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Abstract

A few results generalising well-known conventional model theory ones
have been obtained in the framework of institutions these last two decades
(e.9. Craig interpolation, ultraproduct, elementary diagrams). In this
paper, we propose a generalised institution-independent version of the
Beth definability theorem.
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1 Introduction

A few results generalising well-known conventional model theory ones have
been obtained in the framework of institutions [15] these last two decades
(e.g. [8, 18, 21, 16]). In order to continue this generalisation work of important
results from conventional model theory, we present in this paper a generalised
institution-independent version of the Beth definability theorem.

The theory of institutions extends Barwise’s abstract model theory [3] to
computer science. This extension is manifold:

e Institutions include both notions of signature (related to the notion of
software interface) and signature morphism (to structure softwares).

e Sentences are only defined as members of a set. This means sets of sen-
tences are neither necessarily closed under the classic logical symbols in
{—,A,V,=,3,V} nor restricted to them. This allows for a larger family of
logics to be taken into account such as Horn clause logic or modal logics.



e Finally, institutions only preserve the renaming property extended to any
signature morphism and called satisfaction condition.

The original goals of institutions were to generalise results both in computer
science and model theory. However, it is mainly in computer science that this
task has been accomplished. Despite of its importance for specification theory,
the problem of generalising conventional model theory results within the frame-
work of institutions have only been tackled by some isolated works. As far as
we know, these are the ones:

e Tarlecki’s works [20, 21] which generalise in a particular form of institu-
tion some classic algebraic results such as the Birkhoff theorem (equiva-
lence between equational theories and varieties), the McKinsley theorem
(equivalence between universal Horn theories and quasi-varieties) and the
Mal’cev theorem (existence of initial term models in universal Horn theo-

ries)

e Salibra and Scollo’s works [17, 18] which deal with relationships between
Craig-style interpolation, compactness and Loweinem-Skolem properties
in a relaxed form of institutions called pre-institutions,

e Diaconescu’s recent works [6, 7, 8, 9] which throw the basis for a real study
of model theory within the framework of institutions.

Among all the conventional model theory results which are of interest for
computer science is the Craig interpolation theorem. Restated in order to better
suit computer science’s needs as a property over sets of formulae and any kind
of signature morphisms, it has been shown to be strongly linked to completeness
of structured inference systems [4, 5] and to some aspect of modularity (faith-
fulness) [10, 11, 24, 25]. It has recently been directly proved in the framework
of Birkhoff institutions ' by R. Diaconescu [8]. Unlike a former result by A. Sal-
ibra and G. Scollo [18], R. Diaconescu’s result doesn’t require negation and is
thus suitable for logics without it such as equational logic and Horn clause logic.

In conventional model theory, an important consequence of the Craig inter-
polation theorem is the Beth definability theorem. This theorem provides an
answer to the question to what extent implicit definitions can be made explicit.
For example, when one wants to formalize a theory, the very first step is to fix
the language, that is deciding which notions are primitives, the others having
to be defined from them. But how can one check useless symbols haven’t been
introduced? This is a problem of crucial importance in specification theory and
artificial intelligence and the Beth definability theorem is a tool to solve it.
Considering the assets of the institutional framework for model theory (ab-
stractuness, logic-independence) we study in this paper both definability notions
(implicit and explicit) from an institution-independent point of view. We ad-
dress their generalisation from two different angles.

IBirkhoff institutions are a particular form of institutions model classes of which are closed
under some algebraic operations such as varieties and quasi-varieties are.)



1. First we define both definability notions in the restricted case of inclusion
signature morphisms. To this end, we make use of the notion of strongly
inclusive category [10] in order to give a categorical definition of both
set-theoretical notions of inclusion and difference.

2. Since non-injective morphisms are of great importance in specification the-
ory, we then generalise both definability notions to any kind of signature
morphisms.

We also study the preservation of Beth definability theorem through institution
morphisms and comorphisms. This allows inheritance of this theorem from one
logic to another, both ones being presented as institutions and linked by an
institution morphism.

This paper is structured as follows: Section 2 reviews some concepts, no-
tations and terminology about institutions and institution morphisms and co-
morphisms which are used by this work. Section 3 reviews the institution-
independent model theoretic concept of Craig interpolation. Taking inspiration
from a similar result on institution transformations [18], we formulate preserva-
tion theorems for Craig interpolation property through institution morphisms
and comorphisms. Section 4 formulates a general institution-independent ver-
sion of the Beth definability theorem and proves it as a consequence of the
Craig interpolation property. As for Craig interpolation we develop a preserva-

tion theorem for Beth definability through institution morphisms.

2 Institutions

Intuitively, the theory of institutions abstracts the semantical part of logical
systems according to the needs of software specification in which changes of
signatures occur frequently. In this section we review and define some of the
basic notions on institutions in use in this paper.

2.1 Basic definitions and examples

An institution [15] consists of a category of signatures such that associated with
each signature are sentences, models and a relationship of satisfaction that, in
a certain sense, is invariant under change of signature. More precisely, this
means that a change of signature (by a signature morphism) induces “consis-
tent” changes in sentences and models in a sense made precise by the “Satisfac-
tion Condition” in Definition 2.1 below. This goes a step beyond Tarski’s classic
“semantic definition of truth” [23] and also generalises Barwise’s “Translation
Axiom” [3]. Moreover, it is fundamental that sentences translate in the same
direction as the change of notation, whereas models translate in the opposite
direction (think of signature enrichment and model reduction). This is the rea-
son for the functor Mod in Definition 2.1 below to be contravariant. For the
sake of generalisation, signatures are simply defined as objects of a category



and sentences built over a signature are simply required to form a set. All other
contingencies such as inductive definition of sentences are not considered. Simi-
larly, models are simply seen as objects of a category, i.e. no particular structure
is imposed on them. Finally, properties satisfied by a given class of models are
characterized through a binary relation between models and sentences of a given
signature. More formally, an institution is defined as follows:

Definition 2.1 (Institution) An institution Z = (Sig, Sen, Mod, =) consists
of

a category Sig, objects of which are called signatures,

a functor Sen : Sig — Set giving for each signature a set, elements of
which are called sentences,

e a contravariant functor Mod : Sig°® — Cat giving for each signature a
category, objects and arrows of which are called ¥-models and X-morphisms
respectively, and

a |Sig|-indezxed family of relations |=x,C |Mod(X)| x Sen(X) called satis-
faction relation,

such that the following property holds:
Vo : ¥ = X' VM' € |[Mod(Y")|, Y € Sen(X),

M [ Sen(o)(¢) & Mod(o)(M') Es

Example 2.2 The following examples of institutions are of particular impor-
tance for computer science. Many other examples can be found in the literature

(e.g. [15, 22]).

