N
N

N

HAL

open science

Towards an Automatic Parallelisation of Sparse Matrix
Computations

Roxanne Adle, Marc Aiguier, Franck Delaplace

» To cite this version:

Roxanne Adle, Marc Aiguier, Franck Delaplace.
Matrix Computations. Journal of Parallel and Distributed Computing, 2005, 65 (3), pp.313-330.

hal-00341971

HAL Id: hal-00341971
https://hal.science/hal-00341971
Submitted on 19 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Towards an Automatic Parallelisation of Sparse

https://hal.science/hal-00341971
https://hal.archives-ouvertes.fr

Toward an Automatic Parallelization of Sparse
Matrix Computations

Roxane Adle, Marc Aiguier, Franck Delaplace,

LaMI, CNRS UMR 8042,

Université d’Evry Val d’Essonne,

523 Place des Terrasses,
91025 Evry, France

Tel : +33 (0)1 60 87 39 00
Fax : +33 (0)1 60 87 37 89

WWW : www.lami.univ-evry.fr

email: {adle,aiguier,delapla}@lami.univ-evry.fr

Version: ACCEPTED

In this paper, we propose a generic method of automatic parallelization for sparse
matrix computation. This method is based on both a refinement of the data-dependence
test proposed by A. Bernstein and an inspector-executor scheme which is specialized to
each input program of the compiler. This analysis mixes compilation process and run-time
process.

The sparsity of underlying data-structure determines a specific parallelism which in-
creases the degree of parallelism of an algorithm. Such a source of parallelism had already
been applied to many numerical algorithms such as the usual Cholesky factorization or
LU-decomposition algorithms considered as the gold standards of parallelization based
on sparsity. The standard automatic parallelization method cannot tackle such source of
parallelism because it is based on the value of cells arrays and not merely on the memory
addressing function.

Addressing the automatization of this parallelism requires to develop a mixed compile-
time and runtime approach integrated in a inspector-executor process. The compilation
step provides a dedicated inspector devoted to the analyzed program. The inspector
computes the dependence graph at runtime which allows a dynamic parallelization of the
execution.

As expressed just before, the generic scheme developed in this paper follows the design
principles which have been applied, but at each time in an ad-hoc way, to many sparse
parallelization of numerical algorithms such as Cholesky algorithm. As far as we know,
no general formal framework has been proposed to automate such a method of sparse
paralellization. In this paper, we propose a generic framework of sparse parallelization
(i.e. numerical program independent) which can be applied to any numerical programs
satisfying the usual syntactic constraints of parallelization.

Key Words: Parallelization, Dependence Analysis, Sparse Matrix Compiler

1. INTRODUCTION

Numerical scientific applications such as fluid dynamics or mechanical struc-
ture computation often use sparse matrices [9]. A matrix is sparse if many of its
coeflicients are zero and if there is an advantage in exploiting its zeros. The ex-
ploitation of its zeros leads to the use of dedicated sparse storage format which

involves complex algorithms, sophisticated data-structure and irregular memory
references. Hence, parallel programs dealing with sparse matrices are recognized
to be error-prone, hard to debug and difficult to maintain. Consequently, hidding
sparsity to programmers eases the programmers’ task and reduces the development
time. One possibility is to consider programs written for dense storage format and
automatically transforming them (i.e. restructuring) into programs which deal with
sparse storage formats. This enables compiler optimizations such as parallelization
before the restructuration phase. Moreover, considering sparsity during compiler’s
optimizations provides a new source to improve the parallelization which cannot be
applied when the format is only considered to be dense. This is due to the algebraic
property of zero to be absorbing in usual algebraic structures used in linear algebra
(i,e. R, Q, Z, etc.). This allows the dependence removal at run-time. Therefore,
sparse matrix programming inherently contains more parallelism than programs
written for dense storage formats.
This had already been observed and applied to the Sparse Cholesky Factorization
method [13, 12]. In this paper, we propose to generalize these methods to any se-
quential numerical program satisfying the usual syntactic constraints of paralleliza-
tion [10]. Dealing with sparse structures leads to extending the usual definition of
dependencies to integrate these properties.

The parallelization is then divided into a compile phase and an execution phase.
At compile time and at execution time, an analysis is performed on program
texts and on sparse matrix structure, respectively. The parallelization follows an
inspector-executor scheme, that is:

e the inspector will compute the dependence graph and schedule the tasks ac-
cording to this graph;

e the executor will perform the parallel numerical computation.

Usually, the inspector consists of a separate module which performs a dynamic
analysis. In the sparse parallelization, the program of the inspector is generated
by the compiler according to a generic framework. Therefore, it is specialized to
the analyzed program. In order to compute the dependence graph at runtime, the
inspector will determine the fill-in introduced during the execution because the
generation of the dependence graph depends on all nonzero locations. Figure 1
pictures the different steps which are performed at run-time by the compiler. The
different inspector steps of Figure 1 briefly describe the following treatments:

e the symbolic fill determines the entries in the matrix which corresponds to
nonzero elements during the execution. The filling is not merely used to
accurately determine the required memory size for a given sparse matrix, but
also to compute the dependence graph.

e The computation of the dependence graph, so-called sparse dependence graph
(SDG), is based on an extension of data dependence whose conditions were
given by A. Bernstein [5]. At compile-time, a dedicated program is generated
to compute such a graph.

e The scheduling phase dynamically schedules program tasks. Here, tasks cor-
respond to a restructured program operating on sparse data structures.

dense program Ent(i%

filling analysis [filling }
l final %ntries
dense dependence analysis [spar se dependence computation } Inspector
sparse deperrdence graph
[scheduling }
lﬁ sparse matrix
code generation [sparse parallel program Executor
numerical result
COMPILATION EXECUTION

Figure 1 Overview of steps

Inspector-Executor methods induce an overhead which must be minimized.
Consequently, we will favor parallel methods for inspector’s algorithms. This en-
ables us to apply the method for large matrices because, the size of the memory
also scales up with the number of processors.

The rest of the paper is organized as follows. In Section 2, we describe some
related works dealing with compilation of irregular programs. In Section 3, we give
an overview of our method built around a simple example. Then, Section 4 presents
the structure of sequential input programs. Section 5 defines the filling function
which computes new entries from an input program and matrix. In Section 5.3,
we generate the iteration sparse dependence graph from entries performed by the
filling function. Section 6 presents both the symbolic code to generate the fill-in as
well as dependences, and the numerical parallel code. Moreover, some experimental
results with comments are given. Finally, we leave the recapitulation to Section 7.

We assume that the reader is conversant with the elementary definitions of
denotational semantics as found in the introductory chapters of a textbook on the
subject as [15].

2. RELATED WORKS

Two topics are close to our works, respectively: sparse compilers which restruc-
ture a program operating on dense arrays to programs operating on sparse arrays,
and the dynamic parallelization of irregular programs which analyses dependence
graphs and schedules tasks at run-time.

