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noted TΣ(V ), and Σ-formulas, noted Sen(Σ), are induc-

tively built over a many-sorted first order signature, noted

Σ = (S,F , R), and a set of many-sorted variables, noted

V = (Vs)s∈S . S is a set of sorts and F and R are respec-

tively sets of function and relation names with arities in S.

The mathematical interpretation of any signature Σ =

(S,F , R) is given by a S-setM = (Ms)s∈S provided with

a total function fM : Ms1
× · · · × Msn

→ Ms for each

function name f : s1 . . . sn → s ∈ F and a n-ary re-

lation rM : Ms1
× · · · × M sn for each predicate name

r : s1 . . . sn ∈ R. The evaluation of Σ-terms from a Σ-

modelM is given by any total function σ♮ : TΣ(V ) → M

defined as the canonical extension of any interpretation of

variables σ : V →M . Therefore, we extend any interpreta-

tion σ into an unary relationM |=σ onΣ-formulas as usual.

The validation of Σ-formulas from Σ-models is defined by:

M |= ϕ if and only if for any σ : V →M,M |=σ ϕ.

We denoteMV the set of mappings from V to |M|.

3 Input Output Symbolic Transition Systems

3.1 Syntax

Input Output Symbolic Transition Systems (IOSTS) are

used for modelling reactive systems. A reactive system is

a system which interacts with its environment, represented

itself by another IOSTS. Thus, a reactive system is an open

system, defined by a IOSTS which can be also decomposed

as several communicating IOSTS, each one representing

one of its subsystems. Communications consist in send-

ing or receiving messages representeed by first-order terms

through communication channels. As usual when consider-

ing automata, IOSTS describe possible evolutions of system

states. Elementary evolutions are represented by a transi-

tion relation between states. Each transition between two

states is labelled by three elements: communication actions

(sending or receipt of messages) or internal actions of the

system, guards expressed here with first-order properties,

and assignments. As usual, we start by defining the lan-

guage, so-called signature, on which IOSTS are built:

Definition 3.1 (Signature) A signature is a triple L =

(Σ, V, C) where: Σ is a first-order signature, V is a set of

variables over Σ and C is a set whose elements are called

channel names.

Given a signature L = (Σ, V, C), we can define ele-

ments that label transitions. A guard will be a first-order

formula built over Σ. An assignment will be defined by

a mapping δ : V → TΣ(V ) preserving sorts (i.e. ∀s ∈

S, δ(Vs) ⊆ TΣ(V )s) and actions are defined as follows:

ActL = τ | c?x | c!t

where c ∈ C, x ∈ V and t ∈ TΣ(V ). τ means an internal

action while c?x and c!tmean, respectively, a receipt on the

variable x and sending of the value t trough the channel c.

An IOSTS is then defined as follows:

Definition 3.2 (IOSTS) Given a signature L = (Σ, V, C),

an IOSTS is a triple (Q, q0,T) where:

• Q is a set of states

• q0 ∈ Q is the initial state

• T ⊆ Q×ActL ×Sen(Σ)×TΣ(V )V ×Q is a relation

such that each state of Q is reachable2 from q0.

Notation 3.1 Note source : T → Q and target : T → Q

such that for each t = (q, act, ϕ, δ, q′) ∈ T, source(t) = q

and target(t) = q′.

Given an IOSTS G = (Q, q0,T) , a path is a word

tr1 . . . trn on T such that for each 1 ≤ j < n, target(tj) =

source(tj+1). Note Path(G) the set of paths of G. Note

source♮ and target♮ the canonical extensions of source

and target on Path(G).

Note Pathq(G) the set {pa ∈ Path(G) | source♮(pa) =

q}.

3.2 Semantics of IOSTS

By their construction, semantics of IOSTSmust take into

account:

• a first-order structureM in order to give a mathemati-

cal meaning of data

• and a binary relation on states, which naturally are

defined by variable interpretation. This relation will

be the semantical meaning of transitions, and by rela-

tional composition, of paths.

2Reachability means: if we note TQ and T
+

Q
the projection of T on

Q × Q and the transitive closure of TQ, respectively, then for each q ∈

Q r {q0}, (q0, q) ∈ T
+

Q



Intuitively, semantics of paths are defined as the composi-

tion of transition semantics which depend both on guard in-

terpretation and variable assignment. The semantics of an

IOSTS will then be the set of semantics of all paths issued

from the initial state.

Definition 3.3 (Semantics of IOSTS) Let L be a signa-

ture and let G = (Q, q0,T) an IOSTS on L .

