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An institution-independent Proof of the BethDe�nability TheoremMar
 Aiguier and Fabri
e Barbier1Universit�e d'�Evry, LaMI CNRS UMR 8042,523 pl. des Terrasses F-91000 �Evryfaiguier,fbarbierg�lami.univ-evry.frfax number: (+33) 1 60 87 37 89June 30, 2006Abstra
tA few results generalising well-known 
onventional model theory oneshave been obtained in the framework of institutions these last two de
ades(e.g. Craig interpolation, ultraprodu
t, elementary diagrams). In thispaper, we propose a generalised institution-independent version of theBeth de�nability theorem.Keywords: Beth de�nability, Craig interpolation, institutions, institution morphismsand 
omorphisms, in
lusive 
ategory1 Introdu
tionA few results generalising well-known 
onventional model theory ones havebeen obtained in the framework of institutions [15℄ these last two de
ades(e.g. [8, 18, 21, 16℄). In order to 
ontinue this generalisation work of importantresults from 
onventional model theory, we present in this paper a generalisedinstitution-independent version of the Beth de�nability theorem.The theory of institutions extends Barwise's abstra
t model theory [3℄ to
omputer s
ien
e. This extension is manifold:� Institutions in
lude both notions of signature (related to the notion ofsoftware interfa
e) and signature morphism (to stru
ture softwares).� Senten
es are only de�ned as members of a set. This means sets of sen-ten
es are neither ne
essarily 
losed under the 
lassi
 logi
al symbols inf:;^;_;); 9;8g nor restri
ted to them. This allows for a larger family oflogi
s to be taken into a

ount su
h as Horn 
lause logi
 or modal logi
s.1



� Finally, institutions only preserve the renaming property extended to anysignature morphism and 
alled satisfa
tion 
ondition.The original goals of institutions were to generalise results both in 
omputers
ien
e and model theory. However, it is mainly in 
omputer s
ien
e that thistask has been a

omplished. Despite of its importan
e for spe
i�
ation theory,the problem of generalising 
onventional model theory results within the frame-work of institutions have only been ta
kled by some isolated works. As far aswe know, these are the ones:� Tarle
ki's works [20, 21℄ whi
h generalise in a parti
ular form of institu-tion some 
lassi
 algebrai
 results su
h as the Birkho� theorem (equiva-len
e between equational theories and varieties), the M
Kinsley theorem(equivalen
e between universal Horn theories and quasi-varieties) and theMal'
ev theorem (existen
e of initial term models in universal Horn theo-ries),� Salibra and S
ollo's works [17, 18℄ whi
h deal with relationships betweenCraig-style interpolation, 
ompa
tness and L�oweinem-Skolem propertiesin a relaxed form of institutions 
alled pre-institutions,� Dia
ones
u's re
ent works [6, 7, 8, 9℄ whi
h throw the basis for a real studyof model theory within the framework of institutions.Among all the 
onventional model theory results whi
h are of interest for
omputer s
ien
e is the Craig interpolation theorem. Restated in order to bettersuit 
omputer s
ien
e's needs as a property over sets of formulae and any kindof signature morphisms, it has been shown to be strongly linked to 
ompletenessof stru
tured inferen
e systems [4, 5℄ and to some aspe
t of modularity (faith-fulness) [10, 11, 24, 25℄. It has re
ently been dire
tly proved in the frameworkof Birkho� institutions 1 by R. Dia
ones
u [8℄. Unlike a former result by A. Sal-ibra and G. S
ollo [18℄, R. Dia
ones
u's result doesn't require negation and isthus suitable for logi
s without it su
h as equational logi
 and Horn 
lause logi
.In 
onventional model theory, an important 
onsequen
e of the Craig inter-polation theorem is the Beth de�nability theorem. This theorem provides ananswer to the question to what extent impli
it de�nitions 
an be made expli
it.For example, when one wants to formalize a theory, the very �rst step is to �xthe language, that is de
iding whi
h notions are primitives, the others havingto be de�ned from them. But how 
an one 
he
k useless symbols haven't beenintrodu
ed? This is a problem of 
ru
ial importan
e in spe
i�
ation theory andarti�
ial intelligen
e and the Beth de�nability theorem is a tool to solve it.Considering the assets of the institutional framework for model theory (ab-stra
tness, logi
-independen
e) we study in this paper both de�nability notions(impli
it and expli
it) from an institution-independent point of view. We ad-dress their generalisation from two di�erent angles.1Birkho� institutions are a parti
ular form of institutions model 
lasses of whi
h are 
losedunder some algebrai
 operations su
h as varieties and quasi-varieties are.)2



1. First we de�ne both de�nability notions in the restri
ted 
ase of in
lusionsignature morphisms. To this end, we make use of the notion of stronglyin
lusive 
ategory [10℄ in order to give a 
ategori
al de�nition of bothset-theoreti
al notions of in
lusion and di�eren
e.2. Sin
e non-inje
tive morphisms are of great importan
e in spe
i�
ation the-ory, we then generalise both de�nability notions to any kind of signaturemorphisms.We also study the preservation of Beth de�nability theorem through institutionmorphisms and 
omorphisms. This allows inheritan
e of this theorem from onelogi
 to another, both ones being presented as institutions and linked by aninstitution morphism.This paper is stru
tured as follows: Se
tion 2 reviews some 
on
epts, no-tations and terminology about institutions and institution morphisms and 
o-morphisms whi
h are used by this work. Se
tion 3 reviews the institution-independent model theoreti
 
on
ept of Craig interpolation. Taking inspirationfrom a similar result on institution transformations [18℄, we formulate preserva-tion theorems for Craig interpolation property through institution morphismsand 
omorphisms. Se
tion 4 formulates a general institution-independent ver-sion of the Beth de�nability theorem and proves it as a 
onsequen
e of theCraig interpolation property. As for Craig interpolation we develop a preserva-tion theorem for Beth de�nability through institution morphisms.2 InstitutionsIntuitively, the theory of institutions abstra
ts the semanti
al part of logi
alsystems a

ording to the needs of software spe
i�
ation in whi
h 
hanges ofsignatures o

ur frequently. In this se
tion we review and de�ne some of thebasi
 notions on institutions in use in this paper.2.1 Basi
 de�nitions and examplesAn institution [15℄ 
onsists of a 
ategory of signatures su
h that asso
iated withea
h signature are senten
es, models and a relationship of satisfa
tion that, ina 
ertain sense, is invariant under 
hange of signature. More pre
isely, thismeans that a 
hange of signature (by a signature morphism) indu
es \
onsis-tent" 
hanges in senten
es and models in a sense made pre
ise by the \Satisfa
-tion Condition" in De�nition 2.1 below. This goes a step beyond Tarski's 
lassi
\semanti
 de�nition of truth" [23℄ and also generalises Barwise's \TranslationAxiom" [3℄. Moreover, it is fundamental that senten
es translate in the samedire
tion as the 
hange of notation, whereas models translate in the oppositedire
tion (think of signature enri
hment and model redu
tion). This is the rea-son for the fun
tor Mod in De�nition 2.1 below to be 
ontravariant. For thesake of generalisation, signatures are simply de�ned as obje
ts of a 
ategory3