2.1. Sparse compilers

In this topic, two works have mainly been proposed [6, 7, 14, 19]. In [6, 7],
the authors have based their compiler MT1 on a use of both data structures CRS
(Compressed Row Storage) and CCS (Compressed Column Storage) for storing

sparse matrices. Program transformations are formalized using polyhedral alge-
bras. In [14, 19], the authors have based their compiler Bernoulli on a use of a
generalization of both data structures CCS and CRS, called CHS (Compressed Hy-
perplane Storage), for storing sparse matrices. The program semantics is given
using relational algebras. They assimilate sparse arrays to a relational data-base
where keys are entry coordinates. In this sense, they named their approach “data-
centric”: loops which originally span iteration domains are restructured to span the
entry coordinates domain. Consequently, reference values which do not belong to
entries are then discarded when the computation is performed since they are never
accessed.

Both works are mainly focused on the automatic conversion of sequential dense
programs into semantically equivalent sequential sparse codes. Therefore, the work
presented in this paper can be seen as an extension of these works. Indeed, in
addition, we use sparsity to convert sequential dense programs into semantically
equivalent parallel sparse codes. Besides, we will show in Section 6 how these
works can be integrated to our parallelization scheme.

2.2. Dynamic parallelization of programs

Dynamic parallelization aims at scheduling an application according to a de-
pendence graph performed at runtime. In this topic, we can cite the works of [18,
11, 22].

In [18], the authors define a parallelization scheme for programs where arrays are
indirectly referenced. This method is also based on the inspector-executor scheme.
The inspector computes the dependence graph, and then performs a schedule of
tasks, while the executor schedules and computes tasks according to the dependence
graph. The dependence analysis is performed dynamically according to Bernstein’s
conditions. Our work follows the same steps except we refine the Bernstein’s condi-
tions by taking the sparsity into account. In Section 6.3, experiments will be given
in order to compare the scheduling obtained from [18]’s analysis and the scheduling
obtained from the generic sparse method presented in this paper.

In [11, 22], a library named RAPID has been defined which provides a run-
time support to dynamically schedule acyclic irregular graphs. Dependence graphs
are explicitly defined. Our work provides an automatic framework to extract the
dependence graph and the symbolic computation to fill the sparse matrix of the
program. The scheduling algorithms developed in the mentioned works can be used
in our framework.

3. OUTLINE OF THE APPROACH

This section aims to give an overview of our approach built around a very simple
example. It provides an intuitive road map for the rest of the paper. The chosen
example is a simple program given in Figure 2.

The basic principle of data dependencies relies on conditions introduced by A.
Bernstein [5]. Given a program where a statement T occurs before a statement S,
a dependence exists if one of the three following cases holds:

1. a statement S reads a cell memory which has previously been written by a
statement T', so-called flow-dependence;

- Program -

do (I =2,16)
st A(IT+1)= (A[I - 1] % A[I —2]) — A[I + 1]
enddo

- Values and initial fill -
01 2 3 4 5 6 7 8 9 1011121314 1516 17
A S[O]O]3[0[0[0[20[0]5]1] O[0[4][4][0]O]
L o0 JOJOfO O T JOO0 T][9]
|:|=A(i)<>0

Figure 2 A simple example

2. a statement S writes in a cell memory which has previously been read by a
statement T, so-called anti-dependence;

3. a statement S writes in a cell memory which has previously been written by
a statement T, so-called output-dependence.

For our example, a statement is the execution of the instruction s at any iteration
2 < i < 16. Let us denote it by s(i). Therefore, the flow-dependence condition,
usually noted 87, is expressed by the set of all pairs (,4') of {1,...,16} x{1,...,16}

satisfying both following conditions !:

1. i<
2.i+1=4¢—-1Vvi+l1l=4¢-2vi+1=¢+1

If we restrict our attention to the first equation ¢ + 1 = 4/ — 1 then we obtain the
following set where each pair denotes a dependence edge:

(Sf _ (274)7 (37 5)7 (47 6)7 (57 7)7 (67 8)7 (77 9)7 (87 10)7 (97 11)7 (107 12)7
=1 (11,13), (12,14), (13,15), (14, 16)

However, by using the fact that the matrix is sparse, this set can be simplified due
to the property of 0 to be absorbing for multiplication. For example, we can observe
that A[5] is equal to 0 during all the run-time of the program. Consequently, at
the iteration 7, we have A[8] = —A[8]. Hence, whatever the content of A[6] is, it
does not affect the content of A[8]. Therefore, we deduce that the pair (5,7) can

We omit mentioning the instruction s because it is the single instruction of the loop.

U UNCNUNCN
GNONUNONUE NGOG

Figure 3 Dependence graph according both analysis

be removed from the previous set. By following the same analysis, the couple (4, 6)
can also be removed. Iterating this process yields at the end the following set:

8 ={(3,5),(10,12),(13,15), (14, 16)}

In Figure 3, these two sets (resulting respectively from data dependence and sparse
dependence analysis) are schematically represented. In this figure, lines and dashed
lines represent dependencies induced by both references A[I + 1] in writing and
A[I — 1] in reading, and A[I + 1] and A[I — 2], respectively. A topological sort
applied to both dependence graphs provides an ASAP-scheduling of the tasks s(%),
2 <4 < 16 which is described in figure 4.

Scheduling
time | dense dependence sparse dependence
1 2,3 2,3,7,9,10, 13, 14
2 4,5 5,12, 16
3 6, 7 15
4 8,9
5 10, 11
6 12, 13
7 14, 15
8 16

Figure 4 Scheduling of the program

Let us remark that in the sparse scheduling, the iterations {4,6, 8,11} have been
removed. They do not lead to any computation. On the contrary, the iteration 7 is
preserved because the content of A[8] is modified at this iteration (A[8] = —A[8]).
Finally, we can observe from this simple example that the sparse dependence anal-
ysis reduced the completion time to 5 steps.