For every tr = (q, act, ϕ, δ, q′) ∈ T, note [|tr|] ⊆ MV ×

MV defined by:

(νi, νf ) ∈ [|tr|] iff:

• M �νi ϕ and νf = νi
a

♮
◦ δ if act = c?x and forall

y 6= x in V , νi
a(y) = νi

• M �νi ϕ and νf = νi otherwise.

For every pa = tr1tr2 . . . trn in Path(G), [|pa|] =

[|tr1|].[|tr2|] . . . [|trn|] where . is the relational composition3.

The semantics of G, denoted [|G|], is defined as follows:

[|G|] =
⋃

pa∈Pathq0
(G)

[|pa|]

3.3 Classical operations on transition systems

3.3.1 Synchronized product

Reactive systems are often described by synchronizing sub-

systems together. When using IOSTS, composition of

subsystems is achieved by the algebraic operation of syn-

chronized product. This modelizes the communication by

“rendez-vous”. This product is informally defined as fol-

lows:

• each transition labelled by a sending through a channel

c is synchronized with a transition labelled by a receipt

through the same channel c,

• other transitions are asynchronous. In other words,

they are fired independently.

Notation 3.2 Let Σ be a first-order signature. Let ϕ ∈

Sen(Σ). Note ϕ[x ← t] the formula obtained from ϕ by

replacing each occurrence of the free variable x by the term

t ∈ TΣ(V ) (of course, x and t are of the same sort).

Definition 3.4 (Synchronized product) Let L1 =

(Σ, V1, C1) and L2 = (Σ, V2, C2) be two signatures such

that V1 ∩ V2 = ∅. Note L = (Σ, V1 ∪ V2, C1 ∪ C2). First,

define the triple (Q, q0,T) as follows:

3. is defi ned as follows : (a, b).(b.c) = (a, c)

• Q = Q1 ×Q2,

• q0 = (q01
, q02

)

• T ⊆ Q×ActL ×Sen(Σ)×TΣ(V )V ×Q is the least

set (according to theoretical set inclusion) such that:

• if (q1, act, ϕ, δ1, q
′
1) ∈ T1 where act = τ or

is of the form c?x or c!t with c /∈ C1 ∩ C2, then

((q1, q2), act, ϕ, δ, (q
′
1, q2)) ∈ T, where δ|V1

= δ1 and

δ|V2

= idV2

• if (q2, act, ϕ, δ2, q
′
2) ∈ T2 where act = τ or

is of the form c?x or c!t with c /∈ C1 ∩ C2, then

((q1, q2), act, ϕ, δ, (q1, q
′
2)) ∈ T, where δ|V1

= idV1

and δ|V2

= δ2

• if (q1, c!t, ϕ1, δ1, q
′
1) ∈ T1 and

(q2, c?x, ϕ2, δ2, q
′
2) ∈ T2, then

((q1, q2), τ, ϕ, δ, (q
′
1, q

′
2)) ∈ T, where ϕ =

ϕ1 ∧ ϕ2[x← t], δ|V1

= δ1 and δ|V2

= δ2 ◦ x 7→ t

• if (q1, c?x, ϕ1, δ1, q
′
1) ∈ T1

and (q2, c!t, ϕ2, δ2, q
′
2) ∈ T2, then

((q1, q2), τ, ϕ, δ, (q
′
1, q

′
2)) ∈ T, where ϕ = ϕ1[x ←

t] ∧ ϕ2, δ|V1

= δ1 ◦ x 7→ t and δ|V2

= δ2.

In order to satisfy the condition on transitions of Defini-

tion 3.2, we must cut down in the set of states Q and only

keep states that are reachable from q0. Hence, the synchro-

nized product of G1 and G2, noted G1 ⊗ G2, is the IOSTS

(Q⊗, q0⊗
,T⊗) over L defined by:

• Q⊗ = {q ∈ Q|(qo, q) ∈ T
+

Q}

• q0⊗
= q0

• T⊗ = {(q, act, ϕ, δ, q′) ∈ T|(q, q′) ∈ Q⊗}

3.3.2 Bisimulation

Various equivalences have been studied in the litterature

that identify transition systems on the basis on their be-

havior. The classic example is strong bisimulation de-

noted by ∼. For two given IOSTS G1 = (Q1, q1,T1) and

G2 = (Q2, q2,T2), bisimulation is defined as a relation be-

tween the set of states Q1 and Q2. As relations between Q1

and Q2, they can be characterized as the greatest fixpoint

νF∼ of a certain monotonic functional F∼. This functional

operates on the complete lattice of realtions R ⊆ Q1 ×Q2

ordered by set inclusion and is defined by: q F∼(R) q′ iff

both conditions are satisfied



• ∀tr1 ∈ T1, source(tr1) = q ⇒

∃tr2 ∈ T2,











source(tr2) = q′∧

[|tr1|] = [|tr2|]∧

target(tr1) R target(tr2)