Propositional Logic (PL) Signatures and signature morphisms are sets of
propositional variables and functions between them respectively.
Given a signature Y, the set of X-sentences is the least set of sentences
finitely built over propositional variables in ¥ and Boolean connectives in
{—,V}. Given a signature morphism o : ¥ — X', Sen(o) translates X-
formulae to X'-formulae by renaming propositional variables according to
0.
Given a signature X, the category of X-models is the category of mappings
v: Y — {0,1} ? with identities as morphisms. Given a signature mor-
phism o : ¥ — X', the forgetful functor Mod(c) maps a X'-model V' to
the ¥-model v =v' o 0.
Finally, satisfaction is the usual propositional satisfaction.

Many-sorted First Order Logic (FOL) Signatures are triples (S, F, P) where
S is a set of sorts, and F' and P are sets of function and predicate names

2{0,1} are the usual truth-values.



respectively, both with arities in S* x S and ST respectively.®> Signature
morphisms o : (S, F, P) — (S', F', P'") consist of three functions between
sets of sorts, sets of functions and sets of predicates respectively, the last
two preserving arities.

Given a signature ¥ = (S, F, P), the X-atoms are of two possible forms:
t, = ty where t,ty € Tp(X), * (s € S), and p(t1,...,t,) where p :
S$1X...X8, €E Pandt; € Tr(X)s, (1 <i <mn, s; €8). The set of
Y-sentences is the least set of formulae built over the set of X-atoms by
finitely applying Boolean connectives in {—,V} and the quantifier V.
Given a signature ¥ = (S, F, P), a X-model M is a family M = (My)ses
of sets (one for every s € S), each one equipped with a function fM :
Mg, x ... x Mg, — M for every f : s1 X ... X 8, = s € F and with
a n-ary relation p™ C My, x ... x M, for everyp:s; X ...x s, € P.
Given a signature morphism o : ¥ = (S,F,P) —» X' = (S',F',P') and a
Y -model M', Mod(o)(M') is the X-model M defined for every s € S by
My = M., and for every function name f € F and predicate name p € P,
by M=o ()M and pM = o(p)™'.

Finally, satisfaction is the usual first-order satisfaction.

Horn Clause Logic (HCL) An universal Horn sentence for a signature ¥ in
FOL is a X-sentence of the form I = a where I is a finite conjunction
of X-atoms and « is a X-atom. The institution of Horn clause logic is the
sub-institution of FOL whose signatures and models are those of FOL
and sentences are restricted to the universal Horn sentences.

Equational Logic (EQL) An algebraic signature (S, F') simply is a FOL sig-
nature without predicate symbols. The institution of equational logic is the
sub-institution of FOL whose signatures and models are algebraic signa-
tures and algebras respectively, and sentences are restricted to equations.

Rewriting Logic (RWL) Given an algebraic signature ¥ = (S, F), X-
sentences are formulae of the form ¢ 1 t; = W A...At, >t =t =t
where t;,t; € Tp(X)s, (1 <i<mn,s; €S)andt,t’' e Tp(X); (s€S).
Models of rewriting logic are preorder models, i.e. given a signature
Y = (S,F), Mod(X) is the category of Y -algebras A such that for ev-
ery s € S, Ag is equipped with a preorder >. Hence, A |= ¢ if and only if
for every variable interpretation v : X — A, if each v(t;)* > v(t))A then
v(t)A > v(t")A where A : Tp(A) — A is the mapping inductively defined

by: f(tr, ... o) = FARD, .. th).

Modal First Order Logic with global satisfaction (MFOL) ° The cat-
egory of signatures is the category of FOL signatures.
Given a FOL signature ¥ = (S, F,P), Y-axioms are of the form

38+ is the set of all non-empty sequences of elements in S and S* = St U {e} where ¢
denotes the empty sequence.

47w (X)s is the term algebra of sort s built over F with sorted variables in a given set X.

Saka. quantified modal logic K.



p(t1,...,ty) and the set of Y-formulae is the least set of formulae built
over the set of ¥-axioms by finitely applying Boolean connectives in {—,V}
and the quantifier ¥ and the modality O.

Given a signature ¥ = (S, F, P), a X-model (W, R), called Kripke frame,
consists of a family W = (Wer of Y-models in FOL (the possi-
ble worlds) such that ¢ Wi = Wi for every i,j € I and s € S,
and an “accessibility” relation R C I x I. Given a signature mor-
phism o : (S,F,P) — (S',F',P") and a (S',F',P")-model (W', R'),
Mod(o)((W',R")) is the (S, F, P)-model (W,R) defined for every i € I
by Wi = Mod(c)(W') and by R = R'. A X-sentence ¢ is said to be
satisfied by a ¥-model (W, R), noted (W, R) =y, @, if for every i € I we
have (W, R) EL ¢, where =L is inductively defined on the structure of ¢
as follows:

e atoms, Boolean connectives and quantifier are handled as in FOL,
e (W,R) EL Op when (W, R) |:jZ @ for every j € I such thati R j.
Modal propositional logic (MPL) is the sub-institution of MFOL whose

signatures are restricted to empty sets of sorts and function names and
only 0-ary predicate names.

Modal First Order Logic with local satisfaction (LMFOL) Signatures
and sentences are MFOL signatures and MFOL sentences. Given
a signature ¥ = (S, F,P), a X-model is a pointed Kripke frame
(W = (W%);er, R,WJ) where j € I. The satisfaction of a L-sentence
¢ by a Y-model (W,R,W7), “noted (W, R, W) =x o, is defined by:
(WR7W7) ‘:E v (W,R) |:;] ®-

LMFOL with infinite disjunction and conjunction (LIMFOL) This
institution extends LMFOL to sentences of the form \ ® and \/ ® where
® is a set (possibly infinite) of X-sentences. Given a pointed Kripke
frame (W, R,WJ),

o WRW/)Es N = Voe®, (W,RW)=sy
o (W,R,WI) |y V&< 3ped, (W,RW/) =y

2.2 Theories in institutions
Let us now consider a fixed but arbitrary institution Z = (Sig, Sen, Mod, ).
Notation 2.3 Let ¥ € |Sig| be a signature and T be a set of X-sentences.
e Mod(T) is the full sub-category of Mod(X) whose objects are models of T,
e T* = {p € Sen(X)/VM € |Mod(T)|, M =, p} is the set of so-called

semantic consequences of T'.

61n the literature, Kripke frames satisfying such a property are said with constant domains.



Definition 2.4 (Theory) A set T of ¥-sentences is said to be a theory if and
only if T =T*°.