By this simple example, we can observe that the dependence analysis can be im-
proved when dealing with sparse matrix. This was achieved by observing that some
positions in the matrix remain at zero during all the course of the numerical execu-
tion. In other words, this analysis does not take only memory access into account,

but also values and algebraic properties of them to simplify calculus. Therefore,
generalizing this method to any pair (program,matrix) first requires computing po-
sitions in the matrix the content of which will be nonzero at least once in the course
of the numerical execution. In our example, such positions, so-called entries, are
obtained from any iteration ¢ such that both following conditions are satisfied:

1. A[i +1] #0 at i;
2. for all iterations j < ¢, A[i + 1] =0 at j.

Therefore, the execution of any iteration 2 < j < 16 generates the new entry j + 1
if both A[j —2] # 0 and A[j — 1] # 0. In other words, we generate a new entry j+1
at the iteration j if both j — 1 and j — 2 respectively are entries. Consequently,
by starting from the following set E® = {0,1,4,8,10,11,14, 15} denoting the initial
entries in the matrix and iterating the process previously defined, we obtain the
final set of entries E™** = {0,1,3,4,6,8,10,11,13,14,15,16,17}. The interest here
is that this process can be automatically computed by using the basic abstract in-
terpretation theory. As usual, the idea is to statically collect dynamic informations
about programs by using a non-standard semantics [8]. The interest is to abstract
away from irrelevant matters by giving conservative approximations of the concrete
behaviors of programs. Here, to generate the set of entries, we are only interested
in the fact that some values remain null and the others do not. Consequently, we
naturally choose to give meaning of numerical expressions in the boolean domain
equipped with the usual propositional connectives. From this simple abstract in-
terpretation, we will be able to define a function fill, called the filling function.
The function fill will computed the whole set of entries for a given program and
a matrix in input. The interest relies on the convergence of the fill function to
a fixpoint. Formally, by applying the classical slogan: recursive definition = fix-
point equation, the function fill can be defined as an iterative process, recursively
specified as follows:

EY = initial structure of the matrix in input
Etl = fill(EY)
fill(E™me*) = E™* (stop condition)

The program which computes cells to be filled is automatically generated. The
symbolic analysis provides affine constraints which must be satisfied to fill a cell. We
will see in Section 5 that the satisfaction of these affine constraints is computable.
For our example, at the iteration 2 < t < 16, generating E**! from E! requires to
compute the set N of new entries defined by:

N={e|32<j<16,e=j+1Aj—1€E'Aj—2€ E'}

Therefore, we have Ett! = E* U N. The filling algorithm then adds new entries
until no entry is computed. For our example, E™%7 is obtained in three steps. This
is illustrated by Figure 5 where the black boxes denote new entries.

Obviously, all elements which do not belong to E™* denote positions of cells
whose values will stay zero during the whole numerical execution. The idea is then
to search subexpressions in the right-part of assignments under analysis, ((A[l —
1] % A[I — 2]) — A[I + 1] in our example), satisfying for some iterations i that their
evaluation does not affect the result of the global expression. To come back to our
example, the evaluation of the subexpression A[I — 1] % A[I — 2] at the iteration 7

012 3 456 7 8 9 1011121314 1516 17

CTToT oo P I[P IO 0] &
HEE BULUBUEEL EEUNES
HEL Bl UEUNEL BN BEs

Figure 5 Example of the computation of the filling from of the example 2

satisfies such a property. Now, if some parts of form A[.] of these subexpressions
denote an entry at some iterations ¢ < 7, obviously the pair (¢, 7) is not a dependence
edge. In our example, A[I — 1] satisfies such a condition for i = 5 (6 € E™*%).
Indeed, we have 7 —1 =5+ 1 and then (5,7) does not form a dependence.
In our analysis, this will be achieved by defining a family, indexed by the iteration
space, of binary relations §; on numerical expressions, called substitution predicates,
where the second expression will be always of the form A[_]. Roughly speaking,
Si(exp,exp’) will hold if exp’ is a subexpression of exp and whatever the value
associated to exp’ is, the evaluation of exp at the iteration ¢ is always the same.
For example, S7((A[I — 1] x A[I — 2]) — A(I + 1), A[I — 1]) holds because A[5] is
always equal to zero. Therefore, generating sparse dependencies at compile-time
requires that the complement of S; can be computed. To achieve this purpose, we
will still use the abstract interpretation previously defined to generate the filling
function. From there, we will improve the computation of dependencies.

By returning to our example, sparse flow-dependences can be more formally
defined as follows: ¢ is flow-dependent to j if:

e i’ < i, < denotes the execution order.
e i+ 1€ E™ the writing cell belongs to filled cells.

e i+ 1 = ¢ — 1, both addressing functions reach the same memory cell for
iterations 4’ and .

o (A[I—1]xA[I-2]) — A(I+1),A[I —1])¢S;, the substitution does not affect
the result of the expression computation.

Following these ideas, the general method proposed in this paper (i.e. trans-
forming any sequential program working on dense matrix into parallel one working
on sparse matrix) follows the three following steps:

e computation of all entries, that is, positions in the matrix the content of which
will become nonzero at least once in the course of the numerical execution.

e computation of iteration dependencies for generating the dependence graph.
Here, we will use the previous step to refine the usual data dependence tests.

e Finally, generation of the corresponding parallel code.

4. STRUCTURE OF ANALYZED PROGRAMS

Sparse parallelization deals with programs satisfying the usual static control
programming constraints [10]. To simplify the presentation, we suppose that only
one array of the input program A, is sparse. In order to extend this analysis to
a number of arrays, we can consider that A is made up of several sparse arrays.
Consequently, we suppose that we have a sequential program as input of our com-
pilation line. The general form of this program is inductively generated from the
following rules:

e v = exp where v is a scalar variable and exp is an expression;

o Alexp,...,exp;] = exp’ where A is an array variable, exp,...,exp. are
integer expressions and exp' is an expression with no side effect;

e S1; S, where S1,S; are sequential programs.

o if exp then S1 else S2 where exp is a boolean expression and Sy, Sy are
sequential programs;

e do (I =P,Q) S where I is a variable, P and @ are affine integer expressions
and S is a sequential program. I is called iteration variable.

Given a program P and a dense matrix in input, the definition of the filling
function as well as dependencies will be dependent on assignments of the form
Alexpy,...,exp.] = erp' encompassed in a nested loop within the program under
analysis 2. Thus, afterwards we will consider the following generic form of these
assignments:

A[f(Ila v aId)] = g(A[gl(Ila v ;Id)]a e 7A[gm(Ila v aId)])
such that:

e A is a (dense) array where values are in C (the domain ® of the concrete
semantics);

o f:7Z%— Z° (resp. each g, : Z? — Z° for every p € {1,...,m}) is an affine
function yielding the index of a memory cell by writing (resp. by reading)
from an iteration (iy,...,iq) € Z%

e and G : C™ — C stands for any function without side-effect.

More precisely, the function G is the semantical meaning in the standard interpre-
tation C of the numerical expression G(A[g1(I1,...,14)],-- ., Algm (I1,...,14)]) induc-
tively defined from the following set of basic numerical operators based on algebraic
properties:

20therwise, there are not dependencies between iterations, and then there is no longer interest
to generate the filling function.