• ∀tr2 ∈ T2, source(tr2) = q′ ⇒

∃tr1 ∈ T1,











source(tr1) = q∧

[|tr1|] = [|tr2|]∧

target(tr1) R target(tr2)

The two IOSTS G1 and G2 are bisimilar, noted G1 ∼ G2 if

and only if q01
∼ q02

.

3.4 Refi nement

3.4.1 Syntax

I0STS are mathematical abstractions of systems. We can

then refine IOSTS in order to be closer and closer to the

real implantation of the system. Here, refinement will only

concern dynamic behavior of systems, that is transitions

and paths. We suppose that data are preserved from an ab-

stract level to a more concrete one 4 First-order signatures

are then preserved in both signatures of refined and refining

IOSTS. Hence, given a signature L1 = (Σ1, V1, C1) and

an IOSTS G1 = (Q1, q01
,T1), a refinement of G1 built

over L1 = (Σ1, V1, C1) will be an IOSTS G2 over signa-

ture L2 = (Σ2, V2, C2) such that Σ1 = Σ2, V1 ⊆ V2, and

C1 ⊆ C2. Moreover, both are equipped with the same first-

order structureM.

Transition refinement will consist in replacing a transi-

tion tr of G1 by an IOSTS Gtr = (Qtr, q0tr
,Ttr). Three

conditions have to be imposed on Gtr:

1. source(tr) is the initial state of GtrGt.

2. target(tr) is reachable from each state of Gtr.

3. Finally, each path of Gtr must only contain the action

which occurs in tr and no other ones of L1.

Syntactically, a transition refinement is then defined as fol-

lows:

4There are many works that have be done on data refi nement by us-

ing algebraic techiques. A very good suvey on this subject can be found

in [?]. Here, we do not consider such a refi nement in order to be more

comprehensive. However, such a refi nement combining together data and

dynamic behavior refi nement can be found in [?, ?].

Definition 3.5 (Syntactical refinement of a transition)

Let G be an IOSTS over L = (Σ, V, C). Let

tr = (q, act, ϕ, δ, q′) ∈ T1 be a transition. A syntac-

tical refinement of tr is an IOSTS Gtr = (Qtr, q0tr
,Ttr)

over Ltr = (Σ, Vtr , Ctr) such that:

• Qtr ∩Q1 = {q, q′}

• q0tr
= q

• for each q′′ ∈ Qtr, there exists pa ∈ Pathq′′ (Gtr)

such that target♮(pa) = q′

• for each pa = tr1 . . . trn ∈ Pathq(Gtr) with

target♮(pa) = q′, there exists a unique 1 ≤ k ≤ n

such that the action of tk is act, and for each 1 ≤ j 6=

k ≤ n, the action of tj is either τ or uses a channel

name in Ctr r C.

Remark. A transition tr = (q, act, ϕ, δ, q′) can also be

considered as an IOSTS GId
tr = (Qtr, q0tr

,Ttr) where

Qtr = {q, q′}, q0tr
= q and Ttr = {tr}. By Definition

3.5, GId
tr is a syntactical refinement of itself.

Syntactical refinement of an IOSTS is then defined as

follows:

Definition 3.6 (Syntactical refinement of an IOSTS) A

syntactical refinement of G1 = (Q1, q1,T1) is an IOSTS

G2 = (Q2, q2,T2) defined from a T1-indexed family

(Gtr)tr∈T1
where5 Gtr is a syntactical refinement of tr, as

follows:

• Q2 =
⋃

tr∈T1

Qtr

• q02
= q01

• T2 =
⋃

tr∈T1

Ttr

A refinement of G1 is then an IOSTS composed of the

refinements of all the transitions of G1.

Remark. We deduce fromDefinition 3.5 and Definition 3.6

that Q1 ⊆ Q2 and T1 ⊆ T2.

5If Gtr is the IOSTS GId
tr
, then it simply means that the corresponding

transition tr is not refi ned.



