
HAL Id: hal-00341977
https://hal.science/hal-00341977

Submitted on 17 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feature specification and static analysis for interaction
resolution

Marc Aiguier, Karim Berkani, Pascale Le Gall

To cite this version:
Marc Aiguier, Karim Berkani, Pascale Le Gall. Feature specification and static analysis for interaction
resolution. 14th International Symposium on Formal Methods (FM 2006), Aug 2006, Hamilton,
Canada. pp.364–379, �10.1007/11813040_25�. �hal-00341977�

https://hal.science/hal-00341977
https://hal.archives-ouvertes.fr


Feature specification and static analysis for interaction
resolution

Marc Aiguier
�

, Karim Berkani
✁

and Pascale Le Gall
�✄✂

☎

Université d’Évry, LaMI CNRS UMR 8042,
523 pl. des Terrasses F-91000 Évry

email :{aiguier,legall}@lami.univ-evry.fr
✆

Laboratoire Heudiasyc, UMR CNRS 6599
BP 20529 60205 Compiègne Cedex
emailkberkani@hds.utc.fr

Abstract. While designing a service-oriented system, deciding whether a service
interaction is desired or harmful is a subjective choice which depends on the
requirements expressed by the user with respect to the service integration. In this
paper, we define both a formalism and a methodology which, respectively, allow
us to automatically analyse interactions based on specification consistency. For
the latter (i.e. the methodology), we take advantage of both specifier expertise
and formal methods.
Keywords: pre-post formalism, specification consistency, static analysis, feature
integration, feature interaction resolution.

1 Introduction

The work presented in this paper was performed within the French project ValiServ3

in collaboration with the French telecommunication companyFranceTelecom and the
LSR team of the university J. Fourier of Grenoble [8]. This project was devoted to ser-
vice (feature) design for telecommunication purposes. Theaim of this project was to
better answer both feature system specification and the underlying problems:feature
integrationand feature interactions. Indeed, software telecommunication systems are
composed of a kernel providing the basic expected functionalities and a set of satellite
entities, called features4. Each of them aims to modify the set of functionalities char-
acterising the rest of the system (possibly including otheralready existing features).
This project also aimed to develop an assistant tool for integrating new phone services.
The interest was to provide support for rapid service-oriented development which is
an important issue, especially for telecommunication operators. Indeed, the primary
motivation to offer numerous features to users is that the set of offered features differ-
entiates providers, and then becomes a significant source ofincome. However, if some
✝

this work was partially supported by the RNRT French project VALISERV and by the Euro-
pean Commission under WGs Fireworks (23531)

3 the acronym of which means “Validation de Services”.
4 In the following, we will indifferently use the two words feature and service although we are

aware of that services also represent more particularly thenotion of components such as web
services.



behaviours of a telecommunication system do not conform to some feature descrip-
tions offered to customers, this may have calamitous effects on the public image of the
concerned provider.

The paper is the continuation of the works developed in [3, 4]by giving the theo-
retical basis of the methodology and the tool presented respectively in [4] and in [3].
This will be briefly recalled in Section 4. Our purpose is then toformally define an
integration methodology allowing to solve interactions resulting from an inconsistent
integration of a feature in a system specification, according to expert’s point of view.
The theoretical foundations will be based on algorithms the correctness of which will be
proved (see Theorem 2 and Theorem 3). These algorithms deal with specification con-
sistency. More precisely, interactions are properties which are violated. They may be
qualified as desirable or not by an expert who can modify both the considered property,
and integration choices to make service integration conform to its judgement. Thus,
interaction resolution takes care of interactions which maybe introduced during the
integration process. To ease the service design, we define an axiomatic formalism (i.e.
system behaviour is specified by logical properties) which will be used for detection and
resolution. This formalism aims to specify telecommunication systems viewed along
phone services at which customers can subscribe. Now, both formalism and methodol-
ogy can be obviously extended and applied to specify and automatically analyse interac-
tion in systems viewed along services (not necessarily phoneservices) at which objects
can subscribe (e.g. lifts equipped with different services such as the basic service and
the service which indicates a priority floor).

The methodology presented in this paper will then take advantage of designer’s
expertise with an interactive integration activity assisted by static analysis of specifica-
tion consistency. This static analysis will be based on symbolic techniques dealing with
phone variables to deduce the appropriate subscription configuration. Hence, the for-
malism defined in this paper will manipulate state transitionrules (str), invariants and
inequations between phone variables. The formalism developed in the paper is then a
simple restriction of classic pre -post logical language. The interest of such a language
is twofold:

1. it allows to automatically detect inconsistencies after integrating a new feature in a
system specification. This is precisely the main goal of the present paper.

2. its syntax is very simple up to some syntactical sugar5. Hence, specifications are
made readable for the expert what will ease his(her) choices tocircumvent incon-
sistencies. Besides, this has been experimented in the ValiServ project with some
experts of our partner France Telecom.

The paper is structured as follows. Section 2 presents the formalism and the notion
of specification consistency on which our interactions are based on. Specifications are
provided in the form of invariant properties and state transition rules, very much as
in [20]. Examples are also provided. For lack of space, we present a simple and peda-
gogical example which only integrates three features on a basic system. More generally,
our method can deal with all services which can be expressed within our specification

5 which will not be presented in the paper in order not to make heavy the presentation. The
interested readers can find them in [3, 10].



formalism and integrated on the intelligent network (see [2] and [14] for more than 20
examples of such service specifications). Section 3 detailsthe algorithms used to check
specification consistency in the integration process. Section 4 presents the methodology
and our results on usual services using the tool [3] developed in the ValiServ project.
Finally, related works are addressed in Section 5.

By lack of space, most of the proofs of propositions and theorems are not given
in this paper. However, they can be found in the preliminary version of this paper [1].
Only the proof of Theorem 1 is given because the algorithms described in this paper are
based on it.

2 Service specification

Here, we define a formalism dedicated to service (so-called feature) telecommunication
systems. Services will be specified along two types of predicates,subscriptionandsta-
tus. By the former, we will specify what and how customers subscribeto a service. For
instance6,

�✂✁☎✄✝✆✟✞✡✠☞☛✍✌
will mean that

✞
has subscribed to

�✂✁☎✄
and any call from

☛
to
✞

is forbidden. By the latter, we will specify communication situations such as to be busy,
idle, etc... Moreover, telecommunication systems are dynamic systems. Therefore, in
order to automatically analyse interactions, the formalism under definition will manip-
ulate sentences of the form

✆✏✎✒✑✔✓✕✠✖✓✘✗✙✓✛✚✢✜✣✠✟✎✥✤✧✦★✜☞✌
where

✎✒✑✩✓
and

✎✒✤✧✦✘✜
will be finite sets of

atoms denoting respectively pre and post-conditions and
✓✛✗✕✓✛✚✢✜

will be an event trigger-
ing side-effect. Moreover, some invariants roughly definedby free-quantifier first-order
formulas (i.e. state-evolution independent) will be stated.

2.1 Syntax

The formalism is devoted to specify features in telecommunication systems. Its syntax
is closely related to the one developed in [10]. Vocabularies (so-called signatures) over
which pre and post-conditions and invariants will be built on,will then contain two
types of predicates: status and subscription predicates.

Definition 1 (Signature). A signature✪ is a triple
✆✫✄✬✜✣✠✭✄✯✮✔✠✖✰✱✌

where
✄✲✜

and
✄✯✮

are
two sets of predicates names, and

✰
is a set of events names. Each element in

✄✬✜✭✳✴✄✯✮✛✳✯✰
are equipped with an arity

✚✶✵✸✷
.
✄✲✜

,
✄✯✮

and
✰

are disjoint sets.
A signature is saidfinite when both

✄✬✜
,
✄✴✮

and
✰

are finite sets. An element
✎✶✵✹✄✬✜✡✳

✄✯✮✬✳✺✰
equipped with the arity

✚
is noted

✎✼✻
.✄✬✜

and
✄✯✮

contain respectively,statusandsubscriptionpredicates.

Note, by the definition of signatures, that variables are the only allowed arguments
for the predicates and the events. Hence, variables will necessarily denote terminals.

Systems will be specified by means of two kinds of formulas: State transition rules
(
✦✘✜✽✑

) and Invariants. Moreover, as we are interested by automatically analysing interac-
tions (which will be defined by properties), manipulated formulas will be constrained
on their form.

6 ✾❀✿✝❁ is an usual acronym for the Terminating Call Screening.



Notation 2 Let ✪✁� ✆ ✄✬✜✣✠✖✄✴✮✔✠ ✰✱✌
be a signature. Let

✂
be a set of variables. Note✄ ✜✆☎ ✆✝✂ ✌

and
✄ ✜✆☎ ✆✞✂ ✌

the two sets defined by:

1.
✄ ✜✆☎ ✆✝✂✶✌ �✠✟ ✎ ✆ ✞ �

✠☛✡☞✡☞✡✘✠☞✞ ✻ ✌✍✌ ✎✒✻✺✵ ✄✬✜✢✳✺✄✯✮✩✠☞✞✏✎✯✵✑✂ ✠✓✒✕✔✗✖✘✔ ✚✚✙
2.

✄ ✜ ☎ ✆✝✂✶✌ �✠✟✜✛ ✎ ✆ ✞ �
✠☛✡☞✡☞✡✘✠☞✞ ✻ ✌✍✌☞✎✒✻✺✵ ✄✬✜✢✳✸✄✴✮✔✠☞✞ ✎ ✵✢✂ ✠✘✒✕✔✗✖✍✔ ✚✚✙

Note
✄✯✮✣☎ ✆✝✂✶✌

and
✄✴✮✤☎ ✆✝✂ ✌

(resp.
✄✬✜✆☎ ✆✝✂✶✌

and
✄✲✜✆☎ ✆✝✂ ✌

) the two subsets of
✄ ✜✥☎ ✆✝✂✶✌

and
✄ ✜✥☎✂✆✝✂ ✌

restricted to predicates in
✄✯✮

(resp. in
✄✬✜

).

Definition 3 (Formulas). Let ✪✦� ✆✫✄✲✜✣✠✖✄✯✮✔✠✖✰✱✌
be a signature. Let

✂
be a set of vari-

ables.

