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noted T Σ (V ), and Σ-formulas, noted Sen(Σ), are inductively built over a many-sorted first order signature, noted Σ = (S, F, R), and a set of many-sorted variables, noted V = (V s ) s∈S . S is a set of sorts and F and R are respectively sets of function and relation names with arities in S.

The mathematical interpretation of any signature Σ = (S, F, R) is given by a S-set M = (M s ) s∈S provided with a total function f M : M s1 × • • • × M sn → M s for each function name f : s 1 . . . s n → s ∈ F and a n-ary relation r M : M s1 × • • • × M sn for each predicate name r : s 1 . . . s n ∈ R. The evaluation of Σ-terms from a Σmodel M is given by any total function σ ♮ : T Σ (V ) → M defined as the canonical extension of any interpretation of variables σ : V → M . Therefore, we extend any interpretation σ into an unary relation M |= σ on Σ-formulas as usual. The validation of Σ-formulas from Σ-models is defined by: M |= ϕ if and only if for any σ : V → M, M |= σ ϕ.

We denote M V the set of mappings from V to |M|.

Input Output Symbolic Transition Systems

Syntax

Input Output Symbolic Transition Systems (IOSTS) are used for modelling reactive systems. A reactive system is a system which interacts with its environment, represented itself by another IOSTS. Thus, a reactive system is an open system, defined by a IOSTS which can be also decomposed as several communicating IOSTS, each one representing one of its subsystems. Communications consist in sending or receiving messages representeed by first-order terms through communication channels. As usual when considering automata, IOSTS describe possible evolutions of system states. Elementary evolutions are represented by a transition relation between states. Each transition between two states is labelled by three elements: communication actions (sending or receipt of messages) or internal actions of the system, guards expressed here with first-order properties, and assignments. As usual, we start by defining the language, so-called signature, on which IOSTS are built: Definition 3.1 (Signature) A signature is a triple L = (Σ, V, C) where: Σ is a first-order signature, V is a set of variables over Σ and C is a set whose elements are called channel names.

Given a signature L = (Σ, V, C), we can define elements that label transitions. A guard will be a first-order formula built over Σ. An assignment will be defined by a mapping δ : V → T Σ (V ) preserving sorts (i.e. ∀s ∈ S, δ(V s ) ⊆ T Σ (V ) s ) and actions are defined as follows:

Act L = τ | c?x | c!t
where c ∈ C, x ∈ V and t ∈ T Σ (V ). τ means an internal action while c?x and c!t mean, respectively, a receipt on the variable x and sending of the value t trough the channel c.

An IOSTS is then defined as follows:

Definition 3.2 (IOSTS) Given a signature L = (Σ, V, C),
an IOSTS is a triple (Q, q 0 , T) where:

• Q is a set of states • q 0 ∈ Q is the initial state • T ⊆ Q × Act L × Sen(Σ) × T Σ (V ) V × Q is a relation such that each state of Q is reachable 2 from q 0 .
Notation 3.1 Note source : T → Q and target : T → Q such that for each t = (q, act, ϕ, δ, q ′ ) ∈ T, source(t) = q and target(t) = q ′ . Given an IOSTS G = (Q, q 0 , T) , a path is a word tr 1 . . . tr n on T such that for each 1 ≤ j < n, target(t j ) = source(t j+1 ). Note Path(G) the set of paths of G. Note source ♮ and target ♮ the canonical extensions of source and target on Path(G).

Note Path q (G) the set {pa ∈ Path(G) | source ♮ (pa) = q}.

Semantics of IOSTS

By their construction, semantics of IOSTS must take into account:

• a first-order structure M in order to give a mathematical meaning of data

• and a binary relation on states, which naturally are defined by variable interpretation. This relation will be the semantical meaning of transitions, and by relational composition, of paths.

2 Reachability means: if we note T Q and T + Q the projection of T on Q × Q and the transitive closure of T Q , respectively, then for each q ∈ Q {q 0 }, (q 0 , q) ∈ T + Q Intuitively, semantics of paths are defined as the composition of transition semantics which depend both on guard interpretation and variable assignment. The semantics of an IOSTS will then be the set of semantics of all paths issued from the initial state.

Definition 3.3 (Semantics of IOSTS)

Let L be a signature and let G = (Q, q 0 , T) an IOSTS on L .