Definition 2.5 (The category of theories) A theory morphism from a -
theory T to a Y'-theory T' is any signature morphism o : ¥ — X' such that
Sen(o)(T) CT".

Let us note Thy the category whose objects and morphisms are theories and
theory morphisms respectively.

The following proposition is a direct consequence of the satisfaction condition.

Proposition 2.6 Given a X-theory T and a X'-theory T' such that there is a
theory morphism o : T — T', the functor Mod(c) : Mod(X') — Mod(X) can be
restricted to Mod(c) : Mod(T") — Mod(T).

Corollary 2.7 The 4-uple Iy = (Sigr, Seny, Mody, E1) where:

L] SigT = Thz,

e for every theory T over a signature X, Senr(T) = Sen(X) and Modr(T) =
Mod(T), and

[ ] ‘:T = |:

1s an institution.

2.3 Institution morphisms and comorphisms

Many different kind of morphism can be defined denoting different kind of re-
lationship between two institutions. The original one introduced in [15] defines
a forgetful operation from a “richer” institution Z to a “poorer” one Z'. Intu-
itively, it shows how Z is built over 7'.

Definition 2.8 (Institution morphism) LetZ = (Sig, Sen, Mod, =) andZ' =
(Sig',Sen', Mod', [=") be two institutions. An institution-morphism u = (®, @, 3) :
T — T' consists of

e a functor ® : Sig — Sig',

e a natural transformation o : Sen' o ® = Sen, i.e. for every ¥ € |Sig| a
function ax, : Sen/(®(X)) — Sen(X) such that for every signature mor-
phism o : X1 — Xy in Sig the following diagram commutes,

Sen'(3(%;)) —1s Sen(S;)
Sen'(d’(u’))l lSen(U)
Sen'(®(Xy)) —— Sen(X2)

=3



e a natural transformation B : Mod = Mod' o ®°P, ie. for every ¥ €
|Sig| a functor By, : Mod(X) — Mod' (®(X)) such that for every signature
morphism o : X1 — Yo in Sig the following diagram commutes,

Mod(S2) —225 Mod' (8(5»))
Mod(o')l lMod'(®°p(cr))
Mod(S1) —— Mod' ((%1))

=1

such that the following satisfaction property holds:
VY € |Sig|, VM € |Mod(X)|, Vy' € Sen'(®(X))

M s ax(¢) <= Be(M) Eox) ¢

Example 2.9 The institution morphism p = (®, «, 8) from FOL to EQL maps
any FOL signature (S, F, P) to the corresponding algebraic one (S, F), regards
any set of equations as a set of first-order sentences over (S, F,(), and regards
any (S, F, P)-model as a (S, F)-algebra by forgetting the interpretations of pred-
icate names in P. It is easy to show that the satisfaction property holds. The
institution morphism from HCL to EQL is defined as the previous one ex-
cept that it regards any equation as a conditional equational formula without
premises. Finally, the institution morphism from FOL to HCL is obvious.
Indeed, it maps any FOL signature (S, F, P) and any (S, F, P)-model to them-
selves, and regards Horn sentences over (S, F, P) as first-order sentences over
the same signature.”

No institution morphism can denote a forgetful operation from FOL to
either LMFOL nor MFOL. However, we can show how both LMFOL and
MFOL are “embedded” in FOL. Indeed, each LMFOL signature (S, F, P)
can be transformed into the FOL signature (S, F, P) defined by:

e S =SU/{ind}
e F={f:indxs X...x8,—=8/f:81%...x5, >s€FYU{i:— ind}
e P={r:indxs; X...x8,/r:8 X...x8, € PLU{R :ind x ind}

Let X be a set of variables over (S, F, P), and let x € X;,4 U {i}. We can

define FO,, : SenLMFOL(Z) X TF(X) — SenFOL(E) X TF(X) inductively on
terms and formulae structure as follows:

o ftr,...,tn) = f(z,t1,...,t,)

o r(t1,...,tn) = r(x,t1,... ty)

7A Horn sentence can be seen as a finite disjunction of first-order formulae all of them
being negations of atoms except for the last one which is an atom.



eV ih = FOL () V FOL ()

@ = FO, ()
e Vy.o = Yy.FO,(y)
o Op—VYy,z Ry = FO,(p)

Hence, given a LMFOL signature (S, F, P), this defines a mapping a(g,r p) :

SenLMFOL((S, F, P)) — SenFOL((E,F,?)) as: Q(S’F’p)((p) = FO1(()0)

Given a (S, F, P)-model M, define the pointed Kripke frame Wxq = (W, R, W?)
over (S, F, P) as follows:

e for every j € M;,q, define the (S, F, P)-model W/ as follows:

— for every s € S, Wg = M,

— for every f :ind x s; X ... X s, = s € F\ {i} and for every
(ay,...,an) € My, x...x M, , fV'(a1,...,a,) = fM@G,a1,...,a,),
and

— for every r :ind x 51 X ... x s, € P\ {R} and for every (a, ap) €
My, x...x M, , (a1,...,a,) € rV’ & (G a1, ..., a,) € rM

e R=RM

Hence, given a LMFOL signature (S, F, P), this defines a mapping 35 r p) :

Modgor((S,F, P)) = Modymror((S, F, P)) which maps any FOL model M
over (S, F, P) to the corresponding LMFOL model Wy over (S, F, P). Notice
that the satisfaction of sentences is invariant with respect to this embedding.

Such an embedding relationship between institutions is very well captured
by the concept of institution comorphism.

Definition 2.10 (Institution comorphism) LetZ = (Sig, Sen, Mod, |=) and
I'" = (Sig',Sen',Mod',=") be two institutions. An institution-comorphism
w=(®,a,p8): 7" — T consists of

e a functor ® : Sig' — Sig,
e a natural transformation o : Sen' = Sen o ®, and

e a natural transformation 8 : Modo ® = Mod'

such that the following satisfaction property holds:
VY € |Sig'|, YM € [Mod(®(X))|, V¢' € Sen'(X')

!