1. Astr-formulaover ✪ is a sentence of the form✧✩★ ✜✽✑✪✌ ✦☛✫✢✮ ✦✭✬✘✎ ✑✩✓✭✮✰✯✲✱✴✳✰✵✷✶✷✶✷✶ ✵ ✱☛✸✜✹✺✼✻ ✎✥✤✧✦★✜✓✽
where:

– ★ ✜✽✑ is a set of inequations
✞✿✾� ☛

with
✞ ✠☞☛✺✵✢✂

,
–
✦☛✫✼✮★✦✕❀ ✄✴✮✣☎ ✆✞✂ ✌✢✳ ✄✯✮✣☎✂✆✝✂ ✌

,
–
✎ ✑✩✓✕✠✟✎✥✤✧✦✘✜✍❀ ✄✬✜✆☎ ✆✝✂ ✌✢✳ ✄✬✜❁☎ ✆✝✂✶✌

are two finite sets, and
–
✓✔✻ ✵ ✰

and
✞✼✎✲✵✢✂

for
✒✭✔✗✖✘✔ ✚

.
2. An invariantover ✪ is a sentence of the form✧❂★ ✜✽✑❃✌ ❄❅✽

where ★ ✜✽✑ is defined as
above, and

❄
is a quantifier-free first-order formula over

✄✲✜✼✳ ✄✯✮
.

In the sequel, quantifier-free first-order formulas will be simply called formulas. We will
note ❆❈❇ ✑ ✆✟✞✥✌ the set of variables occurring in

✞ ✵ ✟❉★ ✜✽✑✩✠✭✦☛✫✼✮ ✦ ✠✫✎ ✑✩✓✕✠✟✎✒✤✧✦✘✜✣✠❊❄✘✙
.

We have chosen to separate in str-formulas, subscription atoms from pre and post-
conditions because events do not modify subscriptions. Hence, subscriptions are neces-
sarily preserved along transitions.

Definition 4 (Service specification).A service specification❋ is a ● -tuple
✆ ✪ ✠ ✄ ✞✼✌

where ✪ is a signature and
✄ ✞

is a set of str-formulas and invariants over✪ .
❋ is said finite if both✪ and

✄ ✞
are a finite signature and finite set of axioms, respec-

tively. In the sequel
✄ ✞

will be also noted
✄✬�■❍✿❏❅❑

.
✄✬�▲❍

and
❑

will then contain all
the str-formulas and invariants, respectively, of

✄ ✞
.

2.2 Examples

We now provide examples: the specifications of the basic telecommunication system,
classically called POTS, and of three common services destined to be plugged on it.
The different components of the specifications will be indexed by the specification
name. Moreover, elements of the underlying system POTS are implicitly present for
the specification of the three services.

example 1: POTS, the Plain Old Telephone Service✄✬✜❁▼❖◆◗P❙❘
contains

✖❯❚❲❱✫✓✙✆ ✞✥✌
(“
✞

is idle”),
❚❲✖ ❇ ❱✞❳ ❇ ✖ ✜ ✆ ✞✥✌ (“

✞
is in dial waiting state”),

★✣❇ ❱✞❱✟✓✛✑ ✆ ✞ ✠☞☛✍✌ (resp. ★✣❇ ❱✞❱✫✓✔✓✕✆✟✞✡✠ ☛ ✌ ) (“
✞

is in communication with
☛

as the caller (resp.
callee) part”),

✑✴✖ ✚❙❨❩✖ ✚❙❨✢✆ ✞ ✠☞☛✍✌
(“
✞

is ringing from the caller
☛
”), ❬ ✓ ❇ ✑✴✖ ✚❙❨✢✆ ✞ ✠☞☛✍✌

(“
✞

is
hearing the tone of the call to

☛
”),

✮✰✫✼✦✘☛✙✜ ✤✔✚ ✓✙✆ ✞✼✌
(“
✞

is hearing the busy tone”). By
convention,

✄✯✮ ▼◗◆◗P❙❘
is empty since by default all phones are supposed to subscribe to



the basic service POTS.
✰ ▼❖◆◗P❙❘

contains
✤✁�✂� ❬ ✤✩✤✁✄✢✆ ✞✼✌ meaning that

✞
is hooked off,✤✔✚ ❬ ✤✩✤✁✄✢✆✟✞✥✌ (

✞
is hooked on),

❚❲✖ ❇ ❱ ✆ ✞✡✠ ☛✍✌ (
✞

dials
☛
).
✄✬�■❍ ▼❖◆ P✼❘

contains:☎
☎✝✆✟✞✡✠☞☛✍✌✁✎✑✏✁✒✔✓✖✕✘✗✚✙✛✙✛✜☞✗✢✗✚✣✛✤✦✥★✧✩✫✪ ✌✬☛✔✭✮✎✑✯✰✭✁☛✲✱☞✒✔✓✖✕✴✳☎

✆✖✆✟✞✵✓✷✶✸✺✹ ✠☞✌✬☛✔✭✮✎✑✯✻✭✮☛✲✱✚✒✔✓✼✕✾✽✿☛✔✌✁✎❀✏✬✒ ✹ ✕✘❁✚❂✦❃❅❄✑✤✦✥✘❆ ❇❈✧✩✫✪ ❉ ✏❅✭✮❊❋☛✔●■❍❏✒✔✓❑✽ ✹ ✕✾✽▲❊❋☛✔●❏❍✁☛✔●■❍❏✒ ✹ ✽✢✓✼✕✴✳☎❏▼ ✆✟✞✡✠☞✌✬☛✍✭✮✎✑✯✻✭✁☛✲✱☞✒✔✓✼✕✾✽ ☛✔✌✁✎❀✏✬✒ ✹ ✕ ❁✾❂◆❃❅❄✑✤❖✥✂❆ ❇P✧✩✫✪ ◗✚❘❏❙☞❚ ✱✿❯❋●★✏✬✒✔✓✼✕✴✳☎❏❱ ✆✟✞✵✓✷✶✸✺✹ ✠ ❉ ✏❅✭✁❊❋☛✍●■❍❏✒✔✓❲✽ ✹ ✕✾✽▲❊❳☛✔●■❍✁☛✔●■❍❏✒ ✹ ✽✿✓✼✕ offhook✤◆❇❈✧✩✫✪ ❨ ✭✮✎❀✎❀✏❅❊✮✒✔✓❑✽ ✹ ✕✾✽ ❨ ✭❩✎✑✎❀✏✛✏✁✒ ✹ ✽✢✓✖✕✴✳☎★❬ ✆✟✞✵✓✷✶✸✺✹ ✠ ❨ ✭❩✎✑✎❀✏❅❊❩✒✔✓❲✽ ✹ ✕✾✽ ❨ ✭✮✎❀✎❀✏✛✏✬✒ ✹ ✽✢✓✼✕ ✗❪❭❫✜☞✗✢✗✾✣❋✤✦✥★✧✩✫✪ ☛✔✌✁✎❀✏✬✒✔✓✼✕✾✽ ◗✚❘❏❙☞❚ ✱✿❯❋●★✏✁✒ ✹ ✕✴✳☎❏❴ ✆✟✞✵✓✷✶✸✺✹ ✠ ❨ ✭❩✎✑✎❀✏❅❊❩✒✔✓❲✽ ✹ ✕✾✽ ❨ ✭✮✎❀✎❀✏✛✏✬✒ ✹ ✽✢✓✼✕P✗❪❭❫✜☞✗✢✗✾✣❋✤◆❇❈✧✩■✪ ☛✍✌✁✎✑✏✁✒ ✹ ✕✾✽ ◗✾❘❏❙☞❚ ✱❵❯❳●★✏✬✒✔✓✼✕✴✳☎★❛ ✆✟✞✵✓✷✶✸✺✹ ✠ ❉ ✏❅✭✁❊❋☛✍●■❍❏✒✔✓❲✽ ✹ ✕✾✽▲❊❳☛✔●■❍✁☛✔●■❍❏✒ ✹ ✽✿✓✼✕✘✗❪❭❫✜☞✗✢✗✚✣✛✤✦✥★✧✩■✪ ☛✔✌✁✎❀✏✬✒✔✓✼✕✾✽▲☛✔✌✁✎❀✏✬✒ ✹ ✕✴✳☎❏❜ ✆✟✞✡✠ ◗✚❘❏❙☞❚ ✱✿❯❋●★✏✁✒✔✓✖✕ ✗❪❭❫✜☞✗✢✗✾✣❋✤✦✥★✧✩✫✪ ☛✔✌✁✎❀✏✬✒✔✓✼✕❝✳☎❏❞ ✆✟✞✡✠☞✌✬☛✍✭✮✎✑✯✻✭✁☛✲✱☞✒✔✓✼✕ ✗✾❭❡✜☞✗❪✗✾✣❋✤❖✥❈✧✩■✪ ☛✍✌✁✎✑✏✁✒✔✓✖✕❝✳❑✣▼❖◆◗P❙❘
contains several invariants expressing that status predicates are mutually exclu-

sive when they concern the same variables. For example, it contains:
✧❣❢ ✾� ✁❅✌ ✛ ✆ ✜ ❇ ❱❤✄❩✖ ✚❙❨✢✆ ✄ ✠ ❢ ✌✂✐✺✜ ❇ ❱❤✄❃✖ ✚❙❨✢✆ ✄ ✠✖✁☎✌ ✌✓✽
✧ ✌ ✛ ✆✝✖❯❚ ❱✟✓✙✆ ✄ ✌❥✐✺✜ ❇ ❱❤✄❩✖ ✚❙❨✢✆ ✄ ✠ ❢ ✌ ✌✘✽
For lack of space, we do not give all such invariants. However, they can be found in [2].