3.4.2 Correctness

Refinement correctness holds when refinement IOSTS com-

pletely preserves dynamic behavior of refined one. For-

mally, this is expressed as follows:

Definition 3.7 (Refinement correctness) Let G2 be a syn-

tactical refinement of G1. This refinement is correct if and

only if U([|G2|]) = [|G1|] where U([|G2|]) means:

U([|G2|]) = {(νi
|V1

, νf
|V1

)|(νi, νf ) ∈ [|G2|]}

Of course, it is not reasonable to refine an IOSTS as

a whole in a single step. Large softwares usually require

many refinement steps before obtaining efficient programs.

This leads to the notion of sequential composition of refine-

ment steps. Usually, composition of enrichment is mainly

divided into two concepts: horizontal composition, and ver-

tical composition.

Horizontal composition deals with refinement of sub-

parts of systems when they are structured into “blocks”.

Here, blocks are IOSTS and structuration is defined by syn-

chronized product. On the contrary, vertical composition

deals with many refinement steps, that is it is the transitive

closure of correct refinements. In both cases, correctness

is preserved. For lack of space, we do not present these

results. However, they can be found in [?, ?]

4 A temporal logic for IOSTS

We present in this section a first-order temporal logic

F interpretation of which will be over IOSTS. F extends

CTL∗ [?] to first-order in order to take into account mes-

sages passing in actions by adding the modality after[a]

where a is a finite sequence of actions. after[a]ϕ roughly

means from the current sequence of transitions σ that ϕ

is satisfied for the subsequence of σ that directly follows

the sequence a in σ. Observe after[a] is the extension to

paths of the modality [a] of the standard Hennessy-Milner

logic [?]. Hence, F is a branching-time temporal logic

where the structure representing all possible executions is

tree-like rather than linear.

4.1 Syntax

As interpretation of F is over IOSTS, signatures are the

ones of Definition 3.1. Actions are extendes in order to con-

sider finite sequences of actions.

Hence, actions are defined as ActL for L a signature,

at which we add the production ActL ;ActL . By the as-

sociativity property, a is a sequence of elementary actions

a = a1; . . . ; an where for each 1 ≤ i ≤ n, ai denotes

internal action, receipt or sending.

Definition 4.1 (Formulae) Let L = (Σ, V, C) be a signa-

ture. Formulae are defined as follows:

For := Sen(Σ)| after[ActL ]For|αFor|

For U For|∀For|∃For| ¬For| ForβFor

where α ∈ {X,F,G} and β ∈ {∨,∧,⇒}

4.2 Semantics

As already said above, formulae are interpreted over

IOSTS. Of course, IOSTS and formulae must be built over

a same language L . Before giving satisfaction of formu-

lae, we have first to define the notion of term embedding in

paths of a given IOSTS. The satisfaction of fromulae of the

form after[a]ϕ will be based on this notion.

Definition 4.2 (Embedding of a term in a path) Let a =

a1; . . . ; an be a term. Let pa = tr1 . . . trm ∈ Path(G)

be a path where m ≥ n and for each 1 ≤ i ≤ m, tri =

(qi, acti, ϕi, δi, q
′
i). a is said embedded into pa if and only

if there exists a sequence (i1, . . . , in) where for every 1 ≤

j ≤ n ij ∈ {1, . . . ,m}, ij < ij+1 and in = m, such that

for every 1 ≤ l ≤ n, al = actil
.

In IOSTS, only paths starting from the intial state make

sense. Therefore, formula satisfaction will only be defined

from sequence of actions the source of which is q0, and vari-

able interpretations. This gives rise to the following defini-

tion:

Definition 4.3 (Satisfaction) Let L be a signature. Let G

be an IOSTS over L together withM as underlying first-

order structure. Let ϕ be a formula over L . Let σ =

(tr0, . . . , trn, . . .) be a sequence of actions of G, so-called

run, satisfying: ∀i ∈ N, target(tri) = source(tri+1). Let

ν : V → M be an interpretation of variables. G satisfies

for σ and ν the formula ϕ, noted G |=σ,ν ϕ if and only if:

for every i ∈ N, noted σi = (tri, . . . , trn, . . .) the subse-

quence of σ.

