ⇔ (a1, . . . , an) ∈ rW j

Let X be a S-indexed family of sets of variables. For every x ∈ Xind ∪ I, let us
define FOx : SenMFOL(Σ)×TF (X) → SenFOL(Σ)×TF (X) inductively on the
formula structure as follows:

• f(t1, . . . , tn) 7→ f(x, t1, . . . , tn)

• r(t1, . . . , tn) 7→ r(x, t1, . . . , tn)

• ϕ ∨ ψ 7→ FOx(ϕ) ∨ FOx(ψ)

• ¬ϕ 7→ ¬FOx(ϕ)

• ∀y.ϕ 7→ ∀y.FOx(ϕ)

• �ϕ 7→ ∀y, x R y ⇒ FOy(ϕ)

Observe that (W,R,W i) |= ϕ⇐⇒ MW |= FOi(ϕ).
Given a Σ-theory T , FOx(T ) = ({FOx(ϕ)|ϕ ∈ T })•. By construction, if T is
a consistent theory then so does FOi(T ) as well in FOL. Therefore, as T1 and
T2 have inter-consistent reducts, FOi(T1)|σ1

∪ FOi(T2)|σ2
is consistent. Hence,

by following the same process than above in FOL, we can find a Σ1-model M1

and a Σ2-model M2 such that Mod(σ1)(M1) ≡Σ Mod(σ2)(M2). For each Mi,
by applying the opposite process than above, we can build a pointed Kripke
frame (Wi, Ri,W

pi

i ) over Σi such that: Mi |= FOi(ϕ) ⇐⇒ (Wi, Ri,W
pi

i ) |= ϕ.
Hence, (Wi, Ri,W

pi

i ) belongs to |Mod(Ti)|, and Mod(σ1)((W1, R1,W
p1

1 )) ≡Σ

Mod(σ2)((W2, R2,W
p2

2 )).

In MFOL, the process is almost the same than for LMFOL and LIMFOL
except that F does not contain i :→ ind anymore. Given a Kripke frame (W,R)
over Σ, we then have:

(W,R) |=i ϕ⇐⇒ ∀ι : X →M, ι(x) = i⇒ MW |=ι FOx(ϕ)
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Given a Σ-theory T , FOx(T ) = {∀x.FOx(ϕ)|ϕ ∈ T }. Therefore, as T1 and T2

have inter-consistent reducts, FOx(T1)|σ1
∪FOx(T2)|σ2

is consistent. Hence, by

following the same process than above in FOL, we can find a Σ1-model M1 and
a Σ2-model M2 such that Mod(σ1)(M1) ≡Σ Mod(σ2)(M2). For each Mi, by
applying the opposite process than above, we can build a Kripke frame (Wi, Ri)
over Σi such that: Mi |= ∀x.FOx(ϕ) ⇐⇒ (Wi, Ri) |= ϕ. Hence, (Wi, Ri)
belongs to |Mod(Ti)|, and Mod(σ1)((W1, R1)) ≡Σ Mod(σ2)((W2, R2)). �

The four conditions on commuting square allow us to remove the following
counter-example adapted from [1]: suppose the commuting diagram S

Σ
σ1−−−−→ Σ1

σ2





y





y

σ′

1

Σ2 −−−−→
σ′

2

Σ′

where Σ = ({s1, s2}, {a :→ s1, b :→ s2}, ∅), Σ1 = ({s}, {a :→ s}, ∅), and Σ2 =
({s}, {a, b :→ s}, ∅), and σi(sj) = s with i, j = 1, 2, σ1(a) = σ1(b) = a, σ2(a) =
a, and σ2(b) = b. Then, let us suppose T1 = ∅• and T2 = {a 6= b}•. Each
Ti is consistent. However, we cannot find two models M1 and M2 which are
elementary equivalent on Σ because models of T2 have a 6= b while models in T1

require that a = b.

4 Applications

Theorem 4.1 PL has WRP.

Proof Obvious because for every set of propositional variable Σ, ν ≡Σ ν′ means
that ν = ν′. �

Theorem 4.2 FOL has WRP.