POTScharacterises the behaviour of a terminal which has just subscribed to the ba-
sic telephone service, when communicating with another terminal with the same sub-
scription. For example,❦✘❧ says that if the call initiator hangs up during a communica-
tion, then his party gets a busy tone.

example 2: TCS, Terminating Call Screening (this service screens out incoming calls
from terminals belonging to theTCSsubscriber’s black list).✄✯✮ PP♠ ❘

containsTcs
✆ ☛✼✠☞✞✼✌

: calls from
✞

to
☛

are forbidden by
☛
.
❑ PP♠ ❘

contains♥
☎ ✆♦✞✵✓✷✶✸✺✹ ✠ Tcs✒✔✓❑✽ ✹ ✕❥♣rq ❉ ✏❅✭✁❊❋☛✍●■❍❏✒ ✹ ✽✢✓✼✕❝✳

while
✄✲�■❍ P❈♠ ❘

contains♥
✆ ✆♦✞s✠ Tcs✒ ✹ ✽✢✓✼✕✾✽▲✌✬☛✔✭✮✎✑✯✻✭✁☛✔✱✚✒✔✓✼✕✾✽❵☛✍✌✁✎✑✏✁✒ ✹ ✕ ❁✚❂✦❃❅❄✑✤✦✥✘❆ ❇❈✧✩✫✪ ◗✚❘❏❙☞❚ ✱✿❯❋●★✏✬✒✔✓✼✕✴✳

example 3: CFB, Call Forward on Busy (this service allows a subscriber to forward
all incoming calls to a designated terminal, when the subscriber’s terminal is busy).✄✯✮❅♠✉t✉✈

containsCfb
✆ ✞ ✠☞☛✍✌

: when
✞

is not idle, forward incoming calls to
☛
.
❑❡♠✉t✉✈

contains✇
☎✝✆❣✞s✠✛q Cfb✒✔✓❲✽✢✓✼✕❝✳✇

✆✖✆❣✞ ✹ ✶✸ ✿ ✠ Cfb✒✔✓❑✽ ✹ ✕❥♣rq Cfb✒✔✓❲✽ ✿ ✕❝✳
and

✄✬�■❍ ♠✉t❥✈
contains✇ ▼ ✆❣✞ ✹ ✶✸ ✿ ✠ Cfb✒ ✹ ✽ ✿ ✕✾✽✢✌✬☛✍✭✮✎✑✯✻✭✁☛✲✱☞✒✔✓✼✕✾✽ ☛✔✌✁✎❀✏✬✒ ✹ ✕❪✽✿☛✍✌✁✎✑✏✁✒ ✿ ✕ ❁✾❂◆❃☞❄✑✤✦✥✘❆ ❇P✧✩■✪❉ ✏❅✭✁❊❳☛✔●■❍❏✒✔✓❑✽ ✿ ✕✾✽▲❊❳☛✔●■❍✁☛✔●■❍❏✒ ✿ ✽✿✓✼✕❝✳✇ ❱ ✆❣✞ ✹ ✶✸ ✿ ✠ Cfb✒ ✹ ✽ ✿ ✕✾✽✢✌✬☛✍✭✮✎✑✯✻✭✁☛✲✱☞✒✔✓✼✕✾✽ ☛✔✌✁✎❀✏✬✒ ✹ ✕❪✽ ☛✍✌✁✎✑✏✁✒ ✿ ✕ ❁✾❂◆❃☞❄✑✤✦✥✘❆ ❇P✧✩■✪ ◗✚❘■❙❅❚ ✱❵❯❳●★✏✬✒✔✓✼✕✴✳

example 4: INTL, IN Teen Line (this service allows a user to restrict outgoingcalls
during a specified daily period. The restriction can be over-ridden by entering a pin.
If the given pin is the right one, then a normal call can be initiated, else the user is
requested to abort his call.)



✄✁�✄✂ P✆☎
contains

✄ ▼◗◆◗P❙❘
and specific predicates:

✜❯✖✞✝✸✓✙✆ ✞✼✌
characterises the time slot

where a pin is required from the user
✞

to perform outgoing calls,
❳ ❇ ✖ ✜ ✎✏✖ ✚✯✆✟✞✥✌ means

that the user
✞

should now dial its personal pin, and
✖ ✚✢✗ ❇ ❱✝✖❯❚✥✆ ✞✥✌ means that the dialled

pin is not valid.
✄✯✮ �✄✂ P✟☎

containsIntl
✆✟✞✥✌

:
✞

is subscribing for theINTL service.✰ �✄✂ P✆☎
contains two new events related to the pin dialling:

❚❲✖ ❇ ❱✝❨✙✤✩✤✜❚✘✎ ✖ ✚✯✆ ✞✼✌ for
“
✞

is dialling the expected correct pin”, and
❚❲✖ ❇ ❱✫✮ ❇ ❚✘✎ ✖ ✚✯✆ ✞✼✌ for “

✞
is dialling a wrong

pin”.
❑ �✄✂ P✆☎

contains new invariants expressing that the status
✖ ✚✢✗ ❇ ❱✝✖❯❚ and

❳ ❇ ✖ ✜ ✎✏✖ ✚
are exclusive with the POTS status

✖❯❚ ❱✟✓
,
❚ ✖ ❇ ❱✝✖ ✚❙❨

, . . . and are also mutually exclusive.✄✬�■❍✠�✡✂ P✆☎
contains:

☛ ☎✻✆♦✞✡✠ Intl ✒✔✓✖✕✾✽✿✱✿☛✌☞ ✏✬✒✔✓✖✕✾✽✿☛✔✌✁✎❀✏✬✒✔✓✼✕ ✗✾✙✛✙✛✜❅✗✢✗✾✣❋✤✦✥★✧✩■✪ ✯✰✭✁☛✲✱✎✍✫☛✔●❥✒✔✓✼✕✾✽❵✱✿☛✌☞ ✏✬✒✔✓✼✕✴✳
☛ ✆✼✆♦✞✡✠☞✯✰✭✁☛✲✱✎✍ ☛✍●❥✒✔✓✖✕ ❁✚❂✦❃❅❄ ✏❪✗❪✗✢❁✒✑❅❂◆❭✮✤❖✥❈✧✩✫✪ ✌✬☛✔✭✮✎✑✯✻✭✁☛✔✱✚✒✔✓✼✕✴✳
☛ ▼ ✆♦✞✡✠☞✯✰✭✁☛✲✱✎✍ ☛✍●❥✒✔✓✖✕P❁✚❂✦❃❅❄✔✓✔❃☞❁✕✑☞❂◆❭✮✤✦✥★✧✩✫✪ ☛✔●✗✖✬✭✮✎✑☛✔✌■✒✔✓✖✕ ✳
☛ ❱ ✆♦✞✡✠☞☛✔●✗✖✬✭✮✎✑☛✔✌■✒✔✓✖✕✂✗❪❭❡✜❅✗✢✗✾✣❋✤✦✥★✧✩✫✪ ☛✔✌✁✎❀✏✬✒✔✓✖✕ ✳
☛ ❬ ✆♦✞✡✠☞✯✰✭✁☛✲✱✎✍ ☛✍●❥✒✔✓✖✕ ✗✾❭❡✜☞✗❪✗✾✣❋✤❖✥❈✧✩■✪ ☛✍✌✁✎✑✏✁✒✔✓✖✕❝✳

Specifications are restricted to service specificities. They implicitly refer to the un-
derlying system. For example, the TCS specification contains a service invariant char-
acterising a newly prohibited situation (the subscriber terminal cannot be put in com-
munication with a terminal from its screening list) and a limited behavioural description
(what happens when a forbidden terminal attempts to call the subscribing terminal).

2.3 Semantics

Definition 5 (Models).Let ✪ � ✆ ✄✬✜✣✠✖✄✯✮✩✠ ✰✱✌
be a signature.

A ✪ -model ✘ � ✆✚✙✝✠✖✄✬✠✛✆✟✓✜✛❀✌ ✮✡✢✤✣ ✌ is a set
✙

(terminals) and a set
✄✗❀✦✥ ✆ ✄ ✜ ☎ ✆✞✙☎✌☞✌

(states) equipped for every
✓✧✻ ✵ ✰

and every
✆✞✫

�
✠☛✡☞✡☞✡★✠✆✫ ✻ ✌☎✵✦✙★✧ ✡☛✡☞✡✩✧✪✙✫ ✬✮✭ ✯

✻ times

with a bi-

nary relation7 ✓ ✛ ✆✞✫ �
✠☞✡☞✡☛✡★✠✥✫ ✻ ✌ ❀ ✄✦✧ ✄

.
✘ isdeterministicif and only if for every

✓✧✻ ✵ ✰
and every

✆✝✫
�
✠☞✡☛✡☞✡★✠✥✫ ✻ ✌ ✵✪✙★✧ ✡☛✡☞✡✟✧✰✙✫ ✬✱✭ ✯

✻ times

,

✓ ✛ ✆✝✫
�
✠☛✡☞✡☞✡✘✠✆✫ ✻ ✌ is a partial function.

Definition 6 (Formula satisfaction).Let ✪ � ✆ ✄✬✜✣✠✖✄✯✮✩✠ ✰✱✌
be a signature. Let✘ be a

✪ -model. A state
✦ ✵ ✄

and an interpretation✲ ✬✏✂ ✻ ✙
satisfya formula

❄
, noted✆ ✲ ✠✖✦✔✌ ✌ � ❄

, if and only if:

–
✆ ✲ ✠✖✦✔✌ ✌ � ✎ ✆✟✞

�
✠☞✡☞✡☛✡ ✠☞✞ ✻ ✌✴✳✶✵ ✎ ✆ ✲ ✆ ✞ �

✌ ✠☞✡☞✡☛✡★✠ ✲ ✆✟✞ ✻ ✌ ✌ ✵ ✦
– propositional connectives are handled as usual.

✘ satisfiesa formula
❄

, noted✘ ✌ � ❄
, if and only if for every

✦ ✵ ✄
and every✲ ✬ ✂ ✻✙

,
✆ ✲ ✠✭✦✛✌■✌� ❄

.