For every tr = (q, act, ϕ, δ, q

′ ) ∈ T, note [ |tr| ] ⊆ M V × M V defined by: (ν i , ν f ) ∈ [ |tr| ] iff: • M ν i ϕ and ν f = ν i a ♮ • δ if act = c?x and forall y = x in V , ν i a (y) = ν i • M ν i ϕ and ν f = ν i otherwise.
For every pa = tr 1 tr 2 . . . ] where . is the relational composition [START_REF] Jeannet | Symbolic test selection based on approximate analysis[END_REF] . The semantics of G, denoted [ |G| ], is defined as follows:

tr n in Path(G), [ |pa| ] = [ |tr 1 | ].[ |tr 2 | ] . . . [ |tr n |
[ |G| ] = pa∈Pathq 0 (G) [ |pa| ]

Classical operations on transition systems

Synchronized product

Reactive systems are often described by synchronizing subsystems together. When using IOSTS, composition of subsystems is achieved by the algebraic operation of synchronized product. This modelizes the communication by "rendez-vous". This product is informally defined as follows:

• each transition labelled by a sending through a channel c is synchronized with a transition labelled by a receipt through the same channel c,

• other transitions are asynchronous. In other words, they are fired independently.

Notation 3.2

Let Σ be a first-order signature. Let ϕ ∈ Sen(Σ). Note ϕ[x ← t] the formula obtained from ϕ by replacing each occurrence of the free variable x by the term t ∈ T Σ (V ) (of course, x and t are of the same sort).

Definition 3.4 (Synchronized product)

Let L 1 = (Σ, V 1 , C 1 ) and L 2 = (Σ, V 2 , C 2 ) be two signatures such that V 1 ∩ V 2 = ∅. Note L = (Σ, V 1 ∪ V 2 , C 1 ∪ C 2 )
. First, define the triple (Q, q 0 , T) as follows:

3 . is defi ned as follows : (a, b).(b.c) = (a, c) • Q = Q 1 × Q 2 , • q 0 = (q 01 , q 02 ) • T ⊆ Q × Act L × Sen(Σ) × T Σ (V ) V × Q is the least
set (according to theoretical set inclusion) such that:

• if (q 1 , act, ϕ, δ 1 , q ′ 1 ) ∈ T 1 where act = τ or is of the form c?x or c!t with c / ∈ C 1 ∩ C 2 , then ((q 1 , q 2 ), act, ϕ, δ, (q ′ 1 , q 2 )) ∈ T, where δ | V1 = δ 1 and δ | V2 = id V2 • if (q 2 , act, ϕ, δ 2 , q ′ 2 ) ∈ T 2 where act = τ or is of the form c?x or c!t with c / ∈ C 1 ∩ C 2 , then ((q 1 , q 2 ), act, ϕ, δ, (q 1 , q ′ 2 )) ∈ T, where δ | V1 = id V1 and δ | V2 = δ 2 • if (q 1 , c!t, ϕ 1 , δ 1 , q ′ 1 ) ∈ T 1 and (q 2 , c?x, ϕ 2 , δ 2 , q ′ 2 ) ∈ T 2 , then ((q 1 , q 2 ), τ, ϕ, δ, (q ′ 1 , q ′ 2 )) ∈ T, where ϕ = ϕ 1 ∧ ϕ 2 [x ← t], δ | V1 = δ 1 and δ | V2 = δ 2 • x → t • if (q 1 , c?x, ϕ 1 , δ 1 , q ′ 1 ) ∈ T 1 and (q 2 , c!t, ϕ 2 , δ 2 , q ′ 2 ) ∈ T 2 , then ((q 1 , q 2 ), τ, ϕ, δ, (q ′ 1 , q ′ 2 )) ∈ T, where ϕ = ϕ 1 [x ← t] ∧ ϕ 2 , δ | V1 = δ 1 • x → t and δ | V2 = δ 2 .
In order to satisfy the condition on transitions of Definition 3.2, we must cut down in the set of states Q and only keep states that are reachable from q 0 . Hence, the synchro-

nized product of G 1 and G 2 , noted G 1 ⊗ G 2 , is the IOSTS (Q ⊗ , q 0⊗ , T ⊗
) over L defined by:

• Q ⊗ = {q ∈ Q|(q o , q) ∈ T + Q } • q 0⊗ = q 0 • T ⊗ = {(q, act, ϕ, δ, q ′ ) ∈ T|(q, q ′ ) ∈ Q ⊗ }