3A domain is any algebraic structure, i.e., a set equipped with some internal and/or external
composition laws.

operators Definition

0 constant zero
any other nonzero constant
variable

binary operator such that 0 is neutral at left and/or at right (e.g. plus or minus)

c
v
® binary operator such that 0 is absorbing (e.g. multiply)
@
L

unary operator or function for which 0 is a fixpoint (e.g. square root)
®, o both binary and unary operators or functions the behavior of which
depends on arguments (e.g. the randomize function)

We define Expr the whole set of numerical expressions as described above. Finally,
we define Prog the whole set of well-formed programs (according to the inductive
steps described just above) which contain at least a DO-loop nest with a statement
of the form:

Alf(Iy,. - 1q)] = G(Alg1 (I1, - - -, 1a)], - - -, Algm (11, - - -, 1a)])

5. STATIC ANALYSIS

The static analysis part of the resolution aims at defining the inspector. In this
section we describe how to generate at compile-time the iteration sparse dependence
graph associated to a sequential program and a matrix in input. We start by
defining a symbolic program, called filling function, for a given numerical program.
The goal of this symbolic program is to statically compute the fill-in generated
during the numerical computation. Moreover, from the filling function results,
we improve dependences between iterations by refining the usual data-dependence
(Bernstein’s) conditions. The following subsections contain the main definitions of
this static analysis: abstraction domain, calculation of the filling function and sparse
dependencies for Do-loop nests. We give two running examples in order to help the
reader’s understanding of the theoretical results stated in this section. These two
chosen examples are respectively the one presented in Figure 2 (cf. Section 3) and
the usual Cholesky factorization algorithm whose the associated program is defined
as follows:

SPARSE, REAL ::A(N,N)
bl do (]21,N)
by do (k=1,57—-1)
b3 do (l:j,N)
s1 Ali,3] := A[i,j1-ALi,k]*A[j,k]
enddo
enddo
so Alj,j]1 := sart(Alj,jl)
by do (k2=j+1,N)
s3 A[k2,j]1 := A[k2,3j1/ALj,3]
enddo
enddo

The three statements are named s;, s2 and sz, respectively. Each one has the
following characteristics:

e 5, is encompassed by three nested loops. The function G : R® — R is defined
by: (z:%,2)+ y * z. And, the affine functions f, g1, g2, and g3 from N3

10

to N? are respectively defined by: (4, k,&1(i,5), (4, k, 91(5,5), (4, k, &p
(i,k), and (j, k, &1 (J, k).

e s belongs to a single loop. The function G : R — R is defined by: z — +/
Both affine functions f and g; from N to N? are defined by: j — (4, 7).

&l

e Finally, s is encompassed by two nested loops. The function G : R — R is
defined by: (x,y) — xz/y. The affine functions f, g1 and go from N? to N?
are respectively defined by: (j, k2}> (k2,7), and (4, k2> (J,7)-

5.1. Abstraction domain

To statically collect information about programs, we define a non-standard se-
mantics of the programming language [8]. This is based on interpreting expressions
(i.e. the expressions exp' occurring in the right-part of assignments of the form:
Alexpy,...,exp.] = exp’) in the boolean domain B = {true, false} equipped with
the usual propositional connectors (mainly A(and) and V(or)). Informally, given an
expression exp', its non-standard evaluation yields true if its standard numerical
evaluation yields nonzero. Formally, this abstraction is defined as follows:

NOTATION 5.1. Given a c-dimensional array, of size (my,...,m.) € (N)° in
each dimensions, we define A, the address space of A, the set {0,...,m; — 1} x
ox{0,...,m.—1}.

DEFINITION 5.2 (Abstraction domain). Let C be the domain where the standard
interpretation of numerical expressions is given (e.g. natural numbers N, integers
Z, real numbers R, etc.). We define the abstraction relation o C C x B by: a =
{(0,true), (0, false)} U {(z,true) | = # 0}.

Remark 5.3. Let us notice that zero is related to both true and false. This is
due to the fact that the abstract interpretation approximates the numerical results.
For instance, facing an assignment of the form A[f(l1,...,I4)] = v where v is a
scalar variable, we cannot statically deduce if the index denoted by the expression
f(I,...,I;) will be an entry or not. This depends on the value that v will have.
Therefore, it is sensible to consider that the value of v is always nonzero.

Expressions are evaluated within environments. An environment is a mapping
which associates each variable with a value of the domain. Environments are defined
as follows:

DEFINITION 5.4 (Environment). Given any domain C, an environment is de-
fined as an application pp which associates:

e the array A with a total function f: A — D;
e q variable v with an element of D;
e cach iteration index I with an element of its iteration space.

Therefore, with the notations of Definition 5.4, pg will denote any environment
in the domain B whereas p¢ will denote any environment in the standard domain

C.

Given an environment pg, the associated expression evaluation is defined as
follows:

11

DEFINITION 5.5 (Expression evaluation). Given an environment pg and a nu-
merical expression exp of Expr, we define [exp],. the interpretation of exp in B
inductively defined by the following rules:

[c]p- = (c#0).

[v],s = true.

[Algp(I1s- - 1)l = pe(A)(9p(pB(L1),---,p8(Ld)))-
[[G(Epl ® eme]]PJe = [[empl]]ﬂja A [[emp2]]p3-

[[G(Epl ® eme]]PJe = [[empl]]ﬂja \ [[emp2]]p3-
[1(exzp)],. = [exp],,.

[a(ezp)],s = true.

[expr © exps],s = true.

Remark 5.6. By Definition 5.5, both operations i and ® are interpreted by the
two constant functions defined respectively from B to B and Bx B to B by: x — true
and (z;#)true. This is due to the fact that their behavior cannot be statically

deduced.

Ezample 5.7. Let us evaluate the expression exp = A[i, j| — A[i, k] * A[j, k] of
the Cholesky factorization algorithm from the environment pp defined as follows:

Jjrnjst. n; € {1,...,N}
k= ngst.nge{l,...,n; —1}
i~ n; st on; €{nj,...,N}
A— f: {1,...,N}x{1,...,N} - B
(ns,n;}> true
(nisnrfalse
(nj, ni)y> true

Thena [exp]]PB = HA[laJ]]]P? k4 ([A[Z,k]]]p% A [A[]a k]]]m;a)' Buta HA[laJ]]]P? = true. We
conclude that [exp],, = true.

We obtain the following correctness result:

NOTATION 5.8. Let p¢ be an environment in the standard domain C. Let pp be
an environment in th abstract domain B. We say that pp is compatible with p¢ if
and only if:

e for any (i1,...,i.) € A, pc(A)(i1,. .. ic) @ p(A)(i1,...,0);
e for every variable v, pc(v) a pp(v).

PRrROPOSITION 5.9 (Correctness). With the previous notation, the following re-
lation holds:

[ezplpe a [explp.

where [exp],. denotes the usual evaluation of the expression in the standard inter-
pretation and pp is any environment compatible with pc.