Definition 7 (Transition satisfaction). A ✪ -model✘ satisfiesfor
✦ ✵ ✄

and ✲ ✬ ✂ ✻
✙

a str-formula
❄

of the form ✧ ★ ✜✽✑✪✌ ✦☛✫✼✮ ✦ ✬✔✎✒✑✔✓ ✮✰✯✲✱ ✳ ✵✷✶✷✶✷✶ ✵ ✱ ✸ ✹✺✼✻ ✎✒✤✧✦✘✜ ✽
, noted✘ ✌ �✸✷ ✵ ✹ ❄

, if
and only if, if for every

✞✿✾� ☛✺✵ ★ ✜✽✑ , ✲ ✆✟✞✥✌✕✾�✺✲ ✆ ☛✍✌ then:

7 We note❙ ✏✼✻✻✒ ❘ ☎ ✽✄✽✄✽✡✽☞✽ ❘ ❭ ✕ ❙✄✾ to mean that✒ ❙ ✽ ❙✱✾ ✕❀✿ ✏✮✻✰✒ ❘ ☎ ✽✡✽✄✽✄✽☞✽ ❘ ❭ ✕ .



if
✆ ✲ ✠✖✦✔✌ ✌ � �✁ ✢ ✹✄✂✆☎✞✹✞✝✠✟☛✡✰✮☞ then ✌ ✦✎✍✢✵ ✄✲✠✖✦ ✓✜✛ ✆ ✲ ✆✟✞ �

✌✣✠☛✡☞✡☛✡ ✠ ✲ ✆ ✞ ✻ ✌ ✌ ✦✎✍✟✵ ✆ ✲ ✠✖✦✎✍ ✌ ✌ � �✁ ✢✏✟☛✑✡✹✓✒☞
✌

Definition 8 (Invariant satisfaction). A ✪ -model✘ satisfiesfor
✦ ✵ ✄

and ✲ ✬ ✂ ✻ ✙
an invariant ✧✠★ ✜✽✑✪✌ ❄ ✽

, noted✘ ✌ � ✷ ✵ ✹ ✧✠★ ✜✽✑✪✌ ❄ ✽
, if and only if, if for every

✞ ✾� ☛✶✵
★ ✜✽✑✩✠ ✲ ✆ ✞✼✌ ✾� ✲ ✆✟☛✍✌ then

✆ ✲ ✠✖✦✔✌ ✌ � ❄
Definition 9 (Specification satisfaction).A ✪ -model ✘ satisfiesa service specifica-
tion ❋ � ✆ ✪ ✠✭✄✬�■❍ ❏ ❑✙✌

if and only if it satisfies for every
✦ ✵ ✄

and every✲ ✬ ✂ ✻ ✙
each formula of

✄ ✞
.

A service specification is saidconsistentif and only if there exists a non-empty✪ -model
✘ which satisfies it and such that the cardinality of its set

✙
of terminals satisfies:✌ ✙ ✌✕✔ ✝ ❇ ✞ ✟✴❆❈❇ ✑ ✆ ★ ✜✽✑✧✌☞✌ ✖ ✧ ★ ✜✽✑❃✌ ✦☛✫✼✮★✦✕✬ ✎ ✑✩✓ ✮✻ ✎✒✤✧✦✘✜✓✽☎✵ ✄✲�■❍✘✗✙✖ ✧✗★ ✜✽✑✪✌ ❄ ✽☎✵ ❑✪✙

The last condition on the carrier cardinality of✪ -models prevents trivial✪ -models.
A trivial ✪ -model is such that the number of terminals in

✙
is not sufficient to satisfy

each inequation occurring in the★ ✜✽✑ part of each formula in
✄✬�■❍

and
❑
.

2.4 Fundamental results

We first define a✪ -model which will be useful to us in the next section. Let✪✁�✆✫✄✬✜✣✠✭✄✯✮✔✠ ✰ ✌
be a signature. Let

✙
and

✄ ❀ ✥ ✆✫✄✲✜✥☎ ✆✚✙☎✌ ✌
be two sets of terminals and

states, respectively. Let
✄✬�■❍

be a set of str-formulas over✪ . Therefore, define the
✪ -model ✚ ✆✞✙ ✠✖✄✴✌ � ✆✚✙✝✠✖✄✛✍✟✠✛✆✟✓✆✜ ✯✣✢✪✵ ❘ ✹ ✌ ✮✡✢✤✣ ✌ as follows:

–
✄ ✍

is the set inductively defined by
✄ ✍ �✥✤✎✧✦✩★ ✄ ✎ with:✪ ✄✬✫ � ✄

✪ ✦✎✍ ✵ ✄ ✻ ✳ ✵

✭✮✮✮✮✮✮✮✮✮✯ ✮✮✮✮✮✮✮✮✮✰

✖ ✧ ★ ✜✽✑✪✌ ✦☛✫✼✮ ✦✭✬★✎ ✑✩✓ ✮❊✯✲✱ ✳ ✵✷✶✷✶✷✶ ✵ ✱ ✸ ✹✺✼✻ ✎✥✤✧✦★✜✓✽☎✵ ✄✬�■❍ ✠✱✖ ✲ ✬ ✂ ✻ ✙ ✠✖✍✦☎✵ ✄ ✻✳✲ �
✠✛✆ ✌ ✞✿✾� ☛ ✵ ★ ✜✽✑✩✠ ✲ ✆ ✞✥✌✕✾�✺✲ ✆ ☛✍✌ ✌❪✐✆ ✲ ✠✖✦✔✌ ✌ � �✁ ✢ ✹✞✂✏☎✞✹✞✝✠✟☛✡✰✮☞

✐
✦✎✍ � ✆✫✦✵✴ ✟ ✎ ✆ ✲ ✆ ☛ �

✌✣✠☞✡☛✡☞✡✘✠ ✲ ✆ ☛✠✶ ✌☞✌☛✌ ✛ ✎ ✆ ☛ �
✠☞✡☛✡☞✡✘✠☞☛✠✶ ✌❀✵ ✎✥✤✧✦✘✜✰✙✔✌

✳
✟ ✎ ✆ ✲ ✆✟☛ �

✌ ✠☞✡☛✡☞✡★✠ ✲ ✆ ☛✠✶ ✌☞✌☛✌ ✎ ✆ ☛ �
✠☞✡☛✡☞✡★✠ ☛✠✶✂✌✝✵ ✎✥✤✧✦★✜✰✙

– For every
✓✔✻ ✵✹✰

and every
✆✞✫

�
✠☛✡☞✡☛✡ ✠✆✫ ✻ ✌ ✵✦✙ ✧ ✡☞✡☛✡✩✧✪✙✫ ✬✮✭ ✯

✻ times

,
✓✏✜ ✯✣✢✪✵ ❘ ✹ ✆✝✫ �

✠☛✡☞✡☛✡ ✠✆✫ ✻ ✌ is

defined:
✦ ✓✆✜ ✯✣✢✪✵ ❘ ✹ ✆✝✫ �

✠☞✡☛✡☞✡✘✠✆✫ ✻ ✌ ✦✎✍✆✳✶✵✭✮✮✮✮✮✮✮✮✮✮✮✯ ✮✮✮✮✮✮✮✮✮✮✮✰

✖ ✧ ★ ✜✽✑✪✌ ✦☛✫✼✮ ✦ ✬ ✎ ✑✩✓ ✮❊✯✲✱ ✳ ✵✷✶✷✶✷✶ ✵ ✱ ✸ ✹✺✏✻ ✎✥✤✧✦✘✜✍✽☎✵ ✄✬�■❍ ✠✱✖ ✲ ✬ ✂ ✻ ✙ ✠
✆ ✌ ✒ ✔✸✷ ✔ ✚✲✠ ✲ ✆✟✞✺✹✛✌ � ✫✻✹✛✌✾✐
✆ ✌ ✞✿✾� ☛✺✵ ★ ✜✽✑✩✠ ✲ ✆ ✞✼✌ ✾�✺✲ ✆✟☛ ✌ ✌❪✐✆ ✲ ✠✖✦✔✌ ✌ � �✁ ✢ ✹✞✂✏☎✞✹✞✝✠✟☛✡✰✮☞

✐
✦✎✍ � ✆✫✦✼✴ ✟ ✎ ✆ ✲ ✆ ☛ �

✌✣✠☛✡☞✡☞✡★✠ ✲ ✆ ☛✠✶☎✌ ✌☞✌ ✛ ✎ ✆ ☛ �
✠☛✡☞✡☞✡★✠☞☛✠✶ ✌❀✵ ✎✒✤✧✦✘✜✰✙

✳
✟ ✎ ✆ ✲ ✆ ☛ �

✌✣✠☛✡☞✡☛✡★✠ ✲ ✆✟☛✠✶☎✌☞✌☞✌ ✎ ✆✟☛ �
✠☛✡☞✡☛✡★✠☞☛✽✶✂✌ ✵ ✎✒✤✧✦✘✜✰✙✔✌



Let us point out that when
✂

,
✙

,
✄

and STR are finite sets, then✚ ✆✞✙ ✠✭✄✯✌ is com-
putable. Let us consider✪ a signature,

✂
a set of variables over✪ and

❑
a set of

invariants. Define
✰ ☎ ✆✝✂✶✌ �✠✟ ✦✕❀ ✄ ✜ ☎ ✆✝✂ ✌☛✌ ✌ ✲ ✬ ✂ ✻ ✂ ✠ ✌ ✧ ★ ✜✽✑✪✌ ❄✗✽☎✵✢❑✒✠

✆ ✌ ✞✿✾� ☛✺✵ ★ ✜✽✑✩✠ ✲ ✆ ✞✥✌✕✾�✺✲ ✆ ☛✍✌ ✌ ✵ ✆✫✦ ✠ ✲ ✌■✌� ❄✲✌✰✙
then define

❑ ☎ ✆✞✂ ✌ � ✟ ✦☎✵ ✰ ☎ ✆✝✂ ✌☛✌ ✾ ✖✍✦ ✍ ✵ ✰ ☎ ✆✝✂ ✌ ✠✖✦ ✍ ❀ ✦ ✙
.

Proposition 1. When✪ is a finite signature and
✂

and
❑

are finite sets, then
✰✕☎ ✆✝✂✶✌

and
❑ ☎ ✆✝✂ ✌

are computable.

Theorem 1. Let ❋ � ✆ ✪ ✠✭✄✬�■❍ ❏ ❑✙✌
be a service specification.❋ is consistent if and

only if ✚ ✆✞✂ ✠✥❑☛☎ ✆✝✂ ✌ ✌
satisfies all the axioms of❋ .

Proof. The if part is obvious.
The only if part. Suppose that❋ is consistent but✚ ✆✝✂ ✠❊❑❉☎ ✆✝✂ ✌ ✌

does not satisfy it.
Obviously, the consistency of❋ means the consistency of

✄✲�■❍
and of

❑
. By con-

struction, the consistency of
❑

implies that
❑❉☎ ✆✝✂ ✌

is not empty. In the following, the
question of (the verification of) the consistency of

❑
will be simply denoted byInvCons.