Bisimulation

Various equivalences have been studied in the litterature that identify transition systems on the basis on their behavior. The classic example is strong bisimulation denoted by ∼. For two given IOSTS

G 1 = (Q 1 , q 1 , T 1 ) and G 2 = (Q 2 , q 2 , T 2 )
, bisimulation is defined as a relation between the set of states Q 1 and Q 2 . As relations between Q 1 and Q 2 , they can be characterized as the greatest fixpoint νF ∼ of a certain monotonic functional F ∼ . This functional operates on the complete lattice of realtions R ⊆ Q 1 × Q 2 ordered by set inclusion and is defined by: q F ∼ (R) q ′ iff both conditions are satisfied

• ∀tr 1 ∈ T 1 , source(tr 1 ) = q ⇒ ∃tr 2 ∈ T 2 ,      source(tr 2 ) = q ′ ∧ [ |tr 1 | ] = [ |tr 2 | ]∧ target(tr 1 ) R target(tr 2 ) • ∀tr 2 ∈ T 2 , source(tr 2 ) = q ′ ⇒ ∃tr 1 ∈ T 1 ,      source(tr 1 ) = q∧ [ |tr 1 | ] = [ |tr 2 | ]∧ target(tr 1 ) R target(tr 2 )
The two IOSTS G 1 and G 2 are bisimilar, noted G 1 ∼ G 2 if and only if q 01 ∼ q 02 .

Refi nement

Syntax

I0STS are mathematical abstractions of systems. We can then refine IOSTS in order to be closer and closer to the real implantation of the system. Here, refinement will only concern dynamic behavior of systems, that is transitions and paths. We suppose that data are preserved from an abstract level to a more concrete one [START_REF] Rusu | An approach to symbolic test generation[END_REF] First-order signatures are then preserved in both signatures of refined and refining IOSTS. Hence, given a signature Transition refinement will consist in replacing a transition tr of G 1 by an IOSTS G tr = (Q tr , q 0tr , T tr ). Three conditions have to be imposed on G tr :

L 1 = (Σ 1 , V 1 , C 1 ) and an IOST S G 1 = (Q 1 , q 01 , T 1 ), a refinement of G 1 built over L 1 = (Σ 1 , V 1 , C 1 ) will be an IOSTS G 2 over signa- ture L 2 = (Σ 2 , V 2 , C 2 ) such that Σ 1 = Σ 2 , V 1 ⊆ V 2 ,
1. source(tr) is the initial state of G tr G t .

2. target(tr) is reachable from each state of G tr .

3. Finally, each path of G tr must only contain the action which occurs in tr and no other ones of L 1 .

Syntactically, a transition refinement is then defined as follows:

Definition 3.5 (Syntactical refinement of a transition)

Let G be an IOSTS over L = (Σ, V, C). Let tr = (q, act, ϕ, δ, q ′ ) ∈ T 1 be a transition. A syntactical refinement of tr is an IOSTS G tr = (Q tr , q 0tr , T tr ) over L tr = (Σ, V tr , C tr ) such that:

• Q tr ∩ Q 1 = {q, q ′ } • q 0tr = q
• for each q ′′ ∈ Q tr , there exists pa ∈ Path q ′′ (G tr ) such that target ♮ (pa) = q ′

• for each pa = tr 1 . . . tr n ∈ Path q (G tr ) with target ♮ (pa) = q ′ , there exists a unique 1 ≤ k ≤ n such that the action of t k is act, and for each 1 ≤ j = k ≤ n, the action of t j is either τ or uses a channel name in C tr C.

Remark.

A transition tr = (q, act, ϕ, δ, q ′ ) can also be considered as an IOSTS G Id tr = (Q tr , q 0tr , T tr ) where Q tr = {q, q ′ }, q 0tr = q and T tr = {tr}. By Definition 3.5, G Id tr is a syntactical refinement of itself.

Syntactical refinement of an IOSTS is then defined as follows:

Definition 3.6 (Syntactical refinement of an IOSTS)

A syntactical refinement of G 1 = (Q 1 , q 1 , T 1 ) is an IOSTS G 2 = (Q 2 , q 2 ,
T 2 ) defined from a T 1 -indexed family (G tr ) tr∈T1 where5 G tr is a syntactical refinement of tr, as follows:

• Q 2 = tr∈T1 Q tr • q 02 = q 01 • T 2 = tr∈T1
T tr A refinement of G 1 is then an IOSTS composed of the refinements of all the transitions of G 1 .