• if ϕ ∈ Sen(Σ), then G |=σ,ν ϕ iffM |=ν ϕ,



• if ϕ is of the form after[a]ψ, then G |=σ,ν ϕ iff

there exists i ∈ N such that a is embedded in pa =

(tr0, . . . , tri−1) and for every (ν, ν′) ∈ [|pa|], G |=σi,ν′

ψ,

• if ϕ is of the form Xψ, then G |=σ,ν ϕ iff for every

(ν, ν′) ∈ [|tr1|], G |=σ1,ν′ ψ,

• if ϕ is of the form Fψ, then G |=σ,ν ϕ iff there ex-

ists i ∈ N such that for every (ν, ν ′) ∈ [|tr0 . . . tri−1|],

G |=σi,ν′ ψ,

• if ϕ is of the form Gψ, then G |=σ,ν ϕ iff for every i ∈

N and for every (ν, ν′) ∈ [|tr0 . . . tri−1|], G |=σi,ν′ ψ,

• if ϕ is of the form ψUχ, then G |=σ,ν ϕ iff there ex-

ists i ∈ N such that for every (ν, ν ′) ∈ [|tr0 . . . tri1 |]

G |=σi,ν′ χ and for every 1 ≤ k < j and every

(ν, ν′) ∈ [|tr0 . . . trk−1|], G |=σk,ν′ ψ,

• if ϕ is of the form ∀ψ, then G |=σ,ν ϕ iff for every run

σ′ sharing the same initial state with σ, G |=σ′,ν ψ,

• if ϕ is of the form ∃ψ, then G |=σ,ν ϕ iff there exists a

run σ′ sharing the same initial state with σ, G |=σ′,ν

ψ,

• propositional connectives are handled as usual.

Note G |= ϕ if and only if for every run σ statrting to q0
and every interpretation ν G |=σ,ν ϕ.

4.3 Preservation results

In this section, we establish three results which show that

F is well-adapted to express properties on IOSTS. For lack

of space, we do not give their proofs. For interested readers,

they can be found in [?, ?].

4.3.1 Synchronized product

Synchronized product restricts IOSTS behavior. Therefore,

preservation cannot hold for all formulae. It can only hold

for a subset of them. Actually, all formulae implicitely deal-

ing with existness quantifiers such as both modalities F,U,

and ∃ do not preserve properties along synchronized prod-

uct. This subset of formulae is defined as follows:

For′ := Sen(Σ)| after[ActL ]For′|αFor′|

∀For| ForβFor

where α ∈ {X,G} and β ∈ {∧,⇒}.

Before expressing this preservation result, note • the map-

ping that transforms every action over two signaturesL1 =

(Σ, V1, C1) and L2 = (Σ, V2, C2) into an action over L =

(Σ, V1 ∪ V2, C1 ∪ C2) as follows:

τ 7→ τ

c#u 7→ τ if c ∈ C1 ∩ C2
c#u 7→ c#u otherwise

where # ∈ {?, !} and u ∈ TΣ(Vi) i = 1, 2. Note also • its

canonical extension to formulae defined as follows:

ϕ ∈ Sen(Σ) 7→ ϕ

after[a]ϕ 7→ after[a•]ϕ•

@ϕ 7→ @ϕ•

ϕU ψ 7→ ϕ• U ψ•

where @ ∈ {X,G}

Theorem 4.1 Let Gi be an IOSTS over Li = (Σ, Vi, Ci)

for i = 1, 2 such that V1 ∩ V2 = ∅. Let ϕ be a formula over

L = (Σ, V1 ∪V2, C1∪C2) that satisfies production rules of

For′. Then, we have:

G1 |= ϕ ∧G2 |= ϕ⇒ G1 ⊗G2 |= ϕ•

4.3.2 Adequacy

In a modal logic L interpreted over symbolic transition sys-

tems (Q, q,T), L is said adequate w.r.t. a binary relation

R on Q (which is usually the strong bisimilarity relation) if

and only if

∀G1,G2, (∀ϕ,G1 |= ϕ⇔ G2 |= ϕ)⇐⇒ G1 ∼ G2

Theorem 4.2 F is adequate w.r.t. ∼.

4.3.3 Refinement

Refinement correctness as defined in Definition 3.7 ex-

presses that the refining IOSTS meets all properties of the

refined IOSTS. Indeed, we can show the following result:

Theorem 4.3 Let G1 and G2 be two IOSTS built respec-

tively over L1 and L2. Assuming that G2 is a correct re-

finement of G1. Then, for every formula ϕ built over L1 we

have:

G1 |= ϕ⇐⇒ G2 |= ϕ



5 Conclusion

In this paper, we have defined a logic dedicated to ex-

press properties on IOSTS. This logic has been defined as

an extension of CTL∗ to take into account communications

and data. Moreover, we establish appropriate properties on

it such adequacy w.r.t. strong bissimulation, and preserva-

tion of properties along refinement.

We are currently investigating how to automatically gene-

tate test cases from test purposes given by properties in F .

We are also investigating how to test conformance between

a more concrete IOSTS w.r.t. an abstract one. This will be

based on the refinement relation as presented in this paper.
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