Therefore, if✚ ✆✞✂ ✠✥❑☛☎ ✆✝✂✶✌☞✌
does not satisfy❋ then by construction of✚ ✆✞✂ ✠✥❑✴☎ ✆✝✂ ✌ ✌

which relies on str-formulas, either two str-formulas with the same event lead to two in-
compatible states or a str-formula leads to a state violating the invariants. These two
cases are denoted by respectivelyNonDet for non-deterministic str-formulas andVio-
lInv for the non preservation of the invariants by str-formulas.Then, let us prove that
bothNonDetandViolInv lead to a contradiction.

1. NonDet there exists8 � � ✧ ★ ✜✽✑❃✌ ✦☛✫✼✮★✦ ✬✛✎✒✑✩✓ ✮❊✯✲✱✜✳❊✵✷✶✷✶✷✶ ✵ ✱☛✸✜✹✺✼✻ ✎✒✤✧✦✘✜ ✽☎✵ ✄✬�▲❍
,
✦ ✵ ✄ ✍

and

✲ ✬❲✂ ✻ ✂
such that for every

✞ ✾� ☛✸✵ ★ ✜✽✑ , ✲ ✆ ✞✼✌✭✾� ✲ ✆ ☛✍✌ , ✆✫✦ ✠ ✲ ✌▲✌� �✁ ✢ ✹✄✂✆☎✞✹✞✝✠✟☛✡✰✮☞ , but

there exists
✦✏✍

and9 ✎ ✆ ☛ �
✠☞✡☞✡☛✡★✠ ☛✠✶ ✌❀✵ ✎✒✤✧✦✘✜

such that
✦✬✓✆✜ ✯✂✁✓✵ �☎✄ ✯✆✁ ✹✝✹ ✆ ✲ ✆ ✞ �

✌✣✠☞✡☛✡☞✡ ✠ ✲ ✆ ✞ ✻ ✌☞✌✥✦✎✍
and

✎ ✆ ✲ ✆✟☛ �
✌✣✠☞✡☛✡☞✡✘✠ ✲ ✆ ☛✠✶ ✌☞✌✜✾✵ ✦✎✍ . By definition, this means that there exists� ✍ � ✧

★ ✜✽✑✆✍❯✌ ✦☛✫✢✮ ✦✎✍✍✬✙✎✒✑✔✓✏✍ ✮❊✯✆✝ ✳ ✵✷✶✷✶✷✶ ✵ ✝ ✸ ✹✺✼✻ ✎✒✤✧✦✘✜✞✍✓✽☎✵ ✄✬�▲❍
and ✲ ✍ ✬❙✂ ✻ ✂

such that for every✞✩✍ ✾� ☛✺✍❀✵ ★ ✜✽✑✏✍ , ✲ ✍ ✆ ✞ ✍ ✌ ✾� ✲ ✍ ✆ ☛✺✍ ✌ , ✆ ✦ ✠ ✲ ✍ ✌ ✌ � �✁ ✢ ✹✄✂✆☎✞✹☎✞ ✝✠✟ ✡✰✮☎✞☞ , ✛ ✎ ✆✝❳ �
✠☞✡☛✡☞✡ ✠✥❳✵✶☎✌✱✵ ✎✥✤✧✦★✜✞✍

and ✲ ✆ ☛ ✎ ✌ � ✲ ✍✫✆✞❳ ✎ ✌
(
✒ ✔ ✖ ✔ ✝

). As ❋ is consistent, there exists a✪ -model ✘
which satisfies it. Let✲ ✍ ✍ ✬ ✂ ✻ ✙

be an interpretation in✘ such that for ev-
ery

✞❂✾� ☛ ✵ ★ ✜✽✑ and
✞ ✍ ✾� ☛ ✍ ✵ ★ ✜✽✑ ✍ , ✲ ✍ ✍ ✆ ✞✼✌ ✾� ✲ ✍ ✍ ✆✟☛ ✌ and ✲ ✍ ✍ ✆✟✞ ✍ ✌ ✾� ✲ ✍ ✍ ✆ ☛ ✍ ✌ , and

✲ ✍ ✍ ✆✟✞ ✎ ✌ � ✲ ✍ ✍✫✆✞❳ ✎ ✌❈✒✩✔ ✖ ✔ ✚
. By the property on the carrier cardinality of✪ -

models,✲ ✍ ✍ exists.
By construction of✚ ✆✝✂ ✠✥❑☛☎ ✆✞✂ ✌☞✌

, there exists a state
✦✎✍ ✍

in ✘ such that✲ ✍ ✍ ✆✫✦✔✌✓❀ ✦ ✍ ✍
.

We then have for every☞ ✵ ✦☞✫✢✮ ✦✼✳☎✦☛✫✼✮★✦✏✍ ✳❀✎ ✑✩✓✢✳❀✎ ✑✩✓✏✍
that

✆✫✦✎✍ ✍✫✠ ✲ ✍ ✍ ✌ ✌ � ☞ . Therefore,
there exists

✦✠✟
in ✘ such that

✦✎✍ ✍ ✓✆✜ ✯✆✁✓✵ �✡✄ ✯✆✁ ✹✝✹ ✆ ✲ ✍ ✍ ✆ ✞ �
✌ ✠☞✡☛✡☞✡★✠ ✲ ✍ ✍ ✆ ✞ ✻ ✌☞✌ ✦✠✟ . But, we have

both
✎ ✆ ✲ ✍ ✍ ✆ ☛ �

✌✣✠☛✡☞✡☞✡ ✲ ✍ ✍ ✆ ☛ ✶ ✌ ✌ ✵ ✦✠✟
and

✎ ✆ ✲ ✍ ✍ ✆✟☛ �
✌ ✠☞✡☞✡☛✡ ✲ ✍ ✍ ✆ ☛ ✶ ✌☞✌✜✾✵ ✦✠✟ what is impossible.

8 ❁ ✾ is the set of state of☛ ✒✌☞ ✽☎✍✏✎✰✒✌☞ ✕▲✕
9 Without any loss of generality, we only consider the case of a positive literal✍✘✒ ❚ ☎ ✽✄✽✄✽✄✽❅✽ ❚✠✑ ✕ in✍✫❯ ❙ ✱ . The case of a negative literalq ✍✘✒ ❚ ☎ ✽✄✽✄✽✡✽☞✽ ❚ ☞ ✕ can be handled in a similar way.



2. ViolInv there exists
✦✎✍✡✵ ✄ ✍✕✴✓❑☞☎ ✆✞✂ ✌ 10, an invariant✧✩★ ✜✽✑✪✌ ❄ ✽

and an interpreta-
tion ✲ ✬ ✂ ✻ ✂

such that for every
✞✿✾� ☛ ✵ ★ ✜✽✑ ✲ ✆ ✞✼✌ ✾�✺✲ ✆✟☛ ✌ but

✆✫✦✏✍ ✠ ✲ ✌✜✾✌ � ❄
.

By definition, this means that there exists
✦☎✵ ❑❉☎ ✆✝✂ ✌

,
✚

str-formulas✧ ★ ✜✽✑❉✎❊✌ ✦☛✫✼✮★✦☛✎✚✬
✎ ✑✩✓ ✎ ✮✁�❁✯✲✱ � ✳ ✵✷✶✷✶✷✶ ✵ ✱ �✸ �✺✏✻ ✎✒✤✧✦✘✜ ✎ ✽

in STR,
✚

interpretations✲ ✎ ✬ ✂ ✻ ✂
and

✚✄✂ ✒
states

✦ ✎
with

✦
� � ✦

and
✦ ✻✆☎ � � ✦✎✍

, such that for every
✒❈✔ ✖✓✔ ✚

and every
✞ ✾� ☛✺✵ ★ ✜✽✑ ✎

✲ ✎ ✆✟✞✥✌✿✾� ✲ ✎ ✆✟☛✍✌ , ✆ ✦ ✎ ✠ ✲ ✎ ✌ ✌ � �✁ ✢ ✹✄✂✆☎✞✹ � ✝✠✟☛✡✰✮ �☞ ,
✦ ✎ ✓ ✜ ✯✂✁✓✵ � ✄ ✯✆✁ ✹✝✹✎ ✆ ✲ ✎ ✆ ✞

✎
�
✌✣✠☛✡☞✡☛✡★✠ ✲ ✎ ✆ ✞

✎
✻ � ✌ ✌ ✦ ✎ ☎ �

and
✆✫✦ ✎
☎ �
✠ ✲ ✎ ✌ ✌ � �✁ ✢✏✟ ✑ ✹✄✒ �☞ . By construction of✚ ✆✞✂ ✠✥❑ ☎ ✆✝✂ ✌ ✌

, this then means there

exists for every
✒✢✔ ✖✭✔ ✚

,
✎✼✎✖✆ ☛ ✎

�
✠☞✡☛✡☞✡★✠ ☛ ✎✶

�
✌ ✵ ✄ ✜✆☎ ✆✝✂ ✌

such that✲ ✆ ☛
✎✹ ✌ � ✲ ✎✖✆ ☛

✎✹ ✌
for every

✒✭✔ ✷ ✔ ✝ ✎
, and

✎✼✎☞✆ ✲ ✆✟☛
✎

�
✌✣✠☞✡☛✡☞✡✘✠ ✲ ✆ ☛

✎✶
�
✌ ✌❀✵ ✦

but
✎✼✎ ✆ ✲ ✆ ☛

✎
�
✌✣✠☛✡☞✡☞✡★✠ ✲ ✆ ☛

✎✶
�
✌ ✌✴✾✵ ✦✎✍

.
As ❋ is consistent, there exists a✪ -model ✘ which satisfies it. Let✲ ✍ ✬ ✂ ✻ ✙

be
an interpretation in✘ such that for every

✞ ✾� ☛✸✵ ★ ✜✽✑ ✳ ✤
�✞✝ ✎ ✝ ✻ ★ ✜✽✑☛✎ , ✲ ✍ ✆ ✞✥✌✭✾� ✲ ✍ ✆✟☛ ✌ .