and senten
es built over a signature are simply required to form a set. All other
ontingen
ies su
h as indu
tive de�nition of senten
es are not 
onsidered. Simi-larly, models are simply seen as obje
ts of a 
ategory, i.e. no parti
ular stru
tureis imposed on them. Finally, properties satis�ed by a given 
lass of models are
hara
terized through a binary relation between models and senten
es of a givensignature. More formally, an institution is de�ned as follows:De�nition 2.1 (Institution) An institution I = (Sig; Sen;Mod; j=) 
onsistsof � a 
ategory Sig, obje
ts of whi
h are 
alled signatures,� a fun
tor Sen : Sig ! Set giving for ea
h signature a set, elements ofwhi
h are 
alled senten
es,� a 
ontravariant fun
tor Mod : Sigop ! Cat giving for ea
h signature a
ategory, obje
ts and arrows of whi
h are 
alled �-models and �-morphismsrespe
tively, and� a jSigj-indexed family of relations j=�� jMod(�)j � Sen(�) 
alled satis-fa
tion relation,su
h that the following property holds:8� : �! �0; 8M0 2 jMod(�0)j; 8' 2 Sen(�),M0 j=�0 Sen(�)('),Mod(�)(M0) j=� 'Example 2.2 The following examples of institutions are of parti
ular impor-tan
e for 
omputer s
ien
e. Many other examples 
an be found in the literature( e.g. [15, 22℄).Propositional Logi
 (PL) Signatures and signature morphisms are sets ofpropositional variables and fun
tions between them respe
tively.Given a signature �, the set of �-senten
es is the least set of senten
es�nitely built over propositional variables in � and Boolean 
onne
tives inf:;_g. Given a signature morphism � : � ! �0, Sen(�) translates �-formulae to �0-formulae by renaming propositional variables a

ording to�.Given a signature �, the 
ategory of �-models is the 
ategory of mappings� : � ! f0; 1g 2 with identities as morphisms. Given a signature mor-phism � : � ! �0, the forgetful fun
tor Mod(�) maps a �0-model �0 tothe �-model � = �0 Æ �.Finally, satisfa
tion is the usual propositional satisfa
tion.Many-sorted First Order Logi
 (FOL) Signatures are triples (S; F; P ) whereS is a set of sorts, and F and P are sets of fun
tion and predi
ate names2f0; 1g are the usual truth-values. 4



respe
tively, both with arities in S� � S and S+ respe
tively.3 Signaturemorphisms � : (S; F; P ) ! (S0; F 0; P 0) 
onsist of three fun
tions betweensets of sorts, sets of fun
tions and sets of predi
ates respe
tively, the lasttwo preserving arities.Given a signature � = (S; F; P ), the �-atoms are of two possible forms:t1 = t2 where t1; t2 2 TF (X)s 4 (s 2 S), and p(t1; : : : ; tn) where p :s1 � : : : � sn 2 P and ti 2 TF (X)si (1 � i � n, si 2 S). The set of�-senten
es is the least set of formulae built over the set of �-atoms by�nitely applying Boolean 
onne
tives in f:;_g and the quanti�er 8.Given a signature � = (S; F; P ), a �-model M is a family M = (Ms)s2Sof sets (one for every s 2 S), ea
h one equipped with a fun
tion fM :Ms1 � : : : �Msn ! Ms for every f : s1 � : : : � sn ! s 2 F and witha n-ary relation pM � Ms1 � : : : �Msn for every p : s1 � : : : � sn 2 P .Given a signature morphism � : � = (S; F; P ) ! �0 = (S0; F 0; P 0) and a�0-model M0, Mod(�)(M0) is the �-model M de�ned for every s 2 S byMs =M 0s, and for every fun
tion name f 2 F and predi
ate name p 2 P ,by fM = �(f)M0 and pM = �(p)M0 .Finally, satisfa
tion is the usual �rst-order satisfa
tion.Horn Clause Logi
 (HCL) An universal Horn senten
e for a signature � inFOL is a �-senten
e of the form � ) � where � is a �nite 
onjun
tionof �-atoms and � is a �-atom. The institution of Horn 
lause logi
 is thesub-institution of FOL whose signatures and models are those of FOLand senten
es are restri
ted to the universal Horn senten
es.Equational Logi
 (EQL) An algebrai
 signature (S; F ) simply is a FOL sig-nature without predi
ate symbols. The institution of equational logi
 is thesub-institution of FOL whose signatures and models are algebrai
 signa-tures and algebras respe
tively, and senten
es are restri
ted to equations.Rewriting Logi
 (RWL) Given an algebrai
 signature � = (S; F ), �-senten
es are formulae of the form ' : t1 ! t01 ^ : : : ^ tn ! t0n ) t ! t0where ti; t0i 2 TF (X)si (1 � i � n, si 2 S) and t; t0 2 TF (X)s (s 2 S).Models of rewriting logi
 are preorder models, i.e. given a signature� = (S; F ), Mod(�) is the 
ategory of �-algebras A su
h that for ev-ery s 2 S, As is equipped with a preorder �. Hen
e, A j= ' if and only iffor every variable interpretation � : X ! A, if ea
h �(ti)A � �(t0i)A then�(t)A � �(t0)A where A : TF (A) ! A is the mapping indu
tively de�nedby: f(t1; : : : ; tn)A = fA(tA1 ; : : : ; tAn ).Modal First Order Logi
 with global satisfa
tion (MFOL) 5 The 
at-egory of signatures is the 
ategory of FOL signatures.Given a FOL signature � = (S; F; P ), �-axioms are of the form3S+ is the set of all non-empty sequen
es of elements in S and S� = S+ [ f�g where �denotes the empty sequen
e.4TF (X)s is the term algebra of sort s built over F with sorted variables in a given set X.5aka. quanti�ed modal logi
 K. 5



p(t1; : : : ; tn) and the set of �-formulae is the least set of formulae builtover the set of �-axioms by �nitely applying Boolean 
onne
tives in f:;_gand the quanti�er 8 and the modality �.Given a signature � = (S; F; P ), a �-model (W;R), 
alled Kripke frame,
onsists of a family W = (W i)i2I of �-models in FOL (the possi-ble worlds) su
h that 6 W is = W js for every i; j 2 I and s 2 S,and an\a

essibility" relation R � I � I. Given a signature mor-phism � : (S; F; P ) ! (S0; F 0; P 0) and a (S0; F 0; P 0)-model (W 0; R0),Mod(�)((W 0; R0)) is the (S; F; P )-model (W;R) de�ned for every i 2 Iby W i = Mod(�)(W i) and by R = R0. A �-senten
e ' is said to besatis�ed by a �-model (W;R), noted (W;R) j=� ', if for every i 2 I wehave (W;R) j=i� ', where j=i� is indu
tively de�ned on the stru
ture of 'as follows:� atoms, Boolean 
onne
tives and quanti�er are handled as in FOL,� (W;R) j=i� �' when (W;R) j=j� ' for every j 2 I su
h that i R j.Modal propositional logi
 (MPL) is the sub-institution of MFOL whosesignatures are restri
ted to empty sets of sorts and fun
tion names andonly 0-ary predi
ate names.Modal First Order Logi
 with lo
al satisfa
tion (LMFOL) Signaturesand senten
es are MFOL signatures and MFOL senten
es. Givena signature � = (S; F; P ), a �-model is a pointed Kripke frame(W = (W i)i2I ; R;W j) where j 2 I. The satisfa
tion of a �-senten
e' by a �-model (W;R;W j), noted (W;R;W j) j=� ', is de�ned by:(W;R;W j) j=� ', (W;R) j=j� '.LMFOL with in�nite disjun
tion and 
onjun
tion (LIMFOL) Thisinstitution extends LMFOL to senten
es of the form V� and W� where� is a set (possibly in�nite) of �-senten
es. Given a pointed Kripkeframe (W;R;W j),� (W;R;W j) j=� V�() 8' 2 �; (W;R;W j) j=� '� (W;R;W j) j=� W�() 9' 2 �; (W;R;W j) j=� '2.2 Theories in institutionsLet us now 
onsider a �xed but arbitrary institution I = (Sig; Sen;Mod; j=).Notation 2.3 Let � 2 jSigj be a signature and T be a set of �-senten
es.� Mod(T ) is the full sub-
ategory of Mod(�) whose obje
ts are models of T ,� T � = f' 2 Sen(�)=8M 2 jMod(T )j; M j=� 'g is the set of so-
alledsemanti
 
onsequen
es of T .6In the literature, Kripke frames satisfying su
h a property are said with 
onstant domains.6