Remark. We deduce from Definition 3.5 and Definition 3.6 that Q 1 ⊆ Q 2 and T 1 ⊆ T 2 .

Correctness

Refinement correctness holds when refinement IOSTS completely preserves dynamic behavior of refined one. Formally, this is expressed as follows:

Definition 3.7 (Refinement correctness) Let G 2 be a syn- tactical refinement of G 1 . This refinement is correct if and only if U ([ |G 2 | ]) = [ |G 1 | ] where U ([ |G 2 | ]) means: U ([ |G 2 | ]) = {(ν i |V 1 , ν f |V 1 )|(ν i , ν f ) ∈ [ |G 2 | ]}
Of course, it is not reasonable to refine an IOSTS as a whole in a single step. Large softwares usually require many refinement steps before obtaining efficient programs. This leads to the notion of sequential composition of refinement steps. Usually, composition of enrichment is mainly divided into two concepts: horizontal composition, and vertical composition.

Horizontal composition deals with refinement of subparts of systems when they are structured into "blocks". Here, blocks are IOSTS and structuration is defined by synchronized product. On the contrary, vertical composition deals with many refinement steps, that is it is the transitive closure of correct refinements. In both cases, correctness is preserved. For lack of space, we do not present these results. However, they can be found in [?, ?]

A temporal logic for IOSTS

We present in this section a first-order temporal logic F interpretation of which will be over IOSTS. F extends CT L * [?] to first-order in order to take into account messages passing in actions by adding the modality after[a] where a is a finite sequence of actions. after[a]ϕ roughly means from the current sequence of transitions σ that ϕ is satisfied for the subsequence of σ that directly follows the sequence a in σ. Observe after[a] is the extension to paths of the modality [a] of the standard Hennessy-Milner logic [?]. Hence, F is a branching-time temporal logic where the structure representing all possible executions is tree-like rather than linear.

Syntax

As interpretation of F is over IOSTS, signatures are the ones of Definition 3.1. Actions are extendes in order to consider finite sequences of actions.

Hence, actions are defined as Act L for L a signature, at which we add the production Act L ; Act L . By the associativity property, a is a sequence of elementary actions a = a 1 ; . . . ; a n where for each 1 ≤ i ≤ n, a i denotes internal action, receipt or sending. 

Semantics

As already said above, formulae are interpreted over IOSTS. Of course, IOSTS and formulae must be built over a same language L . Before giving satisfaction of formulae, we have first to define the notion of term embedding in paths of a given IOSTS. The satisfaction of fromulae of the form after[a]ϕ will be based on this notion. 

≤ i ≤ m, tr i = (q i , act i , ϕ i , δ i , q ′ i ).
a is said embedded into pa if and only if there exists a sequence (i 1 , . . . , i n ) where for every 1 ≤ j ≤ n i j ∈ {1, . . . , m}, i j < i j+1 and i n = m, such that for every 1 ≤ l ≤ n, a l = act i l .

In IOSTS, only paths starting from the intial state make sense. Therefore, formula satisfaction will only be defined from sequence of actions the source of which is q 0 , and variable interpretations. This gives rise to the following definition: Definition 4.3 (Satisfaction) Let L be a signature. Let G be an IOSTS over L together with M as underlying firstorder structure. Let ϕ be a formula over L . Let σ = (tr 0 , . . . , tr n , . . .) be a sequence of actions of G, so-called run, satisfying: ∀i ∈ N, target(tr i ) = source(tr i+1 ). Let ν : V → M be an interpretation of variables. G satisfies for σ and ν the formula ϕ, noted G |= σ,ν ϕ if and only if: for every i ∈ N, noted σ i = (tr i , . . . , tr n , . . .) the subsequence of σ.