By the property on the carrier cardinality of✪ -models,✲ ✍ exists. By construction
of ✚ ✆✝✂ ✠❊❑ ☎ ✆✝✂ ✌ ✌

, for every
✒ ✔ ✖❈✔ ✚✟✂✠✒

, there exists in✘ a state
✦✆✍✎

such that
✲ ✍ ✆ ✦ ✎ ✌❈❀ ✦✎✍✎

. Moreover, for every
✒✑✔❅✖✕✔ ✚

,
✦✏✍✎ ✓✜✛✎ ✆ ✲ ✍ ✆ ✞ ✎ � ✌✣✠☛✡☞✡☛✡★✠ ✲ ✍ ✆ ✞ ✎✻ � ✌☞✌❀✦✎✍✎ ☎ � . We

the have for every
✒ ✔ ✖ ✔ ✚

and every☞ ✵ ✦☛✫✼✮★✦ ✎ ✳ ✎ ✑✩✓ ✎
that

✆ ✦✎✍✎ ✠ ✲ ✍ ✌✿✌� ☞ ,

and then
✆ ✦✎✍✎
☎ �
✠ ✲ ✍ ✌ ✌ � �✁ ✢✏✟ ✑ ✹✄✒✠�☞ . Whence we deduce that for every

✒ ✔ ✖ ✔ ✚
,

✎✏✎✖✆ ✲ ✍ ✆ ☛ ✎� ✌✣✠☛✡☞✡☞✡✘✠ ✲ ✍ ✆ ☛ ✎✶ � ✌ ✌❀✵ ✦✎✍✻✆☎ � and
✎✼✎☞✆ ✲ ✍ ✆ ☛ ✎� ✌✣✠☛✡☞✡☛✡★✠ ✲ ✍ ✆ ☛ ✎✶ � ✌ ✌✴✾✵ ✦✎✍✻✆☎ � what is impossi-

ble.

Let us note that the proof of Theorem 1 highlights the 3 questions to solve in order
to show specification consistency. They have been notedInvCons, NonDet andVio-
lInv . The two last ones will be solved by the two algorithms given inSection 3. The
first question will be tackled in Section 4.2.
Let us remark that str-formula determinism is sufficient to ensure specification consis-
tency but in no case it is necessary.

2.5 Service integration

The key question now is how to define service integration provided with an adequate
semantic counterpart. A first answer might be to consider the union of axioms issued
from different service specifications. However, this is not a good solution. Indeed, recall
that a service is defined as possibly modifying the behaviourof the existing system on
which it will be plugged on. Hence, any system obtained by the union of axioms of its
different services would be lucky enough to be inconsistent. Therefore, in order to avoid
to introduce inconsistencies during integration steps, choices are needed about which
axioms are preserved, lost, modified and added. Hence, the integration of two services
will be parameterised by choices. In this paper, we propose an interactive methodol-
ogy based on algorithms introduced in Section 3 to determinethese choices. These
algorithms will automatically check consistency of servicespecifications. When incon-
sistencies (i.e. interactions) are detected, they are presented to an expert who makes

10 ❁ ✾ is the set of state of☛ ✒✌☞ ✽☎✍ ✎ ✒✌☞ ✕▲✕ .



integration choices (see Section 4 for more explanations onhow this methodology is
worked up).

3 Interactions

We have seen in the proof of Theorem 1 that the inconsistency of a service specification
may be the result of: the inconsistency of invariantsInvCons, or the non-determinism
of some events such as specified in the service specificationNonDet, or because some
str-formulas question some invariantsViolInv .

The first step, that is the question of invariant consistencyInvCons, boils down to a
classical boolean satisfiability problem11. The way we reduceInvCons to the boolean
satisfiability problem will be handled in Section 4.2. Below,we detail the algorithms
which solve the two last questionsNonDetandViolInv .

3.1 Non-determinism

Input A finite specification❋ � ✆ ✪ ✠✥❑ ❏ ✄✬�■❍☎✌
such that

❑
is consistent. A finite set

of variables
✂

. Two str-formulas in
✄✬�■❍

, ✧ ★ ✜✽✑ �
✌ ✦☞✫✢✮ ✦

�
✬ ✎ ✑✩✓

�
✮❊✯ ✱ ✳ ✵✷✶✷✶✷✶ ✵ ✱ ✸ ✹✺✼✻ ✎✒✤✧✦✘✜

�
✽

and ✧✗★ ✜✽✑ ✁
✌ ✦☛✫✢✮ ✦

✁
✬✘✎ ✑✩✓

✁
✮❊✯✁� ✳ ✵✷✶✷✶✷✶ ✵ � ✸ ✹✺✼✻ ✎✒✤✧✦✘✜

✁
✽

Initialisation Compute
❑☛☎ ✆✝✂ ✌

and✚ ✆✞✂ ✠✥❑☛☎ ✆✝✂ ✌ ✌
. Note

✄ ✍
the set of states of✚ ✆✝✂ ✠✥❑☛☎ ✆✝✂ ✌ ✌

and
✂ ✁ the whole set of endofunctions from

✂
to

✂
.
� ✝ ✎✢✬ � ✄ ✍

and ❇ ✚✡✦☛❳ ✓✛✑❈✬ �✜✽✑✴✫✥✓
.

Loop while
� ✝ ✎ ✾� ✂

and ❇ ✚✡✦☞❳✂✓✘✑ � � ❇ ❱ ✦✛✓ do:
1) choose

✦
in
� ✝ ✎

and
� ✝ ✎ ✬ � � ✝ ✎ ✴ ✟ ✦ ✙ ;

2)
� ✝ ✎✩✍❙✬ � ✂ ✁ ;

3) Loop while
� ✝ ✎ ✍ ✾� ✂

and ❇ ✚✡✦☛❳ ✓✛✑ � � ❇ ❱✫✦✛✓ do:
3.1) choose✲ in

� ✝ ✎ ✍
s.t. ✲ ✆ ✞✼✎✽✌ � ✲ ✆✟☛ ✎ ✌ (

✒ ✔ ✖ ✔ ✚
), and

� ✝ ✎ ✍✚✬ � � ✝ ✎✩✍✳✴
✟ ✲ ✙ ;

3.2) if ✌ ✞ ✾� ☛✺✵ ✤✹☎✄
� ✵ ✁

★ ✜✽✑ ✹ ✠ ✲ ✆ ✞✼✌ � ✲ ✆✟☛✍✌ then if ✌ ☞ ✵ ✤✹☎✄
� ✵ ✁

✦☛✫✢✮ ✦ ✹ ✳ ✎ ✑✩✓ ✹ ✠✘✆ ✲ ✠✭✦✔✌ ✌ � ☞
then ❇ ✚✡✦☞❳✂✓✘✑ ✬ � ✜✽✑✴✫✥✓

;
end of loop

end of loop
Output

✑✔✓✛✜❯✫✥✑✔✚✯✆ ❇ ✚✡✦☛❳ ✓✛✑✩✌

Theorem 2. Let ❋ � ✆ ✪ ✠✥❑✓❏ ✄✲�■❍☎✌
be a specification where✪ is a finite signature,

and
❑

and
✄✬�■❍

are finite sets. Let
✂

be a finite set of variables which contains all
variables occurring in

❑ ❏ ✄✬�■❍
. Then, ✚ ✆✝✂ ✠❊❑ ☎ ✆✞✂ ✌☞✌

is deterministic if and only if

for every pair of str-formulas in
✄✲�■❍

, ✧ ★ ✜✽✑ �
✌ ✦☞✫✢✮ ✦

�
✬ ✎✒✑✩✓

�
✮❊✯✲✱ ✳ ✵✷✶✷✶✷✶ ✵ ✱ ✸ ✹✺✼✻ ✎✥✤✧✦✘✜

�
✽

and

✧ ★ ✜✽✑ ✁
✌ ✦☛✫✼✮ ✦

✁
✬✧✎✒✑✔✓

✁
✮❊✯✆� ✳ ✵✷✶✷✶✷✶ ✵ � ✸ ✹✺✼✻ ✎✥✤✧✦★✜

✁
✽

, the above algorithm terminates and answers
false.

11 The boolean satisfiability problem is solved by SAT solvers,e.g. GRASP [18] and Chaff [19].



3.2 Invariant preserving

Let ❋ � ✆ ✪ ✠✭✄✬�■❍ ❏ ❑✙✌
be a specification. Let

✂
be a set of variables which contains

all variables occurring in❋ . By definition, we have:

✌✁� ✵ ❑ ✠ ✌ ✦ ✵ ❑☞☎ ✆✞✂ ✌✣✠ ✌ ✲ ✬ ✂ ✻ ✂ ✠ ✚ ✆✝✂ ✠❊❑☞☎ ✆✝✂ ✌ ✌ ✌ �✸✷ ✵ ✹ �
The questionViolInv is equivalent to the following one:are invariants preserved for
states in

✄✛✍✕✴✓❑☞☎ ✆✞✂ ✌
? where

✄✛✍
is the set of states of✚ ✆✝✂ ✠❊❑☛☎✂✆✞✂ ✌☞✌

.
When

✄✲�■❍
,
❑

and
✂

are finite sets, the above problem is computable as expressedby
the following algorithm:

Input A finite specification❋ � ✆ ✪ ✠✥❑ ❏ ✄✬�■❍☎✌
. A finite set of variables

✂
which

contains all the variables that occur in axioms of❋ . An invariant ✧ ★ ✜✽✑❃✌ ❄✗✽
in

❑
.

Initialisation Compute
❑☛☎ ✆✝✂ ✌

and✚ ✆✞✂ ✠✥❑☛☎ ✆✝✂ ✌ ✌
. Note

✄ ✍
the set of states of✚ ✆✝✂ ✠✥❑☛☎ ✆✝✂ ✌ ✌

and
✂ ✁ the whole set of endofunction from

✂
to

✂
.
� ✝ ✎ ✬ � ✄ ✍ ✴ ❑☞☎ ✆✝✂ ✌

and
❇ ✚✡✦☞❳✂✓✘✑ ✬ � � ❇ ❱✫✦✛✓ .