De�nition 2.4 (Theory) A set T of �-senten
es is said to be a theory if andonly if T = T �.De�nition 2.5 (The 
ategory of theories) A theory morphism from a �-theory T to a �0-theory T 0 is any signature morphism � : � ! �0 su
h thatSen(�)(T ) � T 0.Let us note ThI the 
ategory whose obje
ts and morphisms are theories andtheory morphisms respe
tively.The following proposition is a dire
t 
onsequen
e of the satisfa
tion 
ondition.Proposition 2.6 Given a �-theory T and a �0-theory T 0 su
h that there is atheory morphism � : T ! T 0, the fun
tor Mod(�) :Mod(�0)!Mod(�) 
an berestri
ted to Mod(�) :Mod(T 0)!Mod(T ).Corollary 2.7 The 4-uple IT = (SigT ; SenT ;ModT ; j=T ) where:� SigT = ThI,� for every theory T over a signature �, SenT (T ) = Sen(�) andModT (T ) =Mod(T ), and� j=T = j=.is an institution.2.3 Institution morphisms and 
omorphismsMany di�erent kind of morphism 
an be de�ned denoting di�erent kind of re-lationship between two institutions. The original one introdu
ed in [15℄ de�nesa forgetful operation from a \ri
her" institution I to a \poorer" one I 0. Intu-itively, it shows how I is built over I 0.De�nition 2.8 (Institution morphism) Let I = (Sig; Sen;Mod; j=) and I 0 =(Sig0; Sen0;Mod0; j=0) be two institutions. An institution-morphism � = (�; �; �) :I ! I 0 
onsists of� a fun
tor � : Sig ! Sig0,� a natural transformation � : Sen0 Æ � ) Sen, i.e. for every � 2 jSigj afun
tion �� : Sen0(�(�)) ! Sen(�) su
h that for every signature mor-phism � : �1 ! �2 in Sig the following diagram 
ommutes,Sen0(�(�1)) ��1����! Sen(�1)Sen0(�(�))??y ??ySen(�)Sen0(�(�2)) ����!��2 Sen(�2)7



� a natural transformation � : Mod ) Mod0 Æ �op, i.e. for every � 2jSigj a fun
tor �� :Mod(�)!Mod0(�(�)) su
h that for every signaturemorphism � : �1 ! �2 in Sig the following diagram 
ommutes,Mod(�2) ��2����! Mod0(�(�2))Mod(�)??y ??yMod0(�op(�))Mod(�1) ����!��1 Mod0(�(�1))su
h that the following satisfa
tion property holds:8� 2 jSigj; 8M 2 jMod(�)j; 8'0 2 Sen0(�(�))M j=� ��('0)() ��(M) j=�(�) '0Example 2.9 The institution morphism � = (�; �; �) from FOL to EQL mapsany FOL signature (S; F; P ) to the 
orresponding algebrai
 one (S; F ), regardsany set of equations as a set of �rst-order senten
es over (S; F; ;), and regardsany (S; F; P )-model as a (S; F )-algebra by forgetting the interpretations of pred-i
ate names in P . It is easy to show that the satisfa
tion property holds. Theinstitution morphism from HCL to EQL is de�ned as the previous one ex-
ept that it regards any equation as a 
onditional equational formula withoutpremises. Finally, the institution morphism from FOL to HCL is obvious.Indeed, it maps any FOL signature (S; F; P ) and any (S; F; P )-model to them-selves, and regards Horn senten
es over (S; F; P ) as �rst-order senten
es overthe same signature.7No institution morphism 
an denote a forgetful operation from FOL toeither LMFOL nor MFOL. However, we 
an show how both LMFOL andMFOL are \embedded" in FOL. Indeed, ea
h LMFOL signature (S; F; P )
an be transformed into the FOL signature (S; F ; P ) de�ned by:� S = S [ findg� F = ff : ind� s1 � : : :� sn ! s=f : s1 � : : :� sn ! s 2 Fg [ fi :! indg� P = fr : ind� s1 � : : :� sn=r : s1 � : : :� sn 2 Pg [ fR : ind� indgLet X be a set of variables over (S; F ; P ), and let x 2 Xind [ fig. We 
ande�ne FOx : SenLMFOL(�) � TF (X) ! SenFOL(�) � TF (X) indu
tively onterms and formulae stru
ture as follows:� f(t1; : : : ; tn) 7! f(x; t1; : : : ; tn)� r(t1; : : : ; tn) 7! r(x; t1; : : : ; tn)7A Horn senten
e 
an be seen as a �nite disjun
tion of �rst-order formulae all of thembeing negations of atoms ex
ept for the last one whi
h is an atom.8



� ' _  7! FOx(') _ FOx( )� :' 7! :FOx(')� 8y:' 7! 8y:FOx(')� �' 7! 8y; x R y ) FOy(')Hen
e, given a LMFOL signature (S; F; P ), this de�nes a mapping �(S;F;P ) :SenLMFOL((S; F; P ))! SenFOL((S; F ; P )) as: �(S;F;P )(') = FOi(').Given a (S; F ; P )-modelM, de�ne the pointed Kripke frameWM = (W;R;W i)over (S; F; P ) as follows:� for every j 2Mind, de�ne the (S; F; P )-model W j as follows:{ for every s 2 S, W js =Ms{ for every f : ind � s1 � : : : � sn ! s 2 F n fig and for every(a1; : : : ; an) 2Ms1� : : :�Msn , fW j (a1; : : : ; an) = fM(j; a1; : : : ; an),and{ for every r : ind�s1� : : :�sn 2 P nfRg and for every (a1; : : : ; an) 2Ms1 � : : :�Msn , (a1; : : : ; an) 2 rW j , (j; a1; : : : ; an) 2 rM� R = RMHen
e, given a LMFOL signature (S; F; P ), this de�nes a mapping �(S;F;P ) :ModFOL((S; F ; P )) ! ModLMFOL((S; F; P )) whi
h maps any FOL model Mover (S; F ; P ) to the 
orresponding LMFOL model WM over (S; F; P ). Noti
ethat the satisfa
tion of senten
es is invariant with respe
t to this embedding.Su
h an embedding relationship between institutions is very well 
apturedby the 
on
ept of institution 
omorphism.De�nition 2.10 (Institution 
omorphism) Let I = (Sig; Sen;Mod; j=) andI 0 = (Sig0; Sen0;Mod0; j=0) be two institutions. An institution-
omorphism� = (�; �; �) : I 0 ! I 
onsists of� a fun
tor � : Sig0 ! Sig,� a natural transformation � : Sen0 ) Sen Æ�, and� a natural transformation � :Mod Æ�)Mod0su
h that the following satisfa
tion property holds:8�0 2 jSig0j; 8M 2 jMod(�(�0))j; 8'0 2 Sen0(�0)M j=�(�0) ��0('0)() ��0(M) j=0�0 '0
9