• if ϕ ∈ Sen(Σ), then G |= σ,ν ϕ iff M |= ν ϕ,
• if ϕ is of the form after[a]ψ, then G |= σ,ν ϕ iff there exists i ∈ N such that a is embedded in pa = (tr 0 , . . . , tr i-1 ) and for every (ν,

ν ′ ) ∈ [ |pa| ], G |= σ i ,ν ′ ψ, • if ϕ is of the form Xψ, then G |= σ,ν ϕ iff for every (ν, ν ′ ) ∈ [ |tr 1 | ], G |= σ 1 ,ν ′ ψ,
• if ϕ is of the form Fψ, then G |= σ,ν ϕ iff there exists i ∈ N such that for every (ν,

ν ′ ) ∈ [ |tr 0 . . . tr i-1 | ], G |= σ i ,ν ′ ψ,
• if ϕ is of the form Gψ, then G |= σ,ν ϕ iff for every i ∈ N and for every (ν,

ν ′ ) ∈ [ |tr 0 . . . tr i-1 | ], G |= σ i ,ν ′ ψ,
• if ϕ is of the form ψUχ, then G |= σ,ν ϕ iff there exists i ∈ N such that for every (ν, ν ′ ) ∈ [ |tr 0 . . . tr i1 | ] G |= σ i ,ν ′ χ and for every 1 ≤ k < j and every

(ν, ν ′ ) ∈ [ |tr 0 . . . tr k-1 | ], G |= σ k ,ν ′ ψ,
• if ϕ is of the form ∀ψ, then G |= σ,ν ϕ iff for every run σ ′ sharing the same initial state with σ, G |= σ ′ ,ν ψ,

• if ϕ is of the form ∃ψ, then G |= σ,ν ϕ iff there exists a run σ ′ sharing the same initial state with σ, G |= σ ′ ,ν ψ,

• propositional connectives are handled as usual.

Note G |= ϕ if and only if for every run σ statrting to q 0 and every interpretation ν G |= σ,ν ϕ.

Preservation results

In this section, we establish three results which show that F is well-adapted to express properties on IOSTS. For lack of space, we do not give their proofs. For interested readers, they can be found in [?, ?].

Synchronized product

Synchronized product restricts IOSTS behavior. Therefore, preservation cannot hold for all formulae. It can only hold for a subset of them. Actually, all formulae implicitely dealing with existness quantifiers such as both modalities F, U, and ∃ do not preserve properties along synchronized product. This subset of formulae is defined as follows:

F or ′ := Sen(Σ)| after[Act L ]F or ′ |αF or ′ | ∀F or| F orβF or
where α ∈ {X, G} and β ∈ {∧, ⇒}.

Before expressing this preservation result, note • the mapping that transforms every action over two signatures

L 1 = (Σ, V 1 , C 1 ) and L 2 = (Σ, V 2 , C 2 ) into an action over L = (Σ, V 1 ∪ V 2 , C 1 ∪ C 2 ) as follows: τ → τ c#u → τ if c ∈ C 1 ∩ C 2 c#u → c#u otherwise
where # ∈ {?, !} and u ∈ T Σ (V i ) i = 1, 2. Note also • its canonical extension to formulae defined as follows:

ϕ ∈ Sen(Σ) → ϕ after[a]ϕ → after[a • ]ϕ • @ϕ → @ϕ • ϕ U ψ → ϕ • U ψ •
where @ ∈ {X, G} Theorem 4.1 Let G i be an IOSTS over

L i = (Σ, V i , C i ) for i = 1, 2 such that V 1 ∩ V 2 = ∅. Let ϕ be a formula over L = (Σ, V 1 ∪ V 2 , C 1 ∪ C 2 )
that satisfies production rules of F or ′ . Then, we have:

G 1 |= ϕ ∧ G 2 |= ϕ ⇒ G 1 ⊗ G 2 |= ϕ •

Adequacy

In a modal logic L interpreted over symbolic transition systems (Q, q, T), L is said adequate w.r. 

Refinement

Refinement correctness as defined in Definition 3.7 expresses that the refining IOSTS meets all properties of the refined IOSTS. Indeed, we can show the following result: Theorem 4.3 Let G 1 and G 2 be two IOSTS built respectively over L 1 and L 2 . Assuming that G 2 is a correct refinement of G 1 . Then, for every formula ϕ built over L 1 we have:

G 1 |= ϕ ⇐⇒ G 2 |= ϕ

Conclusion

In this paper, we have defined a logic dedicated to express properties on IOSTS. This logic has been defined as an extension of CT L * to take into account communications and data. Moreover, we establish appropriate properties on it such adequacy w.r.t. strong bissimulation, and preservation of properties along refinement. We are currently investigating how to automatically genetate test cases from test purposes given by properties in F. We are also investigating how to test conformance between a more concrete IOSTS w.r.t. an abstract one. This will be based on the refinement relation as presented in this paper.
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