Loop while
� ✝ ✎ ✾� ✂

and ❇ ✚✡✦☞❳✂✓✘✑ � � ❇ ❱ ✦✛✓ do:
1) choose

✦
in
� ✝ ✎

and
� ✝ ✎ ✬ � � ✝ ✎ ✴ ✟ ✦ ✙ ;

2)
� ✝ ✎✩✍❙✬ � ✂ ✁ ;

3) Loop while
� ✝ ✎ ✍ ✾� ✂

and ❇ ✚✡✦☛❳ ✓✛✑ � � ❇ ❱✫✦✛✓ do:
3.1) choose✲ in

� ✝ ✎ ✍
and

� ✝ ✎ ✍ ✬ � � ✝ ✎✩✍✕✴ ✟ ✲ ✙ ;
3.2) if ✌ ✞ ✾� ☛✺✵ ★ ✜✽✑ , ✲ ✆✟✞✥✌✭✾�✺✲ ✆ ☛✍✌

then ❇ ✚✡✦☛❳ ✓✛✑❈✬ � ✚ ✤✔✜ ✆☞✆ ✲ ✠✭✦✛✌■✌� ❄✲✌
end of loop

end of loop
Output

✑✔✓✛✜❯✫✥✑✔✚✯✆ ❇ ✚✡✦☛❳ ✓✛✑✩✌
Theorem 3. ✚ ✆✝✂ ✠✥❑ ☎ ✆✝✂ ✌ ✌

satisfies
❑

if and only if for every invariant in
❑
, the above

algorithm terminates and answers false.

4 Methodology and experiments

When integrating a new feature, we enter upon the problem of how to apply the algo-
rithms and in which order, to ensure the consistency of the resulting specification.

4.1 The Design Phase Process

We have seen in Section 2.5 that to avoid introducing inconsistency during integration,
choices are needed about which formulas are preserved, lost,modified or added. We
propose an interactive approach based on the algorithms introduced before. Interactions
are detected and presented to an expert who makes integrationchoices.

A service specification❋ provides modifications with respect to an implicit sys-
tem. From a formal point of view, the integration of❋ on a system✂ ☛✍✦ is a compo-
sition which is parameterised by the required choices, i.e.,it is abstractly denoted by
✂ ☛✍✦ ✂☎✄✝✆ ✑ ✎✞✄ ✮✕✹ ❋ . It generally leads to some modifications of✂ ☛✍✦ ; thus, we do not easily



get the addition of two services together to a system (✂ ☛✍✦ ✂ ✄ ✟☛❋ �
✠ ❋ ✁

✙
) from the addi-

tion of each of them,
✄✂✁ ✄ ✂ ✄

� ❋ � and
✄✂✁✱✄✄✂☎✄

✁ ❋ ✁ . Indeed, it would suppose not only
to confront the specifications❋ � and ❋ ✁ , but also to re-examine★ � and ★ ✁ because★ �

was thought on✂ ☛✍✦ and not on✂ ☛✍✦ modified by★ ✁ , and conversely. Thus our approach
is to integrate services one by one. Therefore, givenPOTSand services❋ �

✠☞✡☛✡☞✡★✠ ❋ ✻ , we
build an integration

✆✆✡☞✡☛✡✘✆
POTS

✂ ✄ ✳ ❋ ✎ ✳ ✌ ✂ ✄☎✄✝✆✞✆✟✆ ✂ ✄ ✸ ❋ ✎ ✸ ✌ , where the order
✖

�
✠ ✆✞✆✟✆ ✠✆✖ ✻

is significant with respect to the choices★ �
✠ ✆✞✆✞✆ ✠ ★ ✻ .

Note
✄✬☛✍✦ ✹ ✲ � � ✆ ✪ ✹ ✲ �

✠✭✄✬�■❍ ✹ ✲ �
❏ ❑ ✹ ✲ �

✌
the system specification resulting from✆❁✡☞✡☛✡✘✆✡✠☞☛ �✂✄✟✂☎✄ ✳ ❋ ✎ ✳ ✌ ✂☎✄ ✄ ✡☞✡☛✡ ✂☎✄✍✌ ✳ ❋ ✎✎✌✑✏ ✳ ✌ and ❋ ✎✒✌ � ✆ ✪ ✎✎✌ ✠✖✄✬�■❍ ✎✒✌ ❏ ❑✣✎✎✌✛✌

. In order to
determine the next choice

✂ ✄
�
✌ for integrating❋ ✎✒✌ , the following process is applied:

1. (a) Checking the invariant consistency of
❑ ✹ ✲ �

✳✢❑✣✎✒✌
using the algorithmConsInv

by considering one by one the invariants of
❑❉✎✎✌

(b) Solving inconsistency as soon as it occurs by modifying one of the involved
invariants and starting again Point 1.a after each encountered inconsistency.

This first step generates a consistent set
❑❉☎✓✌✑✏ ✳ ✝ ☎ � ✌ , or more simply

❑
, of invariants

which will be used in the reference specification for the next two following points.
2. (a) Performing the algorithmNonDeton every pair

✆ � �
✠ � ✁

✌
where� �

✵ ✄✬�▲❍ ✹ ✲ �

and � ✁
✵ ✄✬�▲❍▲✎✒✌

such that� � and � ✁ satisfy the condition of the input part of
the algorithm (i.e. the event which occurs in� � and � ✁ is the same).

(b) Solving non-determinism conflicts as soon as they occur,and starting again
Point ● ✡ ❇ after each one of them. This gives rise to a new set of str-formulas✄✬�■❍

.
3. (a) Performing the algorithmViolInv on every invariant in

❑
with respect to the

✪ ✹ ✲ �
✳ ✪ ✎✒✌

-model ✚ ✆✝✂ ✠❊❑☞☎✔✌✑✏ ✳ ✝ ☎ � ✌ ✆✞✂ ✌☞✌
computed from

❑
and the set

✄✬�■❍
resulting from Point● ✡ above.

(b) Solving inconsistency conflicts as soon as they occur.
4. Point✕ ✡ possibly modifies both sets

✄✬�■❍
and

❑
, and then gives rise to two new sets✄✬�■❍ ✍

and
❑✕✍

. If this is the case, then starting again the above process for
❑✺✍

and✄✬�■❍ ✍
. Otherwise, the process is terminating.

To ensure termination of the above process, a strategy is to impose that:

1. for every pair
✆ � �

✠ � ✁
✌

where � � and � ✁ are two str-formulas satisfying condi-
tions of Point ● ✡ ❇ , if all non-determinism conflicts for� � with all str-formulas of✄✬�■❍ ✹ ✲ � have been already handled (i.e.� ✁ is a str-formula which has been added
or modified during some previous steps of the first algorithm)then the choice of
the expert to solve the non-determinism conflict between� � and � ✁ (when it ex-
ists) necessarily rests on� ✁ .

2. when a consistency conflict occurs on invariants by the algorithm ViolInv , the
choice of the expert necessarily rests on invariants (i.e. str-formulas of

✄✬�■❍
are

preserved).

4.2 Implementation

In the Valiserv project framework, the process presented inthe previous section has
been implemented. We have then defined a prototype to help theexpert for specifying



and validating service-oriented telecommunication systems. To produce more efficient
implementations of algorithms, a first step of the above process has been to restrict the
cardinality of the set of variables

✂
occurring in axioms of the specification under con-

sideration. This has allowed to reduce the invariant consistencyInvCons to a proposi-
tional satisfiability problem of reasonable size and to decrease the complexity of the step
3) in both algorithmsNonDetandViolInv in Section 3. The point is to translate a set of
invariants into an equivalent single invariant. To achievethis purpose we first transform
any axiom into its Skolem form. To simplify, let us consider an invariant of the form
✧ ★ ✜✽✑✪✌ ❦ ✽

where
✂

is its vector of variables occurring in★ ✜✽✑ and ❦ . Obviously, such a

formula can be written under its equivalent Skolem form:✌ ✂ ✠ �✱ �✁�✄ � � ✢ ✄ ✒ ✡
✞ ✎ ✾� ☛ ✎ ✵ ❦ . If

we consider two such formulas� ✎
of the form ✧ ★ ✜✽✑ ✎ ✌ ❦ ✎ ✽

for
✖ � ✒ ✠ ● with

✂ ✎
their

respective variable set and provided that
✂

�✄✂ ✂
✁ � ✂

, a naive approach consists on
putting ✌ ✂

�
✳✍✂

✁ as a global universal variable vector quantifier. But such a solution has
the main drawback of building formulas with too many variables. Under the hypothesis
that the size of

✂
� is less or equal to the one of

✂
✁ , in order to minimise the number of

variables, we search for substitutions✲ ✬ ✂
� ✻ ✂

�
✳✢✂

✁ such that every inequality on
two variables of

✂
� is preserved by✲ in

✂
�
✳✕✂

✁ . There necessarily exist such substitu-
tions (e.g. the identity). In fact, we are looking for such substitutions which minimise for
the size of the set✲ ✆✝✂ �

✌ ✳❈✂
✁ . When such a substitution is found, then✲ ✆✞✂ �

✌✍✳ ✂
✁ will

become the variable vector used to universally quantify theresulting Skolem formula✌ ✲ ✆✝✂ �
✌ ✳ ✂

✁
✠ �
✱ �☎�✄ � � ✢ ✷ ✯ ✄ ✒ ✡ ✳ ✹✧✝ ✄ ✒ ✡ ✄

✞ ✎ ✾� ☛ ✎ ✵ ❦ . The computation of an optimal substitution

is done by means of systematic study of all substitutions compatible with the inequal-
ity constraints. By iterating such a variable factorisation between all invariants, we can
control the whole number of variables to be considered. The boolean satisfiability prob-
lem corresponding to a formula✌ ✂ ✠ �

✱ �✆�✄ � � ✢ ✄ ✒ ✡
✞✼✎ ✾� ☛ ✎ ✵ ❦ is then simply given by the

propositional formula
✝

✞✠✟ ✁☛✡ ✁✓✵ ☞✴✱ � �✄ � �✚✢ ✄ ✒ ✡✥✵ ✞ ✯✲✱ �✝✹ �✄ ✞ ✯✆� � ✹
✌ ✆ ❦ ✌

where the atoms
✎ ✆ ✞

�
✠☛✡☞✡☞✡★✠☞✞ ✻ ✌

occurring in✌ ✆ ❦ ✌
are viewed as simple propositional variables.