Example 2.11 The institution 
omorphism from EQL to FOL maps any al-gebrai
 signature (S; F ) to (S; F; ;) and regards any (S; F )-equation as a �rst-order senten
e over (S; F; ;) and any �rst-order model over (S; F; ;) as a (S; F )-algebra. The institution 
omorphism from MFOL to FOL is almost the samethan the one from LMFOL to FOL ex
ept that F does not 
ontain fi :! indganymore. Finally, the institution 
omorphism � = (�; �; �) from RWL toHCLT is de�ned as follow:� �((S; F )) = T where T is the �rst-order theory (�0; Ax) su
h that:{ �0 = (S; F; f!s: s� sjs 2 Sg){ Ax is the following set of �0-senten
es:� for every f : s1 � : : :� sn ! s 2 F ,î�n(xi !si x0i)) f(x1; : : : ; xn)!s f(x01; : : : ; x0n)� x!s x� x!s y ^ y !s z ) x!s z{ ��(ĵ�ntj ! t0j ) tn+1 ! t0n+1) = ^j�mtj !sj t0j ) tn+1 !sn+1 t0n+1{ ��(M) = A where A is the �-algebra su
h that for every s 2 S,As = Ms and is equipped with preorder !Ms , and for every f 2 F ,fA = fM.3 Craig interpolation property3.1 The institution-independent formulationWe follow the institution-independent formulation of the Craig interpolationproperty for senten
es given in [8℄. This formulation generalises the 
onven-tional interse
tion-union (of signatures) framework to any square of signaturemorphisms. This formulation also generalises previous institution-independentones more restri
tive (squares have to be pushout [5, 11℄ or abstra
t in
lu-sions [10℄).De�nition 3.1 (Craig interpolation square) A 
ommutative square of sig-nature morphisms � �1����! �1�2??y ??y�01�2 ����!�02 �0is a Craig interpolation square if and only if for every set E1 of �1-senten
es andset E2 of �2-senten
es su
h that Sen(�01)(E1) j=�0 Sen(�02)(E2), there exists a10



set E of �-senten
es su
h that E1 j=�1 Sen(�1)(E) and Sen(�2)(E) j=�2 E2.The set E is 
alled an interpolant of E1 and E2.An institution I has the Craig interpolation property (CIP) if and only if every
ommutative square of signature morphisms is a Craig interpolation square.Example 3.2 While PL and the unsorted sub-institutions of FOL, LMFOLand LIMFOL have CIP for every 
ommutative square [2, 11℄, (many-sorted)FOL, LMFOL and LIMFOL only have CIP for 
ommutative squares with one
omponent inje
tive on sorts [2, 16℄. HCL and EQL only have CIP for 
ommu-tative squares with �2 inje
tive [8℄. Finally, it is well-known that CIP fails [12℄for the quanti�ed modal logi
 K with 
onstant domains.8 Hen
e, MFOL doesn'thave CIP.3.2 Preservation of CIPIt may sometimes be diÆ
ult, or simply tedious, to prove CIP for a parti
ularinstitution. If there exists another institution for whi
h CIP has already beenshown or is easier to prove and whi
h is linked to the former one by a parti
ularnotion of morphism, it is tempting to prove CIP through this morphism. Thefollowing theorem establishes su
h a result for institution morphisms.Theorem 3.3 Let � = (�; �; �) : I ! I 0 be an institution morphism su
h thatthere is a fun
tor � : Sig0 ! Sig satisfying �Æ� = IdSig0 and for all � 2 jSigj,�� and �� are surje
tive. If I has CIP then so does I 0 as well.Proof Let �0 �1����! �01�2??y ??y�01�02 ����!�02 �00be a 
ommutative square of signature morphisms in Sig0. Let E01 � Sen0(�01)and E02 � Sen0(�02) su
h that Sen(�01)(E01) j=0�00 Sen(�02)(E02). Let M 2Mod(��(�00)(Sen0(�01)(E01))). As � is an institution morphism, by the satis-fa
tion property we have:M j=�(�00) ��(�00)(Sen0(�01)(E01)) () ��(�00)(M) j=0�00 Sen0(�01)(E01)() ��(�00)(M) j=0�00 Sen0(�02)(E02)()M j=�(�00) ��(�00)(Sen0(�02)(E02))Hen
e, we have ��(�00)(Sen0(�01)(E01)) j=�(�00) ��(�00)(Sen0(�02)(E02)). As I hasCIP, there exists E � Sen(�(�0)) su
h that ��(�01)(E01) j=�(�01) Sen(�(�1))(E)8A
tually, CIP fails for a number of quanti�ed modal logi
s with 
onstant domains su
has T, D, S4, and S5 [12℄. It even fails for S5 with varying domains [12, 13℄.11



and Sen(�(�2))(E) j=�(�02) ��(�02)(E02). As �� is surje
tive for every signature� 2 jSigj, the set E0 = ��1�(�0)(E) is well de�ned. Let M0 2 Mod(E01). As��(�01) is surje
tive, there existsM2Mod(�(�01)) su
h that ��(�01)(M) =M0.Now, by the satisfa
tion property of institution morphisms, we have:M0 j=0�01 E01 ()M j=�(�01) ��(�01)(E01)()M j=�(�01) Sen(�(�1))(��(�0)(E0))()M0 j=0�01 Sen0(�1)(E0)Hen
e, E01 j=0�01 Sen0(�1)(E0). Similarly, we prove that Sen0(�2)(E0) j=0�02 E02.�By observing the proof of Theorem 3.3, we have the following 
orollary:Corollary 3.4 With the notations and hypothesis of Theorem 3.3, I 0 has CIPfor a 
ommutative diagram D if I has CIP for D� (the image of D by �).Dually, for institution 
omorphisms, a similar result 
an be stated ex
ept that� is of 
ourse removed:Theorem 3.5 Let � = (�; �; �) : I 0 ! I be an institution 
omorphism su
hthat for all � 2 jSigj, �� and �� are surje
tive. Then, if I has CIP then sodoes I 0 as well.The hypothesis that �� is surje
tive is quite natural. Besides, all the exam-ples of institution morphisms and 
omorphisms given in this paper satisfy su
ha property. On the 
ontrary, the surje
tivity of �� is satis�ed by none of theexamples of institution morphisms and 
omorphisms given in this paper ex
eptRWL ! HCLT . A
tually, surje
tivity of �� is above all satis�ed by institu-tion morphisms and 
omorphisms where the senten
es of the sour
e and thetarget have the same expressive power (e.g. FOEQL ! FOL embedding the�rst-order equational logi
 into the �rst-order logi
). Below, we give a weaker
ondition, 
alled 
onservative institution morphism and 
omorphism, de�ned asfollow:Notation 3.6 Let I be an institution. Let � : �1 ! �2 be a signature mor-phism and let E � Sen(�2). Let us note E� = f' 2 Sen(�1)=E j=�2 Sen(�)(')g.De�nition 3.7 (Conservativeness) Let � = (�; �; �) : I ! I 0 be an in-stitution morphism su
h that there is a fun
tor � : Sig0 ! Sig satisfying� Æ � = IdSig0 . It is 
onservative if and only if every signature morphism� : � ! �0 and every set of senten
es E0 � Sen0(�0) in the institution I 0satisfy: Mod(��(�)(E0�)) �Mod(��(�0)(E0)�(�))12