M Egm asi (¢') <= B (M) s ¢



Example 2.11 The institution comorphism from EQL to FOL maps any al-
gebraic signature (S, F) to (S, F,0) and regards any (S, F)-equation as a first-
order sentence over (S, F, () and any first-order model over (S, F, ) as a (S, F)-
algebra. The institution comorphism from MFOL to FOL is almost the same
than the one from LMFOL to FOL except that F does not contain {i :— ind}
anymore. Finally, the institution comorphism p = (®,a, ) from RWL to
HCLy is defined as follow:

e &((S,F)) =T where T is the first-order theory (X', Ax) such that:
— Y = (S, F,{—s:sxs|lse S}

— Ax is the following set of X'-sentences:
x for every f:s1 X...X s, >s€F,
Nz = @) = flar, .. z0) = f@), . 20)
i<n
X T T

¥ T =g YNY 2s2=>T 52

—an( Nt = t) =t = ) = N\t 2 1 = a1 e thi

j<n j<m
— Bu(M) = A where A is the X-algebra such that for every s € S,
Ay = M, and is equipped with preorder —™, and for every f € F,
A= 1

3 Craig interpolation property

3.1 The institution-independent formulation

We follow the institution-independent formulation of the Craig interpolation
property for sentences given in [8]. This formulation generalises the conven-
tional intersection-union (of signatures) framework to any square of signature
morphisms. This formulation also generalises previous institution-independent
ones more restrictive (squares have to be pushout [5, 11] or abstract inclu-
sions [10]).

Definition 3.1 (Craig interpolation square) A commutative square of sig-
nature morphisms

ZLE]

S

Yo —— ¥

oy
is a Craig interpolation square if and only if for every set Fy of X1 -sentences and
set By of Lo-sentences such that Sen(o})(E1) [Ex Sen(o))(Es), there exists a

10



set E of Y-sentences such that Ey =y, Sen(o1)(E) and Sen(os)(E) [y, Eo.
The set E is called an interpolant of Ey and Es.

An institution T has the Craig interpolation property (CIP) if and only if every
commutative square of signature morphisms is a Craig interpolation square.

Example 3.2 While PL and the unsorted sub-institutions of FOL, LMFOL
and LIMFOL have CIP for every commutative square [2, 11], (many-sorted)
FOL, LMFOL and LIMFOL only have CIP for commutative squares with one
component injective on sorts [2, 16]. HCL and EQL only have CIP for commu-
tative squares with oo injective [8]. Finally, it is well-known that CIP fails [12]
for the quantified modal logic K with constant domains.® Hence, MFOL doesn’t
have CIP.

3.2 Preservation of CIP

It may sometimes be difficult, or simply tedious, to prove CIP for a particular
institution. If there exists another institution for which CIP has already been
shown or is easier to prove and which is linked to the former one by a particular
notion of morphism, it is tempting to prove CIP through this morphism. The
following theorem establishes such a result for institution morphisms.

Theorem 3.3 Let p = (®,a,8) : Z — I' be an institution morphism such that
there is a functor ® : Sig' — Sig satisfying ®o® = Idg;y and for all ¥ € |Sig|,
By, and ax, are surjective. If T has CIP then so does T' as well.

Proof Let

i 71 i
I N )

S

S —— B
7

be a commutative square of signature morphisms in Sig’. Let E] C Sen/(X%})
and Ej C Sen'(X}) such that Sen(o})(E;) =% Sen(oh)(E)). Let M €
Mod(ag s (Sen'(01)(E1))). As p is an institution morphism, by the satis-
faction property we have:

M =gy O (Sen’(01)(E1)) <= Bgpn (M) =50 Sen'(a1)(E7)
<~ 65(211)(./\/1) ‘:IE// Sen’(a—é)(Eé)
— M |:<I>(E”) ag(E//)(Senl(Ué)(EQ))

Hence, we have ag s (Sen'(01)(E])) g5y og s (Sen'(03)(Ey)). As T has
CIP, there exists E C Sen(®(%')) such that O@(E,I)(E{) \:3(2,1) Sen(®(01))(E)

8 Actually, CIP fails for a number of quantified modal logics with constant domains such
as T, D, S4, and S5 [12]. It even fails for S5 with varying domains [12, 13].

11



and Sen(®(02))(E) \:3(2,2) O@(Z,z)(Eé). As ay is surjective for every signature

. | .
Y € |Sigl, the set E' = ag(x,)(E) is well defined. Let M' € Mod(E]). As

B3 (s, is surjective, there exists M € Mod(®(X})) such that Bg(sy ) (M) = M.
Now, by the satisfaction property of institution morphisms, we have:

M =y By = Mgy agsy) (B1)
= M g5, Sen(®(01))(ag ) (E'))
= M' =g, Sen/(01)(E')

Hence, E} =%, Sen'(c1)(E'). Similarly, we prove that Sen'(o2)(E') =5, Ej.
(I

By observing the proof of Theorem 3.3, we have the following corollary:

Corollary 3.4 With the notations and hypothesis of Theorem 3.8, T' has CIP
for a commutative diagram D if T has CIP for D, (the image of D by ®).

Dually, for institution comorphisms, a similar result can be stated except that
® is of course removed:

Theorem 3.5 Let u = (P, 0, 8) : Z' — T be an institution comorphism such
that for all ¥ € |Sig|, By, and ay. are surjective. Then, if T has CIP then so
does T' as well.

The hypothesis that By is surjective is quite natural. Besides, all the exam-
ples of institution morphisms and comorphisms given in this paper satisfy such
a property. On the contrary, the surjectivity of ay is satisfied by none of the
examples of institution morphisms and comorphisms given in this paper except
RWL — HCLy. Actually, surjectivity of ay is above all satisfied by institu-
tion morphisms and comorphisms where the sentences of the source and the
target have the same expressive power (e.g. FOEQL — FOL embedding the
first-order equational logic into the first-order logic). Below, we give a weaker
condition, called conservative institution morphism and comorphism, defined as
follow:

Notation 3.6 Let 7 be an institution. Let o : ¥1 — Yo be a signature mor-
phism and let E C Sen(X,). Let us note E, = {¢ € Sen(%,)/E =y, Sen(o)(¢)}.

Definition 3.7 (Conservativeness) Let y = (®,«a,5) : T — 1' be an in-
stitution morphism such that there is a functor ® : Sig' — Sig satisfying
Pod = Ids;g . It is conservative if and only if every signature morphism
o : X — X and every set of sentences E' C Sen'(X') in the institution T'
satisfy:

Mod(ag s (Ey)) € Mod(ag s (E)g(,))

12



An obvious sufficient condition to obtain conservative institution morphisms
(resp. comorphisms) is ag(z,)(E’)g(”) C O@(Z)(El’,). This last inclusion is ex-
actly the notion defined in [18] to obtain preservation of CIP along institution
transformations and called restriction adequateness. The interest of the notion
of conservativeness lies in the fact that it is a lesser restrictive property than re-
striction adequateness. Indeed there are conservative institution morphisms and
comorphisms that are not restriction adequate (see Example 3.8 below). The
opposite inclusion, i.e. Mod(ag s (E')g(,)) C Mod(ag s, (E;)), is obviously
satisfied. Indeed, it is obvious to show that ag ) (E;) C ag s (E')g(,)-