Proof. This proof is tedious but not difficult. It is proved by structural induction
on expressions. 1

12

5.2. Filling

The filling deals with situations in which zero elements become nonzero. Well-
known applications such as sparse Cholesky factorization use such a symbolic anal-
ysis [13], but in an ad-hoc way. The difference of one program and another depends
on the definition of the filling function which is unique for a given a program. In
this section, we will show how to statically generate the whole set of new entries.
To achieve this purpose, the idea is to use the abstraction domain defined in Sec-
tion 5.1 to define the filling function directly from the index space and not from the
iteration space of the program under analysis. The generated program associated
to the filling function will be then data-centric.

5.2.1. Entries

Given a assignment of the form:

A[f(Ila .. 7Id)] = g(A[gl(Ib .- '7Id)]7 - '7A[gm(117 .. 7Id)])

any tuple (j1,...,Jj.) of A will denote an entry if there is an iteration (iy,...,4q)
such that both conditions hold:

1. the evaluation at (i1,...,4q) of G(A[g1(L1,..-,Ia)],-- -, Algm(I1,---,14)]), in
the abstract domain yields true; [G(A[g1 (I1,---,1a)],- -5 Algm (T1, - - -, 1)) s =
true

2. flity--yiq) = (J1y---s7dc)-
More formally, this is expressed as follows:

NoTATION 5.10. Let pp be an environment (D is any domain). Let v be any
variable. An environment p', is v-equivalent to pp if and only if ply is defined as
pp except for v.

DEFINITION 5.11 (Entries). Given an environment pg and a program P of Prog,
we note [P],, the subset of A inductively defined by the following rules:

o [v=exp],, =0;

o [A[f(L1,...,1q)] = exp],s is the set of entries e such that for each one, there

exists a tuple (i1, ...,1q) of the iteration space such that both following condi-
tions hold:
— €= f(’il, . ,’id),'
— for the environment pp I;-equivalent to pg with pg(I;) = i; for every
Jj=1,...,d, we have: [exp],, = true.

o [51;52]p: = [S1]px ULS2]pss
o [if exp then S1 else S2],, = [S1]ps U [S2]ps;
e [do (I =P,Q) S)p = [S]p:-

Ezample 5.12. From the environment of Example 5.7, the pair (n;,n;) belongs
to [A[é, j] = exp] - Indeed, we showed that [exp],, = true.

13

According to definition 5.11, the difficulty lies in the calculation of iterations the
execution of which yields new entries, called significant iterations. Indeed, the
variables Iy,...,I; play the role of free variables. Therefore, we must substitute
them by any tuple (i1, ...,44) of the iteration space. However, the iteration space
is a finite set. Consequently, the set of entries, as generated in definition 5.11,
is recursive, and then, from Matiyasevich’s result 4, the characteristic function of
this set can be computed from a set of Diophantine equations. Actually, the func-
tions f,91,...,9m in assignments being affine, associated Diophantine equations
are linear.

Below, we only define the set of Diophantine equations associated to an assign-
ment of the form: A[f(l1,...,Iq)] = exp. The other cases of statements can be
deduced from Definition 5.11.

NOTATION 5.13. Let us note E,, (resp. E,.) the subset of A defined by:
Ey, ={e | ps(A)(e) = true} (resp. Ep. = {e | pc(A)(e) # 0}).

DEFINITION 5.14 (Diophantine equations). Given an assignment S of the form
Alf(L1,...,13)] = exp the set [S] . is generated by solving a family of Diophantine
equation systems inductively defined from the expression exp as follows:

o if exp is the constant 0 then the system is empty;

e if exp has one of the following forms: ¢ # 0, v, exp ® exps, or fi(expr) then
the system is reduced to be the singleton {€ = f(i1,...,i4)} with a constraint
that e¢E,, and (i1, -..,9q) belongs to the iteration space;

o if exp is of the form Alg(I1,...,I3)] then the system is reduced to be the set
{e = f(i1,...,1q),€ = g(i1,...,iq)} with a constraint that e¢E,,, ' € E,_,
and (i1,...,1q) belongs to the iteration space;

o if exp is of the form exp; @ exps then the family of systems is defined by:

F ={Fi}tienumn

where {F; }ier, (resp. {Fitier,) is a family of systems of Diophantine equa-
tions and inequations defined from exp; (resp. exps);

e if exp is of the form exp; ® exps then the family is defined by:

F ={FiUF;}ijenxis

where {F;}icr, (resp. {Fiticr,) is the family of Diophantine systems defined
from expy (resp. exps).

For each solution (i1, ...,i4) of Diophantine systems, f(i1,...,iq) then denotes a
new entry.

Following Definition 5.14, Diophantine systems define characteristic functions
which depend on both entry variables and iteration variables. Simplification pro-
cesses can be applied on Diophantine systems in order to remove iteration variables

4This result states that all recursively enumerable sets are Diophantine, i.e., there exists a
Diophantine equation whose set of solutions is the recursively enumerable set that we are looking
for.

14

(see the two examples just above). These removals lead to the definition of charac-
teristic functions from entries to entries. This enables us to improve the efficiency
of sparse matrix code computations because the number of entries is far less than
the number of iterations. For all Diophantine systems following data-centric rep-
resentations, we can identify two distinct components in the definition of each F;
composing it:

.7:1' = {e' = G,-(eﬂ,.. .,emi) | C',-(e,-l,.. .,e,-m)}

where G;(ei,- -, €in,;) computes new entries whereas the other equations and in-
equations are considered as constraints. They define the predicate C;(e;1, - -, €in;)
which is expressed as a conjunction of equalities, divisibility conditions and inequal-
ities.

Simplification processes can be automatically performed by using tools as Omega [17]
(see also [3]).

Ezxample 5.15 (Simple Program). For the simple program given in Section 3,
the interpretation leads to the following set:

(i+1]i€Z,2<i<16)AG+1¢ E,) A
(((3a0 € Eyy,3a1 € Epy,3an € By (ar =i—1Aax=i—2)Vag =i+ 1}

After simplifications, it becomes :

{a2+3|3a; €E,Jas € E, (a2 +3¢ E)A(1<a; <15)A(a; =1+a2)}

Ezample 5.16 (Cholesky). From the statement s; of the Cholesky algorithm
and a given environment pg, the associated Diophantine system is defined by the
union of the two following sets:

1. {(moayO) = (iaj)a ($17y1) = (Z,])} with a constraint that ($07y0)¢Ep}7 ($17y1) €
Ep,1<j<Nandj<i<N.

2. {(zo,y0) = (4,5), (x1,y1) = (i, k), (x2,92) = (J, k)} with as constraint that
(x07y0)¢EP]B7 (33'17:1]1) € EPIJ ($27y2) € Epp 1 S .7 S N; 1 S k S .7 —1 and
j<i<N.