An obvious suÆ
ient 
ondition to obtain 
onservative institution morphisms(resp. 
omorphisms) is ��(�0)(E0)�(�) � ��(�)(E0�). This last in
lusion is ex-a
tly the notion de�ned in [18℄ to obtain preservation of CIP along institutiontransformations and 
alled restri
tion adequateness. The interest of the notionof 
onservativeness lies in the fa
t that it is a lesser restri
tive property than re-stri
tion adequateness. Indeed there are 
onservative institution morphisms and
omorphisms that are not restri
tion adequate (see Example 3.8 below). Theopposite in
lusion, i.e. Mod(��(�0)(E0)�(�)) � Mod(��(�)(E0�)), is obviouslysatis�ed. Indeed, it is obvious to show that ��(�)(E0�) � ��(�0)(E0)�(�).Example 3.8 Consider the institution morphism HCL ! EQL equipped withthe fun
tor � whi
h maps any algebrai
 signature (S; F ) to (S; F; ;). Observethat for this institution morphism, for every algebrai
 signature �, �� is notsurje
tive. Show that it is 
onservative. Let us 
onsider a signature morphism� : �! �0 in EQL and a set of �0-equations E0. Horn 
lauses whose predi
atesare equations, are 
lassi
ally 
alled 
onditional positive equations. For su
hformulae, there exists a 
omplete 
al
ulus whi
h extends G. Birkho�'s equationalreasoning to 
onditional equations. Given an algebrai
 signature � and a set of�-equations, it is easy to show that the set of theorems E� obtained by using the
onditional equational reasoning are� either tautologies of the form î�nti = t0i ) tj = t0j su
h that j 2 f1; : : : ; ng,� or 
onditional equations of the form î�nti = t0i ) t = t0 for whi
h thereexists u = v 2 E, a 
ontext C and a substitution � su
h that t = C[�(u)℄and t0 = C[�(v)℄ or t = C[�(v)℄ and t0 = C[�(u)℄. 9Hen
e, given an algebra M 2 Mod(��(�)(E0�)) and a formula î�nti = t0i ) t =t0 2 ��(�0)(E0)�(�), we ne
essarily have that either t = t0 2 ft1 = t01; : : : ; tn =t0ng or t = t0 2 ��(�)(E0�). In both 
ases, we 
on
lude that M j=� î�nti = t0i )t = t0.The same 
ondition 
an be de�ned for institution 
omorphism by repla
ing�( ) by .Theorem 3.9 Let � = (�; �; �) : I ! I 0 be a 
onservative institution mor-phism su
h that for every signature � in I, �� is surje
tive. Then, if I hasCIP then so does I 0 as well.Proof Let9A 
ontext C is a term with a unique o

urren
e of a 
onstant �, and C[t℄ denotes theresult of repla
ing in C the o

urren
e of � by t.13



�0 �1����! �01�2??y ??y�01�02 ����!�02 �00be a 
ommutative square of signature morphisms in Sig0. Let E01 � Sen0(�01)and E02 � Sen0(�02) su
h that Sen0(�01)(E01) j=0�00 Sen0(�02)(E02). Let us setE0 = E01j�1 . By the satisfa
tion 
ondition of institutions, we have E01 j=0�01Sen0(�1)(E0). Therefore, let us show that Sen0(�2)(E0) j=0�02 E02.LetM0 2Mod0(Sen0(�2)(E0)). By the satisfa
tion 
ondition of institution mor-phisms, for every M 2 jMod(�(�02))j su
h that ��(�02)(M) = M0, M j=�(�02)��(�02)(Sen0(�2)(E0)). By the surje
tivity of ��(�02), su
h a model M exists.By following the same �rst steps of the proof of Theorem 3.3, we have��(�00)(Sen0(�01)(E01)) j=�(�00) ��(�00)(Sen0(�02)(E02)). I having CIP, there ex-ists E � Sen(�(�0)) su
h that both ��(�01)(E01) j=�(�01) Sen(�(�1))(E) andSen(�(�2))(E) j=�(�02) ��(�02)(E02). Hen
e, E � ��(�0)(E01)j�(�1) . As � is 
on-servative, we have Mod(��(�0)(E0)) �Mod(E), hen
e Sen(�(�2))(��(�0)(E0))j=�(�02) ��(�02)(E02). We 
on
lude that M j=�(�02) ��(�02)(E02) and, by satisfa
-tion 
ondition of institution morphisms, that M0 j=0�02 E02. �As previously, a similar result 
an be stated for 
onservative institution
omorphisms. Moreover, by observing the proof of Theorem 3.9, we have thefollowing 
orollary:Corollary 3.10 With the notations and hypothesis of Theorem 3.9, I 0 has CIPfor a 
ommutative diagram D if I has CIP for D� (the image of D for �).Example 3.11 By the result established in Example 3.8, we dire
tly have thatEQL has CIP for every 
ommutative diagram with �2 inje
tive. In this 
asehowever, the dire
t proof of CIP in EQL give a stronger result, requiring inje
-tivity only on sorts (see Ex. 3.2).4 Beth de�nability theoremThe Beth de�nability theorem establishes an equivalen
e between the two no-tions of expli
it and impli
it de�nability. Expli
it de�nability is a synta
ti
alnotion while impli
it de�nability is a semanti
al one. Sin
e both notions dealwith language in
lusion, we �rst have to de�ne the notion of in
lusion betweensignatures in order to generalise them in the institutional setting. This requiresto give a meaning of the set-theoreti
al notion of in
lusion within 
ategory the-ory as institutions only see signatures as obje
ts of a spe
i�
 
ategory. To rea
hthis purpose, we use the notion of strongly in
lusive 
ategory given in [10℄. Su
h14



a formalization allows us to 
ategori
ally denote both set-theoreti
al notions ofunion and interse
tion, thus in
lusion.4.1 Categori
al meaning of set-theoreti
al operationsWe give a 
ategori
al meaning of the four usual set-theoreti
al operations: in-
lusion, union, interse
tion and di�eren
e. The �rst three operations have beende�ned in [10℄. The last one has been de�ned in [1℄.De�nition 4.1 A 
ategory C is strongly in
lusive if and only if C is a 
ategorywith pullba
ks and there exists two sub-
ategories I and E of C su
h that:1. jI j = jEj = jCj;2. any e 2 HomE is epi
;3. every morphism f in C 
an be fa
tored uniquely as � Æ e with � 2 I ande 2 E;4. HomI de�nes a partial order on C and the poset (jCj; HomI) is a latti
ewhere the sup of A and B is the sum of A and B, denoted A + B, andthe inf of A and B is the unique in
lusion pullba
k in C of the sum, 
alledinterse
tion of A and B and denoted A\B (both existen
e and uniquenessof A\B are given in [10℄). Moreover, we impose on A+B to be the pushoutof A \B.The morphisms in I are 
alled in
lusions and the pair (I; E) is 
alled the in
lu-sion system of C. In the following we will use the notation A ,! B to denotethe morphism � : A! B in HomI(A;B).Remark 4.2 Sum and interse
tion are unique and the full sub-
ategory whosemorphisms are in
lusions is �nitely 
o
omplete (see [10℄ for the 
omplete proofsof these results).Example 4.3 As an example, the 
ategory Set provided with the in
lusion sys-tem (I; E) where I 
ontains all in
lusions and E 
ontains all surje
tions istrivially strongly in
lusive. Indeed, given a pushout S0 g1�������! S1g2??y ??yS2 �������! S in Set withS0 = S1 \ S2 and all arrows in
lusions, S denotes the set-theoreti
al union ofS1 and S2 (i.e. S = S1 [ S2). This pushout is also a pullba
k, so S1 [ S2 is thepushout of S1 \ S2.Fa
t 4.4 Let C be a strongly in
lusive 
ategory the in
lusion system of whi
h is(I; E). If C has an initial obje
t ;, then ; is also initial in I.As argued in [10℄, even though set in
lusions are the simplest natural exampleof in
lusion system, in
lusion systems in general may have properties that are15