Example 3.8 Consider the institution morphism HCL — EQL equipped with
the functor ® which maps any algebraic signature (S, F) to (S, F,}). Observe
that for this institution morphism, for every algebraic signature X, ay is not
surjective. Show that it is conservative. Let us consider a signature morphism
o:Y = Y in EQL and a set of ¥'-equations E'. Horn clauses whose predicates
are equations, are classically called conditional positive equations. For such
formulae, there exists a complete calculus which extends G. Birkhoff’s equational
reasoning to conditional equations. Given an algebraic signature ¥ and a set of
Y-equations, it is easy to show that the set of theorems E°® obtained by using the
conditional equational reasoning are

e cither tautologies of the form /\7‘, =t =>t; = t; such that j € {1,...,n},

i<n

e or conditional equations of the form /\7‘, =1t = t = t' for which there
i<n
exists u =v € E, a context C and a substitution o such that t = Clo(u)]
and t' = Clo(v)] or t = Clo(v)] and t' = Clo(u)]. ?

Hence, given an algebra M € Mod(ag s, (Ey)) and a formula /\7‘, =t =>t=

i<n
t e ag(x,)(E')g(”), we necessarily have that either t =t € {t; = t},...,t, =
tn} ort =1" € agy (Eg). In both cases, we conclude that M |=x /\ti =t =
i<n

t=t.

The same condition can be defined for institution comorphism by replacing
@(.) by _.

Theorem 3.9 Let uy = (P, 0, 8) : T — I' be a conservative institution mor-

phism such that for every signature X in I, Py is surjective. Then, if T has
CIP then so does T' as well.

Proof Let

9A context C is a term with a unique occurrence of a constant [, and C[t] denotes the
result of replacing in C' the occurrence of [ by ¢.

13
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be a commutative square of signature morphisms in Sig’. Let FE] C Sen/(X%})

and E) C Sen'(X}) such that Sen'(c})(E}) ES. Sen'(04)(EL). Let us set

E' = Ej| . By the satisfaction condition of institutions, we have Ej |:’2,1
a1

Sen'(o1)(E"). Therefore, let us show that Sen'(o2)(E") |:’2,2 El.
Let M" € Mod'(Sen'(02)(E'")). By the satisfaction condition of institution mor-
phisms, for every M € |[Mod(®(2}))| such that B (sy) (M) = M M =a(sy)
ag(x,z)(Sen’(ag)(E’)). By the surjectivity of gy, ), such a model M exists.
By following the same first steps of the proof of Theorem 3.3, we have
ag(z,,)(Sen’(a’l)(E{)) \:5(2,,) ag(z,,)(Sen’(Ué)(Eé)). 7 having CIP, there ex-
ists £ C Sen(®(X')) such that both O@(E,I)(E{) \:3(2,1) Sen(®(o1))(E) and
Sen(®(02))(E) |:$(2’2) “6(2'2)(155)- Hence, I/ C ‘13(2/)(@)\@”1)
servative, we have Mod(ag s, (E')) C Mod(E), hence Sen(®(02))(ag s (E'))
|:3(E,2) ag(zé)(Eé). We conclude that M |:$(2'2) ag(zé)(Eé) and, by satisfac-

. As p is con-

tion condition of institution morphisms, that M’ |:’2,2 Ej. O

As previously, a similar result can be stated for conservative institution
comorphisms. Moreover, by observing the proof of Theorem 3.9, we have the
following corollary:

Corollary 3.10 With the notations and hypothesis of Theorem 3.9, T' has CIP
for a commutative diagram D if T has CIP for D, (the image of D for @).

Example 3.11 By the result established in Example 3.8, we directly have that
EQL has CIP for every commutative diagram with o injective. In this case
however, the direct proof of CIP in EQL give a stronger result, requiring injec-
tivity only on sorts (see Ex. 3.2).

4 Beth definability theorem

The Beth definability theorem establishes an equivalence between the two no-
tions of explicit and implicit definability. Explicit definability is a syntactical
notion while implicit definability is a semantical one. Since both notions deal
with language inclusion, we first have to define the notion of inclusion between
signatures in order to generalise them in the institutional setting. This requires
to give a meaning of the set-theoretical notion of inclusion within category the-
ory as institutions only see signatures as objects of a specific category. To reach
this purpose, we use the notion of strongly inclusive category given in [10]. Such

14



a formalization allows us to categorically denote both set-theoretical notions of
union and intersection, thus inclusion.

4.1 Categorical meaning of set-theoretical operations

We give a categorical meaning of the four usual set-theoretical operations: in-
clusion, union, intersection and difference. The first three operations have been
defined in [10]. The last one has been defined in [1].

Definition 4.1 A category C is strongly inclusive if and only if C is a category
with pullbacks and there exists two sub-categories I and E of C such that:

1[Il = [E| = [C[;
2. any e € Homp is epic;

3. every morphism f in C can be factored uniquely as v oe with v € I and
ee E;

4. Homyp defines a partial order on C and the poset (|C|, Homy) is a lattice
where the sup of A and B is the sum of A and B, denoted A + B, and
the inf of A and B is the unique inclusion pullback in C of the sum, called
intersection of A and B and denoted AN B (both existence and uniqueness
of ANB are given in [10]). Moreover, we impose on A+B to be the pushout
of AN B.

The morphisms in I are called inclusions and the pair (I, E) is called the inclu-
sion system of C. In the following we will use the notation A — B to denote
the morphism 1 : A — B in Hom (A, B).

Remark 4.2 Sum and intersection are unique and the full sub-category whose
morphisms are inclusions is finitely cocomplete (see [10] for the complete proofs
of these results).

Example 4.3 As an example, the category Set provided with the inclusion sys-

tem (I, E) where I contains all inclusions and E contains all surjections is

5p — 1 sy

trivially strongly inclusive. Indeed, given a pushout 0] | in Set with

—_—— S

S2
So = S1 NSy and all arrows inclusions, S denotes the set-theoretical union of
Sy and Sy (i.e. S =S1USy). This pushout is also a pullback, so S; U Sy is the
pushout of S1 N S,.

Fact 4.4 Let C be a strongly inclusive category the inclusion system of which is
(I,E). If C has an initial object ), then O is also initial in I.