4.3 Case study

The above methodology has been applied on many telecommunication examples. Among
other, it has been applied on the example presented in Section 2. Here, we give the re-
port of this case study. Its interest is it is significant enough but short enough to be
presented in this paper. We incrementally integrate several services yielding the system
(((POTS

✂☎✄ ✳ TCS)
✂ ✄ ✄

CFB)
✂ ✄✎✍

INTL). The main steps have been the following:✪ POTS
✂☎✄ ✳ TCS: a non-determinism has been detected between❦ ✁ and � � . We have

modified ❦ ✁ , intuitively giving the priority toTCSonPOTS.✪ ((POTS
✂☎✄ ✳ TCS

✌ ✂☎✄ ✄
CFB): a non-determinism has been detected between❦ ✟ and✏ ✟ . We have modified❦ ✟ . We have then detected that✏ ✟ violates theTCSinvariant� � . We have corrected it by adding✛ � ★ ✦ ✆ ✁ ✠ ✄ ✌

to the subscription set of✏ ✟ . Then,
we add the following str-formula for the case we have

� ★ ✦✕✆✫✁ ✠ ✄ ✌
:



✇
✾ ▼ ✆♦✞ ✹ ✶✸ ✿ ✠ Cfb✒ ✹ ✽ ✿ ✕✾✽ ✾ ❨☞❙ ✒ ✿ ✽✿✓✼✕✾✽▲✌✬☛✔✭✮✎✑✯✻✭✮☛✲✱✚✒✔✓✼✕✾✽ ☛✔✌✁✎❀✏✬✒ ✹ ✕❪✽▲☛✔✌✁✎❀✏✬✒ ✿ ✕✘❁✚❂✦❃❅❄✑✤✦✥✘❆ ❇❈✧✩✫✪◗✾❘❏❙☞❚ ✱❵❯❳●★✏✬✒ ✿ ✕✾✽✿☛✔✌✁✎❀✏✬✒ ✿ ✕❝✳

Thus,TCShas the priority onCFBandCFB has the priority onPOTS.✪ (((POTS
✂ ✄ ✳ TCS)

✂ ✄☎✄
CFB)

✂ ✄ ✍
INTL): a non-determinism has been detected between❦ � and � � . We have modified❦ � , intuitively giving the priority toINTL on POTS,

TCSandCFB.

The specification ofPOTS, TCS, CFB and INTL together contains twenty formulas.
During the integration process, we have modified four of them and introduced a new
one. The ValiServ tool automatically detects current interactions, presents the detected
interactions to the expert under a detailed form and allows the expert to modify the
related specification part so that the considered interaction is suppressed according to
its judgment. Such an approach allows to manage the intrinsiccomplexity of service-
oriented systems since the expert only intervenes to solve interactions according to their
subjective status. Thus, our service integration method may be viewed as a sequence of
expert choices in a set of resolution options, each of these expert choices coming from
an automatic feature interaction detection.

5 Related Work

Several previous works have been interested by feature integration and interaction de-
tection issues from a high level of abstraction. In particular, new architectures have been
designed for telecommunications systems in order to facilitate the addition of a new ser-
vice. [5] or [13] present such approaches, useful for designing and implementing new
services but not to found rigorous interaction detection methods. [23] gives a general
framework to systematically combine services together. Only consistent combinations
of services are considered. When an inconsistency is detected for a given combina-
tion of services, this means that there exists an interaction between combined features.
However, the paper is not concerned by the need of providing theoretical and method-
ological help in order to combine service in presence of interactions. Some other works,
like [9], are also based on the use of model-checking tools inorder to detect interac-
tions. This allows to consider general temporal properties.The main drawback of all
these approaches is that they require to instantiatea priori different configurations to
build all the interesting subscription patterns among a small number of fixed phones.

We claim that the use of symbolic techniques for dealing with phone variables is
the key to deduce interactions built over an appropriate number of phones equipped
with their subscriptions. Some other works manipulate generic variables to represent
phones, without restricting the number of phones to be considered. In particular, sev-
eral approaches rely on STR-like specifications. [10] precisely explains the interest of
using STR formulas, invariants and inequality preconditions. The authors were already
concerned with providing guidelines to integrate a service on the basic call system and
hints on how to perform non-determinism checks. Unfortunately, the described detec-
tions are mainly guided by hand-waving and thus, there was nostudy of how to system-
atically support this process. Our framework which is largelyinspired by their process,
addresses this weakness. [20, 24] have proposed specialisedtechniques for interaction



detection based on STR-like specifications. From a given initial state, they analyse
properties of reachability graphs in terms of non-determinism or deadlock or contra-
dictions raised by the simultaneous application of two STR sentences . . . Works intro-
duced in [26, 25] discuss the advantage of dealing with staticmethods, without building
any intermediate graph. They introduce techniques for finding interactions from non-
determinism criteria or from elicitation knowledge between two services. They compute
a lot of interactions, but as they do not look for service integration, they do not exploit
their presence to compose services in an adequate way. Moreover, as they do not use
invariants, they cannot help the specifier in designing STR specifications. Let us remark
that we handle the preservation of invariants as in [6]. However, the underlying proof-
based techniques require too much expertise to our point of view. [22, 7, 11] introduce
systematic mechanisms of service composition avoiding a lot of interactions. Roughly
speaking, all of these works are based on some precedence relations between services:
the last integrated feature seems to have the highest priority level. However, if undesir-
able interactions subsist, then it is not possible to reviewthe integrated system, except
if a new design process is managed from the beginning.

6 Conclusion and perspectives

We presented a methodology for service-oriented development that takes interaction
and integration issues into account. We introduced a dedicated formalism taking into
account subscriptions. and manipulating two kinds of formulas, state invariants and
state transition rules. We gave algorithms allowing the specifier to check the consis-
tency of the specification under consideration. The serviceintegration results from the
incremental insertion of formulas preserving at each step the consistency of the target
specification. Each detected consistency problem represents an interaction and requires
an expert decision to modify, and to replace the formula(s) causing inconsistency. The
whole methodology has been validating by the industrial partner France Telecom of the
project ValiServ.

This work can be pursued in several ways. We want to study state reachability is-
sues to ensure that each detected non-determinism case corresponds to a real interaction
case. We also want to study how it is possible to introduce different types on variables
to capture different rôles (users, phone numbers or IP addresses) in order to apply our
algorithms and methodology to application domains such as voice over IP [15]. From
a methodological point of view, we aim to strengthen expert assistance by minimis-
ing choices and backtrack at design step. Such improvement should rely not only on
theoretical consideration but also on expertise about the telecommunication domain.

References

1. M. Aiguier, K. Berkani, and P. Le Gall. Feature specification and static analysis for inter-
action resolution. Technical report, University of Evry, 2005. available at www.lami.univ-
evry.fr/� aiguier.

2. K. Berkani. Un cadre méthodologique pour l’intégration de services par évitement des
interactions. Phd thesis, France, October 2003.



3. K. Berkani, R. Cave, S. Coudert, F. Klay, P. Le Gall, F. Ouabdesselam, and J.-L. Richier. An
Environment for Interaction Service Specification. [17], 2003.

4. K. Berkani, P. Le Gall, and F. Klay. An Incremental Method for the Design of Feature-
oriented Systems. In[12] , pages 45–64. Springer, 2000.

5. J. Bredereke. Maintening telephone switching software requirements. IEEE Communica-
tions Magazine, Nov, 2002.

6. D. Cansell and D. Méry. Abstraction and Refinement of Features. In [12] , pages 65–84.
Springer, 2000.

7. D.P. Guelev, M.D. Ryan, and P.Y. Schobbens. Feature Integration as Substitution. [17],
2003.

8. L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon. Feature Interaction De-
tection using Synchronous Approach and Testing.Computer Networks and ISDN Systems,
11(4):419–446, 2000.

9. A. Felty and K. Namjoshi. Feature specification and automatedconflict detection. ACM
Transactions on Software Engineering and Methodology, 12(1):3–27, 2003.

10. A. Gammelgaard and J.E. Kristensen. Interaction Detection,a Logical Approach. InFeature
Interactions in Telecommunications Systems II, pages 178–196. IOS Press, 1994.

11. C. Gaston, M. Aiguier, and P. Le Gall. Algebraic Treatment of Feature-oriented Systems. In
[12] , pages 105–124. Springer, 2000.

12. S. Gilmore and M. Ryan, editors.Langage Constructs for Describing Features. Springer-
Verlag, 2000.

13. M. Jackson and P. Zave. Distributed feature composition:A virtual architecture for telecom-
munications services.IEEE Transactions on Software Engineering, 24(10):831–847, 1998.

14. H. Jouve.Caractérisation et détection automatique d’interactions de services à partir de
spécifications graphiques. Phd thesis, France, October 2003.

15. H. Jouve, P. Le Gall, and S. Coudert. An Automatic Off-Line Feature Interaction Detection
Method by Static Analysis of Specifications. [21], 2005.

16. K. Kimbler and L.G. Bouma, editors.Feature Interactions in Telecommunications and Soft-
ware Systems (FIW’98). IOS Press, 1998.

17. L. Logrippo and D. Amyot, editors.Feature Interactions in Telecommunications and Soft-
ware Systems (FIW’03). IOS Press, 2003.

18. J. P. Marques-Silva and K. A. Sakallah. GRASP: A search algorithm for propositional satis-
fiability. IEEE Transactions on Computers, 1999.

19. M. W. Moskewicz, C. F. Madigan, Y. Zhao, and S. Malik. Chaff: Engineering an efficient
SAT solver. InProceedings of the 38th Design Automation Conference (DAC’01), 2001.

20. M. Nakamura.Design and Evaluation of Efficient Algorithms for Feature Interaction Detec-
tion in Telecommunication Services. Phd thesis, Japan, June 1999.

21. S. Reiff-Marganiec and M.D. Ryan, editors.Feature Interactions in Telecommunications and
Software Systems (FIW’05). IOS Press, 2005.

22. D. Samborski. Stack Service Model. In[12] , pages 177–196. Springer, 2000.
23. B. Schätz and C. Salzmamm. Service-based systems engineering : Consistent combination of

services. In LNCS Springer, editor,ICFEM 2003,Fifth International Conference on Formal
Engineering Methods, volume 2885, 2003.

24. K. Tatekuwa and T. Ohta. Automatic deleting specification errors which cause miss-detection
of feature interactions. In[21] , pages 320–326, 2005.

25. T. Yoneda, S. Kawauchi, J. Yoshida, and T. Ohta. Formal approaches for detecting feature
interactions, their experimental results, and application to voip. [17], 2003.

26. T. Yoneda and T. Ohta. A Formal Approach for Definition and Detection of Feature Interac-
tion. In [16] , pages 202–216. IOS Press, 1998.