quite di�erent from those of sets. For example, any in
lusion A ,! B in settheory is "split" in the sense that B 
an be written as a disjoint union A`Cwhere C is the "di�eren
e" between B and A. This property does not hold forevery in
lusion systems. For example, given a many sorted signature in
lusion(fsg; ;) ,! (fsg; ff : s ! sg), the di�eren
e (;; ff : s ! sg) is not a signature.The expe
ted result is (;; ;). Nevertheless, this notion 
an be expressed in a
ategori
al manner if we do not ground this axiomatization on the notion ofdisjoint union. Indeed, we 
an 
hara
terize the di�eren
e between B and A,denoted B n A, as the greatest set X in
luded in B su
h that X \ A = ;.Therefore, we assume in the following that every strongly in
lusive 
ategory Csatis�es the following supplementary 
ondition:De�nition 4.5 (Categori
al di�eren
e) Let C be a strongly in
lusive 
ate-gory with an initial obje
t ;. C satis�es the property of di�eren
e if and only iffor every obje
t C the endofun
tor n C : I ! I that maps the obje
t C 0 to theterminal obje
t C 0 n C of the full sub-
ategory of I, the obje
t 
lass of whi
h isfX=X \ C = ; ^ X ,! C 0g, exists. For any two obje
ts C and C 0 we 
all theobje
t C 0 n C the di�eren
e between C 0 and C.Notation 4.6 In a 
ategory C we note C � C 0 to mean that C and C 0 areisomorphi
 obje
ts, that is there is two morphisms � : C ! C 0 and ��1 : C 0 ! Csu
h that � Æ ��1 = IdC0 and ��1 Æ � = IdC .Fa
t 4.7 In any strong in
lusive 
ategory C that satis�es the property of di�er-en
e, for every C 2 jCj, n C preserves isomorphism.Proof Obvious sin
e every fun
tor preserves isomorphism. �In the sequel, we assume that the institution I = (Sig; Sen;Mod; j=) satis�esboth following supplementary 
onditions:1. Sig is a strongly in
lusive 
ategory whose asso
iated in
lusion system is(I; E). It has an initial obje
t, denoted �;, whi
h is also initial in I .Finally, Sig satis�es the property of di�eren
e.2. 8(� ,! �0), Sen(�) � Sen(�0)Moreover, we assume that for every institution morphism (resp. 
omorphism)� = (�; �; �), � preserves the in
lusion system.All the examples of institutions given in this paper satisfy the above prop-erties.4.2 The institution-independent formulationDe�nition 4.8 (Elementary equivalen
e) Let I = (Sig; Sen;Mod; j=) bean institution. Let � be a signature. Two �-modelsM1 andM2 are elementaryequivalent, noted M1 �� M2 if and only if the following 
ondition holds:8' 2 Sen(�); M1 j=� '()M2 j=� '16



De�nition 4.9 (Impli
itly de�nable) Let � ,! �0 be a signature in
lusionand let T be a �0-theory. �0 n� is impli
itly de�nable by T if and only if for allM0 and M00 in Mod(T ), if Mod(� ,! �0)(M0) = Mod(� ,! �0)(M00), thenM0 ��0 M00.Our notion of impli
it de�nability is more liberal than the one from 
onven-tional model theory. Only the elementary equivalen
e is required between bothT -modelsM0 andM00 whereas in the 
onventional model theory both T -modelsM0 and M00 need to be equal. In the institutional language, this means thatthe redu
t fun
tor Mod(� ,! �0) :Mod(T )!Mod(�; ;) is inje
tive.De�nition 4.10 (Expli
itly de�nable) Let � ,! �0 and T be a �0-theory.�0 n � is expli
itly de�nable relative to T if for every ' 2 Sen(�0 n �) thereexists E � Sen(�) su
h that both following 
onditions are satis�ed:1. T [ f'g j=�0 E2. T [ E j=�0 'De�nition 4.11 (Beth property) An institution I has the Beth property(BP) if and only if for all � ,! �0 and all �0-theory T , if �0 n � is impli
-itly de�nable by T , then �0 n� is expli
itly de�nable relative to T . We then saythat �0 n� has the Beth property for T .In 
onventional model theory, the Beth theorem establishes a 
orresponden
ebetween impli
itly and expli
itly de�nable properties. In su
h a theory, showingthat the expli
itly de�nable property implies the impli
itly one is quite dire
tthanks to formula's indu
tive stru
ture. Indeed, by 
ompa
tness, we 
an showthat for any ' 2 Sen(�0 n �) (�0 and � are �rst-order signatures), the set Ein De�nition 4.10 is restri
ted to a formula  ' 2 Sen(�). Therefore, we 
anbuilt for any formula � 2 Sen(�0) a formula � 2 Sen(�) su
h that Mod(T [f�g) = Mod(T [ f�g). � is obtained by repla
ing any o

urren
e of anyatomi
 formula p0(t1; : : : ; tn) 2 Sen(�0 n �) by  p0(t1;:::;tn) 2 Sen(�). Hen
e,for all M0;M00 2 Mod(T ) if Mod(� ,! �0)(M0) = Mod(� ,! �0)(M00), thenM0 ��0 M00. Indeed, for every � 2 Sen(�0) we have:M0 j=�0 � ()M0 j=�0 �()Mod(� ,! �0)(M0) j=� �()M00 j=�0 �()M00 j=�0 �In the institution framework, in order to ensure that expli
it de�nability impliesimpli
it one, we have to extend the expli
it de�nability notion by repla
ing inDe�nition 4.10 the senten
e \for every ' 2 Sen(�0 n �)" by \for every ' 2Sen(�0) n Sen(�)". From this new notion of expli
it de�nability, we have theexpe
ted result, that is:Proposition 4.12 (Expli
it implies impli
it) If �0n� is expli
itly de�nablerelative to T then it is impli
itly for T .17



Proof Let M2 jMod(�)j and Mi 2Mod(T ) su
h that Mod(� ,! �0)(Mi) =M (i = 1; 2). Let ' 2 Sen(�0) su
h that Mi j=�0 '. Let us show thatMj j=�0 ' (j 6= i, i; j 2 f1; 2g). By the satisfa
tion 
ondition, this is obviousif ' 2 Sen(�). Therefore, suppose that ' 2 Sen(�0) n Sen(�). As �0 n � isexpli
itly de�nable relative to T , there exists E su
h that T [ E j=�0 ' andT [ f'g j=�0 E. Suppose that Mj 6j=�0'. This means that there is some  2 Esu
h thatMj 6j=�0 . By the satisfa
tion 
ondition, we then haveM6j=�0 . But,from T [ f'g j= E and the satisfa
tion 
ondition, we also have that M j=�0  whi
h is impossible. �In the institution framework, this new notion of expli
it de�nability is notimplied by the one de�ned in De�nition 4.10. The reason is that formulae arejust elements of a set. However, the proof given just above for the �rst-orderlogi
 may let us suppose that su
h a result will hold in abstra
t frameworks oflogi
s with indu
tively de�ned sets of formulae su
h as Goguen and Burstall'spar
hments [14℄ or Fiblog group's abstra
t logi
s (e.g. [19℄). Moreover, in the
onventional model theory, the Beth property is de�ned for atomi
 formulae.This is enough to generalise this property for more general signature in
lusions.Indeed, for the �rst-order logi
, the following result holds:Proposition 4.13 In �rst-order logi
, if �0n� and �00n� are expli
itly de�nablefor T 0 and T 00 respe
tively , then so does �0 +�00 n� for (T 0 [ T 00)�.Proof Suppose ' 2 Sen(�0 + �00) n Sen(�). By indu
tion on the stru
ture of', let us show that there exists E � Sen(�) su
h that T [ E j=�0+�00 ' andT [ f'g j=�0+�00 E where T = (T 0 [ T 00)�.� basi
 