The first system has trivially no solution (we impose both that (i,j) € E,, and
(1,7)¢E,;). Consequently, we obtain for [s1],, the following set of entries:

{($0,y0)| H(Jakaz) € Z3,3(m1,y1) € EPE’3($2’y2) € Ep‘*’
(i,§)) $ E, N\A<j<N)A(1<k<j—1)A(j<i<N)
Atg =iAyo=JAz1=iANy1 =kAz2=jAy2 =k}

As the constraints 1 < z1,y1,%2,y2 < N are always verified (the entry coordinates
are limited to the matrix bounds) the characteristic function of the set [A(i,j) =
A(i,j) — A(i, k) * A(j§, k)] ps can be simplified as follows °:

5Such simplifications have been automatically performed by using the symbolic computation
tool Omega. [17].

15

{(z1,22)| I=1,91) € Epy, I (22,92) € Epe
(w1,22) € Ep, Ayt =92 Ayr <2 <21}

5.2.2. Filling function

At this level of description, we are in position to define the filling function as
follows:

DEFINITION 5.17 (Filling functions). With the previous notations, from a pro-
gram P and an environment pg which denotes the initial environment, we define
fill : 2% — 22 where 2% is the set of all subsets of A (i.e. 2 = {X | X C A}), the
total function defined by:

0— E,,
BEU[P],

where py is any environment such that Ey = E.

Let us show that this application fully describes an algorithm (i.e. fill is re-
cursive). To achieve this purpose, we use a classical result of the set theory due to
Knaster and Tarski and known as Tarski’s theorem. The statement of this theorem
and all useful notations can be found in Appendix A.1. Here, we only state two
theorems. The first one means that fill admits a fixpoint which can be reached in
a bounded steps. The second theorem states the partial correctness of the fill-in
algorithm, that is, fill generates all entries as performed by the numerical execu-
tion.

THEOREM 5.18 (fixpoint). fill admits a finite least fixpoint in a bounded steps.

(The proof is given in Appendix A.2.)

The fixpoint is defined as the limit (i.e. the least upper bound) of the set
{fill"(®) | n > 0} (ie. fixgu = Sup {fill™(@) | n > 0}). This describes the general
outline of the algorithm. The program generated from this scheme is detailed in
Section 6.

THEOREM 5.19 (Partial correctness). Let P be a program of Prog. Let pc be
an environment in the standard domain C denoting the initialization of the program
P. Usually, the standard interpretation of P in C is defined by a finite sequence of
environments (pg, - . ., p2) such that the following conditions hold:

b pé = pc;

e for all1<i<n-—1, we have:

— (P, ..., pET(12)) is the mext of (ph(I1),...,pE(I4)) according to
the lexicographical order < on the iteration space;

- p [[S]]pé pé"'l for some assignments S occurring in P.

Then, we have: U Epé = fizsu.

1<i<n

(The proof is given in Appendix A.3.)

16

5.3. Sparse dependence analysis

Dependence analysis consists of determining the dependence between program
tasks. Thus, it aims at finding a conservative approximation of tasks that can
be performed in parallel. In general, the problem of computing all dependencies
at compile-time is undecidable. However, sufficient conditions of data-dependence
introduced by A. Bernstein [5] ensure us such a good approximation. These condi-
tions consist of verifying that all statements of the program under analysis do not
access at the same cell memory. if we note by R(s) the set of cell memories read by
the statement s and W (s) the set of written cell memories, then a data dependence
between two statements s;, s exists if one of the three following condition holds:

1. W(Sl) n R(SQ) 75 @,
2. W(s2) N R(s1) # 0, or
3. W(s1) NW(sa) # 0.

In the following, we assume that iterations of nested DO-loops identify tasks (or
operations [10]). For such DO-loop nests, data-dependences are defined on some
assignments of the form:

S A[f(Il7 . '7Id)] = g(A[gl(Il7 .- '7Id)]7 s 7A[gm(Il7 . 7Id)])
performed at any iteration (i1, ...,44). Therefore, they are expressed as follows:

NoTtaTiON 5.20 (Execution order). Let P be a program of Prog. Let S and
S’ be two assignments of P. Moreover, let us suppose that S depends on iteration
variables I, ..., I; and S" depends on iteration variables Jy,. .., Jx. Let (i1,...,iq)
and (J1,---,jk) be two iterations. Let us note S(iy,...,iq) (resp. S'(j1,---,7x)) the
assignment S (resp. S') performed at the iteration (i1,...,1q) (resp. (Ji,---,7k))-
Then, let us define S(i1,...,0q) < S'(J1,---,4k) by:
either (i1,...,iq) = (j1,---,Jk) (among other k = d),
S(i1y.--y8d) < S"(J1y--,78) ff and in this case S' occurs after S in P
or (ila"')id) < (Jlaa]k)
where < denotes the strict lexicographical order on the iteration space.

Roughly, S(i1,...,iq) < S'(j1,-..,Jjr) means that the execution of S(i1,...,1q)
occurs before S'(j1,...,Jk) in the course of the sequential execution of P.

DEFINITION 5.21 (Data dependence). Let P be a program of Prog. Let S and
S’ be two assignments of P depending respectively on iteration variables I, ..., I4
and Ji,...,Jg. Let (i1,...,1q) and (J1,-..,Jx) be two iterations such that S(i1,...,14) <
Sl(jl: ree aJk) Th’en;

flow-dependence: (S, (i1,--.,%q)) is flow-dependent to (S', (j1,---,J&)), usually
noted (57 (Z.17 R ld)) &7 (Sla (jl: s 7jk)): iff:

W (S(i1,y...,1d)) ﬂR(Sl(j1,...,jk)) #0

anti-dependence: (S, (i1,...,494)) 4s anti-dependent to (S, (j1,-..,Jk)), usually

noted (57 (ila"'aid)) 4 (Sla(jh'"ajk)); fo

R(S(Zlﬂazd)) mW(SI(Jlaajk)) ;é@

17

output-dependence: (S, (i1,...,%q)) is output-dependent to (S, (j1,.--,Jk)), usu-
ally noted (Sa (7:15 s aid)) 6° (Sla (jla s ajk)): /‘ﬁ.

W(S(zlaazd)) nW(SI(Jh:Jk)) #w

When using sparse matrices, we can refine data dependence conditions by using
the properties of zero to be absorbing and neutral. To achieve this purpose, we will
use the abstraction domain defined in Section 5.1 as well as the following property:

NOTATION 5.22. Given an expression exp and a subexpression exp' of exp, we
note explexp' /] the expression obtained from exp by substituting all occurrences of
exp’ by a fresh variable © (e.g. a variable which has not been used in the program,).