As argued in [10], even though set inclusions are the simplest natural example
of inclusion system, inclusion systems in general may have properties that are
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quite different from those of sets. For example, any inclusion A < B in set
theory is "split” in the sense that B can be written as a disjoint union A[]C
where C' is the ”difference” between B and A. This property does not hold for
every inclusion systems. For example, given a many sorted signature inclusion
({s},0) = ({s},{f : s — s}), the difference (§,{f : s — s}) is not a signature.
The expected result is (),0). Nevertheless, this notion can be expressed in a
categorical manner if we do not ground this axiomatization on the notion of
disjoint union. Indeed, we can characterize the difference between B and A,
denoted B\ A, as the greatest set X included in B such that X N A = 0.
Therefore, we assume in the following that every strongly inclusive category C
satisfies the following supplementary condition:

Definition 4.5 (Categorical difference) Let C be a strongly inclusive cate-
gory with an initial object §. C satisfies the property of difference if and only if
for every object C' the endofunctor _\ C : I — I that maps the object C' to the
terminal object C' \ C of the full sub-category of I, the object class of which is
{X/XNC =0AX < C'}, exists. For any two objects C' and C' we call the
object C'\ C the difference between C' and C.

Notation 4.6 In a category C we note C ~ C' to mean that C and C' are
isomorphic objects, that is there is two morphisms o : C — C' anda™' : C' = C
such that aca™' = Idc and o' oo = Ide.

Fact 4.7 In any strong inclusive category C that satisfies the property of differ-
ence, for every C € |C|, _\ C preserves isomorphism.

Proof Obvious since every functor preserves isomorphism. (|

In the sequel, we assume that the institution Z = (Sig, Sen, M od, =) satisfies
both following supplementary conditions:

1. Sig is a strongly inclusive category whose associated inclusion system is
(I,E). It has an initial object, denoted ¥y, which is also initial in I.
Finally, Sig satisfies the property of difference.

2. V(X =¥, Sen(X) C Sen(X)

Moreover, we assume that for every institution morphism (resp. comorphism)
uw=(P,a,s), ® preserves the inclusion system.

All the examples of institutions given in this paper satisfy the above prop-
erties.

4.2 The institution-independent formulation

Definition 4.8 (Elementary equivalence) Let 7T = (Sig,Sen, Mod, =) be
an institution. Let Y be a signature. Two X-models My and M are elementary
equivalent, noted My =5, My if and only if the following condition holds:

Yo € Sen(X), M |y p <= Mo =y @
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Definition 4.9 (Implicitly definable) Let ¥ — ¥’ be a signature inclusion
and let T' be a ¥'-theory. ¥'\ X is implicitly definable by T if and only if for all
M and M" in Mod(T), if Mod(X — X')(M') = Mod(X — X')(M"), then
M =5 M".

Our notion of implicit definability is more liberal than the one from conven-
tional model theory. Only the elementary equivalence is required between both
T-models M'" and M"" whereas in the conventional model theory both T-models
M’ and M" need to be equal. In the institutional language, this means that
the reduct functor Mod(X — ¥') : Mod(T) — Mod(X,}) is injective.

Definition 4.10 (Explicitly definable) Let ¥ — X' and T be a X'-theory.
¥\ ¥ is explicitly definable relative to T' if for every ¢ € Sen(X'\ X) there
exists E C Sen(X) such that both following conditions are satisfied:

1. TU{(p} |:Z’ E
2. TUE ‘:2/ ()

Definition 4.11 (Beth property) An institution 7 has the Beth property
(BP) if and only if for all ¥ — X' and all ¥'-theory T, if £' \ ¥ is implic-
itly definable by T, then X'\ ¥ is explicitly definable relative to T. We then say
that X' \ ¥ has the Beth property for T.

In conventional model theory, the Beth theorem establishes a correspondence
between implicitly and explicitly definable properties. In such a theory, showing
that the explicitly definable property implies the implicitly one is quite direct
thanks to formula’s inductive structure. Indeed, by compactness, we can show
that for any ¢ € Sen(X' \ ¥) (X' and ¥ are first-order signatures), the set E
in Definition 4.10 is restricted to a formula ¢, € Sen(X). Therefore, we can
built for any formula ® € Sen(X') a formula IT € Sen(X) such that Mod(T U
{®}) = Mod(T U {II}). II is obtained by replacing any occurrence of any
atomic formula p'(t1,...,t,) € Sen(X"\ ) by ¥p(¢,,..+,) € Sen(¥). Hence,
for all M', M" € Mod(T) it Mod(X — X')(M') = Mod(X — X')(M"), then
M' =51 M". Indeed, for every ® € Sen(¥') we have:

M’ |:zr ® = M ‘:2/ 11

<= Mod(X — EY(M') =y I

= M 1T

— M" |:Z’ P
In the institution framework, in order to ensure that explicit definability implies
implicit one, we have to extend the explicit definability notion by replacing in
Definition 4.10 the sentence “for every ¢ € Sen(X'\ X)” by “for every ¢ €
Sen(X') \ Sen(X)”. From this new notion of explicit definability, we have the
expected result, that is:

Proposition 4.12 (Explicit implies implicit) If ¥'\X is ezplicitly definable
relative to T then it is implicitly for T.
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Proof Let M € |[Mod(X)| and M; € Mod(T) such that Mod(¥ — ¥')(M;) =
M (i = 1,2). Let ¢ € Sen(¥') such that M; =s» . Let us show that
M; Esy ¢ (j #1,14,5 € {1,2}). By the satisfaction condition, this is obvious
it ¢ € Sen(X). Therefore, suppose that ¢ € Sen(X') \ Sen(X). As X'\ X is
explicitly definable relative to T', there exists E such that T U E [y ¢ and
T U {p} =5 E. Suppose that My . This means that there is some ¢ € E
such that M~y 1. By the satisfaction condition, we then have M4y, 1. But,
from T'U {¢} = E and the satisfaction condition, we also have that M =5
which is impossible. O

In the institution framework, this new notion of explicit definability is not
implied by the one defined in Definition 4.10. The reason is that formulae are
just elements of a set. However, the proof given just above for the first-order
logic may let us suppose that such a result will hold in abstract frameworks of
logics with inductively defined sets of formulae such as Goguen and Burstall’s
parchments [14] or Fiblog group’s abstract logics (e.g. [19]). Moreover, in the
conventional model theory, the Beth property is defined for atomic formulae.
This is enough to generalise this property for more general signature inclusions.
Indeed, for the first-order logic, the following result holds:

Proposition 4.13 In first-order logic, if ©'\¥ and £"\X are explicitly definable
for T" and T" respectively , then so does X' + X" \ ¥ for (T'UT")".

Proof Suppose ¢ € Sen(¥ + ")\ Sen(X). By induction on the structure of
©, let us show that there exists £ C Sen(X) such that T U E =y 45 ¢ and
TU{¢} Exiqyr E where T = (T"UT")®.

e basic case: directly results from the explicit definability of ¥’ \ ¥ and
¥\ ¥ relative to 7" and T" respectively.

e general case: As previously, suppose that the only connectors and quan-
tifier are =, A and V, respectively.