ase: dire
tly results from the expli
it de�nability of �0 n � and�00 n� relative to T 0 and T 00 respe
tively.� general 
ase: As previously, suppose that the only 
onne
tors and quan-ti�er are :, ^ and 8, respe
tively.{ ' is of the form : . By indu
tion hypothesis, there exists E0 su
hthat T [ E0 j=  and T [ f g j= E0. By 
ompa
tness and thededu
tion lemma, there exists a �nite subset f�1; : : : ; �ng � E0 su
hthat T j=  , ^1�i�n�i. It is suÆ
ient to set E = (E0 n f�1; : : : ; �ng) [f: ^1�i�n�ig.{ ' is of the form  1 ^  2. By indu
tion hypothesis, there exists Eisu
h that T [Ei j=  i and T [ f ig j= Ei, i = 1; 2. It is suÆ
ient toset E = E1 [ E2.{ ' is of the form 8x: . By indu
tion hypothesis, there exists E0 su
hthat T [ E0 j=  and T [ f g j= E0. It is suÆ
ient to set E = E0.18



�The similar result for the impli
it 
ase does not hold when both �rst-orderstru
tures Mi and Mj are required to be elementary equivalent (this is dueto negation). However in 
onventional model theory, the impli
it de�nabilitynotion only requires thatMi andMj are equal. In this 
ase, the previous result
an be extended to the 
ase of impli
it de�nability.4.3 The institution-independent proofLemma 4.14 Let �0 n � be a signature that is impli
itly de�nable by a �0-theory T . Let � ,! �00 be an in
lusion morphism su
h that �0 � �00. Let usnote � : �0 ! � the isomorphism asso
iated with �0 � �00. Then, for everyE � Sen(�0 n�), T [E j=�0+�00 Sen(�)(T [ E).Proof LetM j=�0+�00 T [E. By Proposition 2.6,Mod(�0 ,! �0+�00)(M) j=�0Sen(��1 Æ �)(T [ E), and then Mod(��1)(Mod(�0 ,! �0 + �00)(M)) j=�00Sen(�)(T [ E). Obviously, we have �00 ,! �0 + �00 Æ � Æ � ,! �0 = �0 ,!�0 +�00 Æ� ,! �0. Therefore, we have:Mod(� ,! �0)(Mod(�)(Mod(�00 ,! �0 +�00)(M)))=Mod(� ,! �0)(Mod(�0 ,! �0 +�00)(M))As �0 n� is impli
itly de�nable by T , we have:Mod(�)(Mod(�00 ,! �0 +�00)(M)) ��0 Mod(�0 ,! �0 +�00)(M)We then have:Mod(��1)(Mod(�)(Mod(�00 ,! �0 +�00)(M))) j=�00 Sen(�)(T [ E)i.e.,Mod(�00 ,! �0+�00)(M) j=�00 Sen(�)(T[E). By the satisfa
tion 
ondition,we 
on
lude M j=�0+�00 Sen(�)(T [ E). �Theorem 4.15 Let I be an institution that satis�es CIP. Then, I has the Bethproperty.Proof Let �0 n � be a signature that is impli
itly de�nable for a �0-theoryT . Let ' 2 Sen(�0 n �). Let � ,! �00 su
h that �0 � �00. By Lemma 4.14,we have T [ f'g j=�0+�00 Sen(�)('). By CIP, there exists E0 � Sen(�) su
hthat T [ f'g j=�0 E0 and E0 j=�00 Sen(�)('). Let M 2 jMod(�0)j su
h thatM j=�0 E0. By the satisfa
tion 
ondition, Mod(��1)(M) j=�00 E0. Therefore,Mod(��1)(M) j=�00 Sen(�)(') when
e by the satisfa
tion 
onditionM j=�0 '.Hen
e, E0 j=�0 ', and then, T [ E0 j=�0 '. �19



Example 4.16 Hen
e, all the examples of institutions given in Example 2.2 ex-
ept MFOL have BP. 10 Indeed, signatures are restri
ted to in
lusions and CIPonly holds for (many-sorted) FOL, LMFOL and LIMFOL for 
ommutativesquares with one 
omponent inje
tive on sorts, and only holds for (many-sorted)HCL and EQL for 
ommutative squares with �2 inje
tive.4.4 Preservation of BPIn order to lighten the presentation, all the notions and results that will bede�ned and proved in this se
tion will be stated for institution morphisms.However, they 
an easily be extended to institution 
omorphisms.The preservation of BP through institution morphisms and 
omorphismsrests on the following 
ondition:De�nition 4.17 (Elementary equivalen
e preservation) An institutionmorphism � : I ! I 0 is said to preserve elementary equivalen
e or hasthe elementary equivalen
e preservation property (EEPP) if and only iffor every signature � in I and for all models M1 and M2 in Mod(�), if��(M1) ��(�) ��(M2) then M1 �� M2.Indeed, EEPP leads to the following result whi
h is the �rst step to provethe preservation of BP through institution morphisms and 
omorphisms:Proposition 4.18 Let � : I ! I 0 be an institution morphism that has EEPPtogether with a fun
tor � : Sig0 ! Sig that preserves in
lusion systems andsatis�es � Æ � = IdSig0 . If �02 n �01 is impli
itly de�nable by T 0 in I 0 then�(�02) n �(�01) is impli
itly de�nable by ��(�02)(T 0)�.Proof Let M1 and M2 be two models in Mod(��(�02)(T 0)�) su
h thatMod(�(�01) ,! �(�02))(M1) =Mod(�(�01) ,! �(�02))(M2)By de�nition, we have��(�01)(Mod(�(�01) ,! �(�02))(M1)) = ��(�01)(Mod(�(�01) ,! �(�02))(M2))By the naturality of �, we then dedu
eMod(�01 ,! �02)(��(�02)(M1)) =Mod(�01 ,! �02)(��(�02)(M2))Moreover, by the satisfa
tion 
ondition of institution morphisms, ��(�02)(M1)and ��(�02)(M2) are models of T 0. Hen
e, by the hypothesis that �02 n �01 isimpli
itly de�nable by T 0, we have: ��(�02)(M1) ��02 ��(�02)(M2). By EEPP,we then 
on
lude M1 ��(�02) M2. �10A 
ounter-example that makes fail BP forMFOL 
an be found in [12℄.20