Proof Let S
Σ

σ1−−−−→ Σ1

σ2





y





y

σ′

1

Σ2 −−−−→
σ′

2

Σ′

be a commuting square where Σ = (S, F, P ), Σ′ = (S′, F ′, P ′), and Σi =
(Si, Fi, Pi) for i = 1, 2. Let M1 ∈ |Mod(Σ1)| and M2 ∈ |Mod(Σ2)| be two
first-order structures such that Mod(σ1)(M1) ≡Σ Mod(σ2)(M2). For every
sort s ∈ S, note αs the cardinality of (Mi)σi(s). Here, two cases have to be
considered:
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• αs < ℵ0 (i.e. (Mi)σi(s) is a finite set). By definition, (Mod(σi)(Mi))s is
also a finite set of cardinality αs. By the hypothesis thatMod(σ1)(M1) ≡Σ

Mod(σ2)(M2), (Mj)σj(s) is also a finite set of cardinality αs. Hence
(Mi)σi(s) and (Mi)σj(s) are bijective for some bijection gs.

• αs ≥ ℵ0. By definition, (Mod(σi)(Mi)s is also a set of cardinality αs. By
the hypothesis thatMod(σ1)(M1) ≡Σ Mod(σ2)(M2), (Mj)σj(s) is then an
infinite set of cardinality βs ≥ ℵ0. Moreover, by applying the Lowenheim-
Skolem theorem on the theory Th(Mj), there exists M′′

j ∈ |Mod(Σ2)|
such that:

– for each s ∈ S such that αs ≥ ℵ0, (M ′′
j )σj(s) is an infinite of cardi-

nality αs.

– for all the other sorts s ∈ Sj (i.e. every s ∈ S such that αs < ℵ0 and
every s ∈ Sj \ σj(S)), (M ′′

j )s = (Mj)s.

Finally, Th(Mj) is a complete theory. Therefore, we have M′′
j ≡Σj

Mj.

Hence, from both above cases, we have a bijection g : Mi →M ′′
j from which we

can define the following Σj-model M′
j as follows:

1. ∀s ∈ S, (M ′
j)σj(s) = (Mi)σi(s)

2. ∀s ∈ Sj \ σj(S), (M ′
j)s = (M ′′

j )s

3. ∀f ∈ F, σj(f)M
′

j = σi(f)Mi

4. ∀f : s1 × . . .× sn → s ∈ Fj \ σj(F ),

fM′

j : (M ′
j)s1

× . . .× (M ′
j)sn

→ (M ′
j)s

(m1, . . . ,mn) 7→ g−1(fM′′

j (g(m1), . . . , g(mn)))

5. ∀r ∈ R, σj(r)
M′

j = σi(r)
Mi

6. ∀r : s1 × . . .× sn ∈ Rj \ σj(R),

rM
′

j = {(m1, . . . ,mn)|(g(m1), . . . , g(mn)) ∈ rM
′′

j }

In Points 4. et 6., g is the identity on every sort s ∈ Sj \ σj(S).

By construction, we have both:

• M′′
j is isomorphic to M′

j , and then Mj ≡Σj
M′

j , and

• Mod(σi)(Mi) = Mod(σj)(M′
j).

�

Theorem 4.3 In LMFOL and LIMFOL, every commuting square S has WRP
for every pair of pointed Kripke frames (W1, R1,W

p1

1 ) ∈ |Mod(Σ1)| and (W2, R2,W
p2

2 ) ∈
|Mod(Σ2)| such that W p1

1 and W p2

2 are bisimilar.
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Proof Define (W ′
i , R

′
i,W

′pi

i ) for i ∈ {1, 2} such that:

• (W ′
i , R

′
i,W

′pi

i ) ≡Σi
(Wi, Ri,W

pi

i )

• Mod(σi)((W
′
i , R

′
i,W

′pi

i )) = Mod(σj)((Wj , Rj ,W
pj

j )) where j 6= i and j ∈
{1, 2}

as follow:

• W ′
i = (W ′k

i )k∈J where for k ∈ J ,

– k = p′i. W
′p′

i

i is defined as in the proof of Theorem 4.2 where W pi

i ,

W
′p′

i

i and W k
j are respectively Mj, M′

j and Mi.

– k 6= p′i. Two cases can occur:

1. if there is l ∈ I such that Mod(σj)(W
k
j ) and Mod(σi)(W

l
i ) are

bisimilar then W ′k
i is defined as in the proof of Theorem 4.2

where W l
i , W

′k
i and W k

j are respectively Mj , M′
j and Mi.