— ¢ is of the form —). By induction hypothesis, there exists E’' such
that T U E' |= ¢ and T U {¢} = E'. By compactness and the
deduction lemma, there exists a finite subset {&,...,&,} C E' such

that T = ¢ & /\fi. It is sufficient to set £ = (E'\ {&,...,&.}) U

1<i<n
{- /\fz’}-

1<i<n

— ¢ is of the form 1 A t2. By induction hypothesis, there exists E;
such that TU E; = ¢; and TU {¢;} E E;, i = 1,2. It is sufficient to
set B = E] U EQ.

— ¢ is of the form Vz.¢). By induction hypothesis, there exists E’ such
that TUE' =+ and T U {¢} = E'. Tt is sufficient to set E = E'.
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O

The similar result for the implicit case does not hold when both first-order
structures M; and M, are required to be elementary equivalent (this is due
to negation). However in conventional model theory, the implicit definability
notion only requires that M; and M are equal. In this case, the previous result
can be extended to the case of implicit definability.

4.3 The institution-independent proof

Lemma 4.14 Let ¥' \ ¥ be a signature that is implicitly definable by a X¥'-
theory T'. Let ¥ — X" be an inclusion morphism such that X' ~ X". Let us
note a : X' — X the isomorphism associated with X' ~ X'". Then, for every

EC Sen(X'\Y%), TUE =xy5n Sen(a)(TUE).

Proof Let M [=x 4 v TUE. By Proposition 2.6, Mod(YX' — X' +X")(M) =x
Sen(a™! o a)(T U E), and then Mod(a ') (Mod(X! — X' + £")(M)) Es»

Sen(a)(T U E). Obviously, we have ¥ — ¥ + ¥ oqo ¥ — ¥ =¥ —
¥+ X" 0¥ — ¥ Therefore, we have:

Mod(S < ¥')(Mod(a)(Mod(£" < ' + £")(M)))

Mod(YX — X)(Mod(¥ — X' + X")(M))
As X'\ ¥ is implicitly definable by T', we have:

Mod(a)(Mod(E2" < ' + ") (M)) =5y Mod(E' — E' + Z")(M)

We then have:

Mod(a™")(Mod(a)(Mod(X" — X' + ¥")(M))) Exr Sen(a)(T U E)

ie., Mod(X" — X'+¥")(M) [Exr Sen(a)(TUE). By the satisfaction condition,
we conclude M [=s 45y Sen(a)(T'UE). O

Theorem 4.15 Let T be an institution that satisfies CIP. Then, T has the Beth
property.

Proof Let ¥\ ¥ be a signature that is implicitly definable for a ¥'-theory
T. Let ¢ € Sen(X'\ X). Let ¥ — ¥ such that ¥’ ~ ¥". By Lemma 4.14,
we have T'U {¢} =xy5v Sen(a)(p). By CIP, there exists E' C Sen(X) such
that T'U {¢} =y E' and E' |=y» Sen(a)(y). Let M € |Mod(¥')| such that
M =y E'. By the satisfaction condition, Mod(a~')(M) [=x» E'. Therefore,
Mod(a=")(M) Es Sen(a)(p) whence by the satisfaction condition M =y .
Hence, E' =5y ¢, and then, T U E' 5 . O
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Example 4.16 Hence, all the examples of institutions given in Ezample 2.2 ex-
cept MFOL have BP. '° Indeed, signatures are restricted to inclusions and CIP
only holds for (many-sorted) FOL, LMFOL and LIMFOL for commutative
squares with one component injective on sorts, and only holds for (many-sorted)
HCL and EQL for commutative squares with oo injective.

4.4 Preservation of BP

In order to lighten the presentation, all the notions and results that will be
defined and proved in this section will be stated for institution morphisms.
However, they can easily be extended to institution comorphisms.

The preservation of BP through institution morphisms and comorphisms
rests on the following condition:

Definition 4.17 (Elementary equivalence preservation) An institution
morphism p : T — T' is said to preserve elementary equivalence or has
the elementary equivalence preservation property (EEPP) if and only if
for every signature ¥ in T and for all models My and My in Mod(Y), if
Bz(./\/h) =a(x) BZ(MQ) then My =», M.

Indeed, EEPP leads to the following result which is the first step to prove
the preservation of BP through institution morphisms and comorphisms:

Proposition 4.18 Let y: T — Z' be an institution morphism that has EEPP
together with a functor ® : Sig' — Sig that preserves inclusion systems and
satisfies ® o ® = Idg;y. If S5\ B is implicitly definable by T' in T' then
(X4 \ ®(X) is implicitly definable by 0‘5(2’2)(]”).'

Proof Let M; and M, be two models in Mod(ag(zé)(T’)') such that

Mod(®(%)) = (%)) (M) = Mod(B(5;) = B(5))(M>)

By definition, we have

55(2/1)(M0d($(2'1) = () (M1)) = 55(2'1)(M0d($(2'1) = B(X}))(M>))
By the naturality of 3, we then deduce

Mod(¥} — 2'2)(56(2'2)(/\41)) = Mod(X} — 2/2)(53(2'2)(/\42))

Moreover, by the satisfaction condition of institution morphisms, 65(2,2)(/\/11)
and 65(2,2)(/\/12) are models of T'. Hence, by the hypothesis that X5 \ ¥} is
implicitly definable by T’, we have: 63(2,2)(/\/11) =51 65(2,2)(/\/12). By EEPP,
we then conclude M, =3(zy) M. O

10A counter-example that makes fail BP for MFOL can be found in [12].
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Let us note that if we follow the standard definition of the implicit definabil-
ity notion, i.e. imposing that the reduct functor Mod(¥X — ¥') : Mod(T) —
Mod(%, ) in Definition 4.9 is injective, then EEPP comes to impose that By is
injective.

EEPP is not sufficient to establish our preservation result. Actually, we need
a stronger property that entails EEPP. This property is the following:

Definition 4.19 (Conservative for sentences) Let p = (®,0,8) : Z — T’
be an institution morphism together with a functor ® : Sig' — Sig that satisfies
®o® = Ids;y. It is conservative for sentences (CS) if and only if for every
signature X' in T', for every p € Sen(®(X')) \ ag(sy)(Sen'(Y')), there exists
E' C Sen(X') such that Mod(p) = Mod(ag s (E')).

Proposition 4.20 If an institution morphism u is CS then it has EEPP.