Let us note that if we follow the standard de�nition of the impli
it de�nabil-ity notion, i.e. imposing that the redu
t fun
tor Mod(� ,! �0) : Mod(T ) !Mod(�; ;) in De�nition 4.9 is inje
tive, then EEPP 
omes to impose that �� isinje
tive.EEPP is not suÆ
ient to establish our preservation result. A
tually, we needa stronger property that entails EEPP. This property is the following:De�nition 4.19 (Conservative for senten
es) Let � = (�; �; �) : I ! I 0be an institution morphism together with a fun
tor � : Sig0 ! Sig that satis�es� Æ � = IdSig0 . It is 
onservative for senten
es (CS) if and only if for everysignature �0 in I 0, for every ' 2 Sen(�(�0)) n ��(�0)(Sen0(�0)), there existsE0 � Sen0(�0) su
h that Mod(') =Mod(��(�0)(E0)).Proposition 4.20 If an institution morphism � is CS then it has EEPP.Proof Consider a signature � in I and two modelsM1 andM2 inMod(�) su
hthat ��(M1) ��(�) ��(M2). Let us show that M1 �� M2. Let ' 2 Sen(�).As � is CS, there exists E0 � Sen0(�(�)) su
h thatMod(f'g) =Mod(��(E0)).Hen
e, we have the following equivalen
es:M1 j= ' ()M1 j=� ��(E0)() ��(M1) j=0�(�) E0() ��(M2) j=0�(�) E0()M2 j=� 'when
e we 
on
lude that M1 �� M2. �A suÆ
ient 
ondition that entails CS is when �� is surje
tive. Hen
e, RWL! HCLT is CS.Theorem 4.21 Let � = (�; �; �) : I ! I 0 be a CS institution morphism to-gether with a fun
tor � : Sig0 ! Sig that preserves in
lusion systems andsatis�es � Æ� = IdSig0 . If I has BP then so does I 0 as well.Proof Suppose that �02 n �01 is impli
itly de�nable by a �02-theory T 0. ByProposition 4.20 and Proposition 4.18, we have that �(�02) n �(�01) is impli
-itly de�nable by ��(�02)(T 0)�. As I has BP, �(�02) n �(�01) is then expli
itlyde�nable relative to ��(�02)(T 0)�. Hen
e, for every ' 2 Sen0(�02 n �01) thereexists E � Sen(�(�01)) su
h that Mod(��(�02)(T 0 [ f'g)) =Mod(��(�0i)(T 0) [Mod(Sen(�(�01) ,! �(�02))(E0)). As � is CS, there exists a set E0 � Sen0(�01)su
h thatMod(E) =Mod(��(�01)(E0)). Consequently, by the satisfa
tion prop-erty of institution morphisms, we have Mod0(T 0 [ f'g) =Mod0(T 0 [ E0). �Corollary 4.22 Let � = (�; �; �) : I ! I 0 be an institution morphism su
hthat for every signature � in I, �� is surje
tive. Moreover, � is together witha fun
tor � : Sig0 ! Sig that preserves in
lusion systems and satis�es � Æ� =IdSig0 . If I has BP then so does I 0 as well.21



4.5 The Beth property for all signature morphismsBeth property for signature in
lusions as previously de�ned 
omes from 
lassi
allogi
 whi
h does not 
onsider non-inje
tive signature morphisms. However, non-inje
tive morphisms are very important in spe
i�
ation theory. Regarding theextension of the expli
it de�nability notion, the Beth property 
an be simplygeneralised to any signature morphisms as follows:De�nition 4.23 (Impli
itly de�nable) Let � : � ! �0 be a signature mor-phism and let T be a �0-theory. � is impli
itly de�nable by T if and only if for allM0 and M00 in Mod(T ), if Mod(�)(M0) =Mod(�)(M00), then M0 ��0 M00.De�nition 4.24 (Expli
itly de�nable) Let � : � ! �0 be a signature mor-phism and T be a �0-theory. � is expli
itly de�nable relative to T if for every' 2 Sen(�0)nSen(�)(Sen(�)) there exists E � Sen(�) su
h that both following
onditions are satis�ed:1. T [ f'g j=�0 Sen(�)(E)2. T [ Sen(�)(E) j=�0 'Here, the Beth property establishes a 
orresponden
e between impli
itly andexpli
itly de�nable properties. Indeed, we have the following result:Theorem 4.25 Let I be an institution that has signature pushouts and satis�esCIP. Let � : �! �0 be a signature morphism and T be a �0-theory. Then, � isimpli
itly de�nable for T if and only if � is expli
itly de�nable relative to T .Proof()) Let � : � ! �0 be a signature morphism whi
h is impli
itly de�nable fora �0-theory. Let ' 2 Sen(�0) n Sen(�)(Sen(�)) be a �0-senten
e. Let us
onsider the pushout of � with itself:� �����! �0�??y ??y�1�0 ����!�2 �00Let us show that Sen(�1)(T ) [ fSen(�1)(')g j=�00 Sen(�2)('). Let ussuppose that M j=�00 Sen(�1)(T ) [ fSen(�1)(')g. By Proposition 2.6,we have that Mod(�1)(M) j=�0 T [ f'g. By the property of pushout, wehave Mod(�2 Æ �)(M) =Mod(�1 Æ �)(M).As � is impli
itly de�nable for T , we have thatMod(�2)(M) ��0 Mod(�1)(M),when
e we 
on
lude that Mod(�2)(M) j=�0 T [ f'g.By the satisfa
tion 
ondition, we have M j=�00 Sen(�2)(T [ f'g), andthen M j=�00 Sen(�2)(').Hen
e, by CIP, there existsE0 � Sen(�) su
h that T[f'g j=�0 Sen(�)(E0)and Sen(�)(E0) j=�0 ', when
e we 
on
lude T [ Sen(�)(E0) j=�0 '.22



(() Let � : � ! �0 be a signature morphism and two �0-models M1;M2 2Mod(T ) su
h that Mod(�)(M1) =Mod(�)(M2). Let ' be a �0-senten
esu
h that Mi j=�0 '. Let us show that Mj j=�0 ' for i 6= j. Bythe satisfa
tion 
ondition of institution, this is obvious whenever ' 2Sen(�)(�). Therefore, let us suppose that ' 2 Sen(�0) n Sen(�)(�). As� is expli
itly de�nable relative to T , there exists E � Sen(�) su
h thatT [Sen(�)(E) j=�0 ' and T [f'g j=�0 E. Let us suppose thatMj 6j=�0'.This means that there is some  2 E su
h that Mj 6j=�0Sen(�)( ). Bythe satisfa
tion 
ondition, we then have that Mod(�)(Mj)6j=� and thenMod(�)(Mi)6j=� . By the satisfa
tion 
ondition, we then 
on
lude thatMi 6j=�Sen(�)( ). But, by T [ f'g j=�0 Sen(�)(E) and the satisfa
tion
ondition, we also have that Mi j=�0 Sen(�)( ) what is a 
ontradi
tion.�Example 4.26 By Example 3.2, PL and the unsorted sub-institutions of FOL,LMFOL and LIMFOL have BP for every signature morphism � : � ! �0and every �0-theory T . On the 
ontrary, (many-sorted) FOL, LMFOL andLIMFOL have BP only for signature morphisms inje
tive on sorts, and HCLand EQL have BP for inje
tive (on sorts and operations) signature morphisms.5 Con
lusionWe have formulated and proven a general form of the Beth de�nability theoremin the framework of institutions. This result has been proven by following theapproa
h applied in 
onventional model theory, that is showing that the Bethde�nability property is a 
onsequen
e of the Craig interpolation property.The Beth de�nability theorem has �rst been proven in dependen
e of the 
at-egori
al axiomatization of set-theoreti
al operations given in [10℄ in order toabstra
t the notion of signature symbols. Then, this result has been generalisedto any signature morphisms. Thus, the 
lassi
 de�nability problem of de�ninga new symbol � with respe
t to a given signature � (de�ning a signature in
lu-sion � ,! � [ f�g) is generalised to any kind of signature morphism. Finally,we have presented the preservation of BP through institution morphism and
omorphisms satisfying 
ertain spe
i�
 properties whi
h allows the transfer ofthe Beth de�nability theorem from one institution to another.A
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