2. Otherwise (i.e. for all l ∈ I, Mod(σj)(W
k
j ) and Mod(σi)(W

l
i )

are not bisimilar), W ′k
i is defined as follows:

∗ ∀s ∈ S, (W ′k
i )σ1(s) = (W k

j )σ1(s)

∗ ∀s ∈ S1 \ Sen(σ1)(S), (W ′k
i )s = (W pi

i )s

∗ ∀f ∈ F, σ1(f)W ′k
i = σ1(f)W k

j

∗ ∀f :→ s ∈ F1 \ σ1(F ), fW ′k
i = fW

pi
i

∗ ∀f : s1 × . . .× sn → s ∈ F1 \ σ1(F ),

fW ′k
j ∈ ((W ′k

i )s)
((W ′k

j )s1
× . . .× (W ′k

j )sn
)

∗ ∀r : s1×. . .×sn ∈ R1\σ1(R), rW ′k
i ⊆ (W ′k

j )s1
×. . .×(W ′k

j )sn

• R′
i = Rj

• p′i = pj

By construction, we have both that:

1. Mod(σi)((W
′
i , R

′
i,W

′pi

i )) = Mod(σj)((Wj , Rj ,W
pj

j )), and

2. W
′p′

i

i and W pi

i are bisimilar.

Therefore, we conclude that (W ′
i , R

′
i,W

′p′

i

i ) ≡Σi
(Wi, Ri,W

pi

i ). �

Theorem 4.4 In MFOL, every commuting square S has WRP for every pair
of Kripke frames which are globally bisimilar.

Proof Define (W ′
i , R

′
i) for i ∈ {1, 2} such that:

• (W ′
i , R

′
i) ≡Σi

(Wi, Ri)

10



• Mod(σi)((W
′
i , R

′
i)) = Mod(σj)((Wj , Rj)) where j 6= i and j ∈ {1, 2}

as follow:

• W ′
i = (W ′k

i )k∈J where for k ∈ J , W ′k
i is defined as in the proof of The-

orem 4.2 where W l
i , W

′k
i and W k

j are respectively Mj, M′
j and Mi for

some l ∈ J such that W l
i and W k

j are bismilar.

• R′
i = Rj .

By construction, we have both that:

1. Mod(σi)((W
′
i , R

′
i)) = Mod(σj)((Wj , Rj)), and

2. for everyW
′p′

i

i and W pi

i are bisimilar.

Therefore, we conclude that (W ′
i , R

′
i,W

′p′

i

i ) ≡Σi
(Wi, Ri,W

pi

i ). �

Corollary 4.5 In PL every commuting square has RCP.
In FOL, LMFOL and LIMFOL, every commuting square satisfying the four
conditions C1, C2, C

′
1 and C′

2 of Proposition 3.3 is RCP.

Proof In PL and FOL, this is obvious. In LIMFOL, this is a direct conse-
quence of Karp’s theorem which expresses that pointed Kripke frames which
are elementary equivalent are bisimilar. In LMFOL, from results of the stan-
dard model theory, this is a consequence of the fact that the ultrapower of any
pointed Kripke frame with respect to a regular ultrafilter 3 is an ω-saturated
elementary extension of this pointed Kripke frame (see Corollary 4.3.14 in [3]).
And, by a classic theorem in model theory of modal logic, it is well-known that
if two pointed Kripke frames are elementary equivalent, then any pair of their
ω-saturated ultrapowers are bisimilar (a simple consequence of an extension of
the Henessy-Milner property extended to modally saturated Kripke frames -
see [10] for details on these notions.). �

In MFOL, we have not the equivalent of the Henessy-Milner property. The
problem is because we require that the two Kripke frames are globally bisimilar.
There are many counter-examples of elementary equivalent Kripke frames which
are not globally bisimilar. The only result that we can give is the following:

Proposition 4.6 In MFOL, given a commuting square S

Σ
σ1−−−−→ Σ1

σ2





y





y

σ′

1

Σ2 −−−−→
σ′

2

Σ′

3It is well-known that for any set of power α, there exists an α-regular ultrafilter over it
(Proposition 4.3.5 in [3]).
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such that σ1 is injective, and two consistent theories T1 and T2 over Σ1 and
Σ2, respectively with inter-consistent reducts and such that T1|σ1

= T2|σ2

and
T1 = Sen(σ1)(T1|σ1

), then S has RCP.

Proof Let M2 be a Σ2-model of T2. By the satisfaction condition,Mod(σ2)(M2)
is a model of T2|σ2

and then of T1|σ1

. As σ1 is injective, there exists a σ1-
extension M1 of Mod(σ2)(M2), that is Mod(σ1)(M1) = Mod(σ2)(M2). �
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