Proof Consider a signature ¥ in Z and two models M; and My in Mod(X) such
that Bz (M1) =¢(x) Be(Ma). Let us show that M, = M. Let ¢ € Sen(X).
As pis CS, there exists E' C Sen'(®(X)) such that Mod({p}) = Mod(ayx(E")).
Hence, we have the following equivalences:

M ‘: Y < M ‘:2 az(El)
> fx(M1) |:ip(z) E
< Bn(Ms) |:21>(2) E
= My s g
whence we conclude that M =5; M. O

A sufficient condition that entails CS is when ay is surjective. Hence, RWL
— HCL7 is CS.

Theorem 4.21 Let yp = (®,a,8) : T — 1" be a CS institution morphism to-
gether with a functor ® : Sig" — Sig that preserves inclusion systems and
satisfies ® o ® = Idg;g . If T has BP then so does I' as well.

Proof Suppose that X} \ X! is implicitly definable by a X)-theory 7. By
Proposition 4.20 and Proposition 4.18, we have that ®(X}) \ ®(X}) is implic-
itly definable by 0‘5(2’2)(T’).' As T has BP, ®(X%) \ (X)) is then explicitly
definable relative to a@(z;)(T’).- Hence, for every ¢ € Sen/(X), \ ¥}) there

exists E C Sen(®(X})) such that Mod(ozg(zé)(T’ U{e})) = Mod(ag s (T") U
Mod(Sen(®(Xh) — ®(X4))(E")). As p is CS, there exists a set E' C Sen'(X})
such that Mod(E) = Mod(ag(zq)(E’)). Consequently, by the satisfaction prop-
erty of institution morphisms, we have Mod' (T' U {p}) = Mod (T" UE"). O

Corollary 4.22 Let u = (®,a,8) : T — I' be an institution morphism such
that for every signature Y. in T, ay is surjective. Moreover, u is together with
a functor ® : Sig' — Sig that preserves inclusion systems and satisfies ® o ® =
Idsiy . If T has BP then so does I' as well.
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4.5 The Beth property for all signature morphisms

Beth property for signature inclusions as previously defined comes from classical
logic which does not consider non-injective signature morphisms. However, non-
injective morphisms are very important in specification theory. Regarding the
extension of the explicit definability notion, the Beth property can be simply
generalised to any signature morphisms as follows:

Definition 4.23 (Implicitly definable) Let o : ¥ — X' be a signature mor-
phism and let T be a X'-theory. o is implicitly definable by T' if and only if for all
M and M" in Mod(T), if Mod(c)(M') = Mod(o)(M"), then M' =5y M".

Definition 4.24 (Explicitly definable) Let o : ¥ — X' be a signature mor-
phism and T' be a ¥'-theory. o is explicitly definable relative to T' if for every
p € Sen(X")\ Sen(o)(Sen(X)) there exists E C Sen(X) such that both following
conditions are satisfied:

1. TU{¢} s Sen(o)(E)
2. TU Sen(a)(E) |:Z’ 2]

Here, the Beth property establishes a correspondence between implicitly and
explicitly definable properties. Indeed, we have the following result:

Theorem 4.25 Let T be an institution that has signature pushouts and satisfies
CIP. Let o : ¥ — X' be a signature morphism and T be a X'-theory. Then, o is
implicitly definable for T if and only if o is explicitly definable relative to T .

Proof

(=) Let o : ¥ — X' be a signature morphism which is implicitly definable for
a Y'-theory. Let ¢ € Sen(X') \ Sen(o)(Sen(X)) be a ¥'-sentence. Let us
consider the pushout of o with itself:

y 2 5%

7| |

¥ — %
Let us show that Sen(o1)(T) U {Sen(o1)(p)} Esv Sen(o2)(p). Let us
suppose that M =y Sen(o1)(T) U {Sen(o1)(¢)}. By Proposition 2.6,
we have that Mod(o1)(M) |=sy T U {p}. By the property of pushout, we
have Mod(o3 0 0)(M) = Mod(o1 o 0)(M).
As g is implicitly definable for T', we have that Mod(o3)(M) =s: Mod(o1)(M),
whence we conclude that Mod(os)(M) =s0 T U {p}.
By the satisfaction condition, we have M =y Sen(o2)(T U {¢}), and
then M =yv Sen(o2)(p).
Hence, by CIP, there exists E' C Sen(X) such that TU{p} |Exr Sen(o)(E')
and Sen(o)(E') =s ¢, whence we conclude T'U Sen(o)(E') =s .
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(<) Let 0 : ¥ — X' be a signature morphism and two X'-models M, M, €
Mod(T) such that Mod(o)(Mi) = Mod(o)(Ma,). Let ¢ be a ¥'-sentence
such that M, |=sv ¢. Let us show that M; s ¢ for i # j. By
the satisfaction condition of institution, this is obvious whenever ¢ €
Sen(c)(X). Therefore, let us suppose that ¢ € Sen(X') \ Sen(o)(X). As
o is explicitly definable relative to T, there exists E C Sen(X) such that
TUSen(o)(E) sy ¢ and TU{p} |=s E. Let us suppose that M-y, ¢.
This means that there is some ¢ € E such that M-y, Sen(o)(¢). By
the satisfaction condition, we then have that Mod(o)(M ;)1 and then
Mod(o)(M;)#x1. By the satisfaction condition, we then conclude that
Mls. Sen(o) (). But, by T U {¢} |=5» Sen(o)(E) and the satisfaction
condition, we also have that M; =y Sen(c)(¢)) what is a contradiction.

O

Example 4.26 By Ezample 3.2, PL and the unsorted sub-institutions of FOL,
LMFOL and LIMFOL have BP for every signature morphism o : ¥ — X'
and every Y'-theory T'. On the contrary, (many-sorted) FOL, LMFOL and
LIMFOL have BP only for signature morphisms injective on sorts, and HCL
and EQL have BP for injective (on sorts and operations) signature morphisms.

5 Conclusion

We have formulated and proven a general form of the Beth definability theorem
in the framework of institutions. This result has been proven by following the
approach applied in conventional model theory, that is showing that the Beth
definability property is a consequence of the Craig interpolation property.

The Beth definability theorem has first been proven in dependence of the cat-
egorical axiomatization of set-theoretical operations given in [10] in order to
abstract the notion of signature symbols. Then, this result has been generalised
to any signature morphisms. Thus, the classic definability problem of defining
a new symbol y with respect to a given signature ¥ (defining a signature inclu-
sion ¥ — X U {x}) is generalised to any kind of signature morphism. Finally,
we have presented the preservation of BP through institution morphism and
comorphisms satisfying certain specific properties which allows the transfer of
the Beth definability theorem from one institution to another.
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