DEFINITION 5.23 (Substitution property). Let (i1, ...,iq) be an iteration of the
iteration space. We note S, ... i,y C Expr x Expr the binary relation defined by:
either exp' is not a subterm of exp,
pc(lj) =15, 1<j<d
Eye = fizgu
we have: [exp],, =0 if exp = exp'
[explexp’/x]],;, = lexploc
for every pp z-equivalent to pc otherwise

or for every pc such that {
exp Sgiy....ia) €xp" iff

Definition 5.23 calls for some comments:

Let exp be the expression with the form:

G(Algr(I1,-- -5 1a)], - -, Algm (I1, - - -, 1))

and let exp' be the sub-expression of exp of the form A[g,(I1,...,Iz)] where p €
{1,...,m}. Therefore, given an iteration (ii,...,iq), exp S(,...i,exp’ means
that the evaluation of exp does not depend on A[gp(i1,-..,is)] whatever its con-
tent is. This plays the role of a fresh variable. For example, this condition
holds when for any expression A[gy(i1,...,%q)] @ Algy (i1,...,%q)] with p' # p €
{1,...,m},9p (i1,...,iq) is not an entry (i.e. gp (i1,...,%q) ¢ i rin)-

Thus, let us suppose that there exists an iteration (j1,. .., jq) of the iteration space
such that (ji,...,J4) < (i1,...,%q) and f(j1,..-,Jd) = gp(i1,...,iq) (i.e. the cell
memory indexed by g,(i1,...,4q) was written at the iteration (ji,...,jq4)). Given

a statement S of the form:

AlfGr, ..yt =G(A[g (I, ..., L)), - - -, Algm (L1, - - -, 1a)])

we have:

Algp(iz, -, ia)] € R(S(in, - - ,ia)) N W(S (1, - -, Ja))

Consequently, according to Bernstein’s conditions we have a data dependence be-
tween both tasks identified by (i1, . ..,iq) and (j1,...,ja). However, fromexp S;, ..., exp’,
we have:

S(ivs--yia); S(rs -5 Ja) = S(rs -5 Ja); S(in, - - yia)

Hence, by using substitution property, Bernstein’s conditions can be refined as
follows:

18

DEFINITION 5.24 (Sparse Bernstein’s conditions). Let P be a program of Prog.
Let S be an assignment of P of the form:

A[f(zla s 77’.d)] = g(A[gl(I17 s 7Id)]7 te 7A[g7H(Ila s 7Id)])
Let S' be an assignment of P of the form:

A[fl(Jla s Jk)] = gI(A[gi(Jla . '7Jk)]a s aA[g;n’(Jh .- ’Jk)])

Let (i1,---,iq) and (j1,---,j4) be two iterations such that S(i1,...,iq) < S'(j1,---,Jk)-
Then:

sparse flow-dependence: (S, (i1, ...,4q)) is sparse flow-dependent to (S, (j1,-- -, Jjk))
iff: f(ix,...,0q) € fizri
AN@ELLSp<m, fli1,..-,ia) = g,(J1,---, k)
A (G(A[gy (J1s -5 Te)]s -+ o5 Algr (J1s - -+ Ji)])s Algp (J1s -« 5 TR)DES (1)

sparse anti-dependence: (S, (i1,...,%4)) is sparse anti-dependent to (S, (1, ..., j4))
iff: f'(r,- -5 0k) € fizg
A (31 SPS m, fl(jla"'ajk) = gp(ila"'aid))
AN (G(A[g (T 1a)], - Algm(Tns -« - 1a)])s Algp(Tn, - - s Ta)) €S .. ia)

sparse output-dependence: (S, (i1,...,4q)) is output-dependent to (S’, (j1,---,7k))
iff: f(i1,...,%q) € fizpu
A f(ila"'aid) = fl(jla'-'ajk)

Generating sparse dependencies at compile-time requires that the complement

of the relation S;, ... ;,) with respect to Expr x Ezpr is defined. As for the filling
function, we need to use the abstract interpretation defined in Section 5.1.

_ DEeFINITION 5.25 (Unsubsitution algorithm). For any (i1,...,4a), let us note
S(ir,....ia) : Expr x Expr — B the application inductively defined by:

o Siy,....ia)(exp' exp') = [exp'],, where ps denotes any environment such that
E,, = fizsy and for every j € {1,...,d} pe(I;) = i;;

. g(il,m,id)(emp, exp') = false if exp' is not a sub-expression of exp;

* S(ir,..ia)(ezp1 ® eapy,eap’) = a
[expy ® exps]p. A (S(is,....ia) (€xP1, €2P') V S(iy ... i) (€2, €2D"))

where pg denotes any environment such that E,, = fixpy and for every
JE {la:d} p]B(IJ) = 1.

o S(i,....in)(exp, exp’) = false if exp' is not a sub-expression of exp;

L g(il,...,z’d)(ewpl &b empzaewp') = g(h,...,z’d)(ewplaexpl) \ g(il,...,id)(eﬂfpz,eivpl)
. g(il,...,id)(expl © exps,exp') = g(il,...,id)(explaefﬂp') \ g(il,...,id)(empmewpl)
 Sir,..in) (Plezpr),exp’) = Siy,..in) (€xp1, exp') where ¢ € {p, i}

With such an approach, we only give a rough estimate of the complement of
S(iy,...,iq) Which can be symbolically computed from the entries, as it is shown
by the following result:

19

THEOREM 5.26. (exp, exp’)¢Si,....is) = g(il,m,id)(ewp, exp')
(The proof is given in Appendiz A.4.)

From there, we can redefine iteration dependencies such that they can be computed
at the inspector phase. Indeed, it is sufficient to replace in Definition 5.24 both
conditions:

L (G(A[g1(I1, -« 1)), - - s Algm (L1, - - 1)), Algp (It - -+ 1)) ES i 5a)
2. (G(A[g1(I1,- -, 1a)), - -, Algm (I, - .- 13)]), Algp(T1,s - - s 10))ES (i ... i0)

by both following ones:

L. 3(.7'1,...,jd) (g(A[gl (Ila s 7Id)]7 LN A[gm(Ila [N} Id)])7 A[gP(Il7 LR Id)])

Ezample 5.27 (Simple example). In this example, we only study sparse flow de-
pendences for s. 67 is then defined as follows:

1670, & Jday € fizgi, Jas € fizgu,
Domain by writing 2 <1i; < 16A
Domain by reading 2 <i; < 16A

9rdering 11 < T2/
S a1=i2—1/\a2=z'2—1
Dep. with A[T —1] [(i1+1=i2—1=a)

\%

Dep. with A[I — 2] (i1 4+1 =14y —1=ay)]

The previous formulation can be simplified to become data-centric:

iléfig = da; € fiaff,'”,aaz (S fi.’IIf,'”,iQ =a1+1A (a2 =a; — 1)
[(i1=a1—1/\3§a1§15)v(i1=a1—2/\4§a1§15)]

Ezample 5.28 (Cholesky). Here, we will only give sparse flow dependencies on
the assignment s;. The computation of §7 on s; is then defined by:

(317 (j7k77:))6f(517 (jlakl7il)) <= 3(551,:1/1) € fiwfilhzl(w?:yZ) € fiwfilla

domain by writing 1<j<NA1L<EkE<Lj—1Aj<i<NA
domain by reading 1< <NALILSK <j—-1Aj'"<i" <NA
ordering (g, k,3) << (4", K", i")A
Dep. with A[I, K]
references [(mr=i=iANy1 =j=FkA
g il=$1AkI=y1Ajl=.Z'2AkI=y2)
\%
Dep. with A[J, K]
references (z1=i=j'Ayp=7=FKN
S J =i AN =y Ni' =z0 ANE = y3)]

As previously, we can simplify the characteristic function as follows:

20

(s1, (4, k,9))07 (s1, (', K',7")) & (w1, 91) € fizpiu, Iw2,y2) € fizpu
y1=y2/\j=y1=k/\i=w1/\k’=y2
[(il =T /\jl =2 ANy1 < .’172)V
(il=$2 /\jl=.’ll'1 /\(1'1 <z2Vi <.’L'1))]

Similarly to the analysis of the filling function, the computation of dependencies
only depend on entry variables. As previously, this also constitutes a necessary
condition to generate an efficient inspector program which computes dependencies.

DEFINITION 5.29 (Sparse dependence graph). Let P be a program of Prog. The
set of dependencies Ap is defined by: Ap = 6F UJU .

6. CODE GENERATION

This section deals with the code generation both at the symbolic and numerical
levels. The code generation step converts any dense sequential program to an SPMD
sparse program for shared memory architecture. This is divided into two parts:

1. the code generation of the symbolic program where we compute from the ref-
erences of nonzero entries of the matrix, the fill-in and the sparse dependence
graph.

2. The generation of the numerical parallel sparse program where we compute
the scheduling of iteration sets which can be independently performed con-
currently, so-called fronts, from dependences previously defined.

The code generation is presented here by using any parallel Fortran-like pro-
gramming language and a dedicated generic data-structure library. The choice of
a parallel Fortran-like programming language enables us to define a generic frame-
work without introducing specific knowledge on languages, which facilitates the
presentation. However, higher languages based on relational databases [14, 19],
or using dedicated data-parallel structures [2] will certainly provide abstractions to
significantly simplify the code generation.

6.1. Symbolic code generation

During the static analysis (Section 5), we computed two sets of conditions defin-
ing respectively the fill-in and the sparse dependencies. As we saw in Section 5,
these conditions are data-centric, that is, we scan available entries to generate both
new ones and dependences. Therefore, the insertion step will consist of adding
new entries as well as dependencies. Obviously, the conditions can be computed in
parallel.

To define the parallel implementation, we follow the OPEN-MP norm [16] which
corresponds to a programming language with a single address space. The parallel
loop will be defined in this article by doall [20].

6.1.1. Data structures for entries and dependences

Before giving the parallel code for the fill-in and sparse dependences, we must
first choose suitable Sparse Data Structures, for short SDS, to store both entries

21

and the dependence graphs. By following [6, 7, 14], we choose hash tables as SDS.
The interest of such a representation is threefold:

1. Hash tables can be considered as generic implementations of SDS. Their gener-
icity lies on the ability to convert any address of a multi-dimensional array
(space) to a homogeneous address which corresponds to the primary entry.

2. Accessing to elements is efficient.

3. Hash tables subsume the Line Storage Format (resp. Column Storage Format)
where one of matrix lines (resp. matrix columns) is used as the primary hash
key.

Hash tables can also be considered as suitable structures to implement depen-

dence graph because graph implementation by matrices often leads to sparse ma-
trices. It is sufficient to define a hashing function for any pair (J;,j2) representing
dependence edges between two iterations.
Usually, hash tables are implemented by dynamically allocated arrays of arrays.
In order to minimize the complexity, we will assume that elements of the second
dimension will be sorted in increasing order. This will allow us to insert new
elements by using a dichotomic search. Therefore, the two following functions are
required:

e bool insert(value,SDS) : inserts a value in the SDS. The primitive returns
a boolean value which is true if the entry already exists.

e bool member (value,SDS) : checks whether a value has already been stored
or not.

Moreover, memory locking and unlocking primitives are implicitly used during the
execution of insert and member primitives. This allows atomic accesses to the
secondary entries without having conflicts. Finally, parallelism is expressed by
using doall loops which scan every element in parallel. This can be implemented by
OPEN-MP parallel loops which scan primary entries.

6.1.2. Code generation of the filling program

In Section 5, we saw that the filling function can be specified as follows:

U Fi(eir, -+, ein;) where :

i=1,m

Fi(eirs- -+, ein;) = {€ = Gileir, -, ein;)|Cil€ir, - -+, €in;) }

From this representation, the filling program scans the current set of entries £
for each entry e;; of the parameter (e;1,-- -, €in;) . An improvement of this scheme is
to consider only entries previously introduced because without creation the fixpoint
is necessarily reached.

Without loss of generality, we assume that new entries correspond to €;. The
generated code for the filling function is then given in Figure 6.

Despite the complexity of this scheme which is mainly due to the genericity
required to its definition, practical applications lead to a very simple code as we
can see it in the two examples above.

22

Input:
A program P of Prog and an SDS FE storing the initial entries
Output:
a final set E of entries for the program P.
program:
N, =FE
Ny =10
doall (611 S Nl)

doall (e1,, € E)
If (Cl (6117 Ty eln1)) then

e = G1(611, e 761711)
if (insert(e’, E)) then insert (¢’, N2) endif
endif

enddoall- - - enddoall

doall (e;,1 € Ny)

doall (e, € E)
if (Crn(em1,--"s€mn,,)) then

e = Gm(emla Tty emnm)
if (insert(€’,E)) then insert (¢/, N2) endif
endif
enddoall- - - enddoall
Ny =N,
endwhile
output: FE;

Figure 6 Filling symbolic code

23

N, =F
while (N7 # 0)
Ny =0;
doall ((z0,%0) € E)
doall ((.Z'l,yl) S E)
if (yo =191 Nyo < x1 <o) then (z,y) = (zo, 1)
if (insert((z,y), E)) then insert ((z,y), N2) endif
enddoall
enddoall
doall ((.’Eo,yg) € E)
doall ((.Z'l,yl) € E)
if (z1 =y1 Az < o) then (z,y) = (z0,71)
if (insert((z,y), E)) then insert ((x,y), N2) endif
enddoall
enddoall
N1 = Ny
endwhile

Figure 7 Filling code for Cholesky

Ezample 6.1 (Cholesky). In example 5.16, we gave conditions to generate en-
tries associated to the assignment s; of the Cholesky factorization algorithm. Before
giving the associated filling symbolic code, we must in addition define conditions
for generating entries from the two other assignments s, and s3.

For s,, the associated conditions are empty because ss is of the form A[f (i1, .. .,44)] =
u(A[f(i1,...,i4)]). On the contrary, the assignment s3 gives rise to the following
set:

{(517072/0)| El(k2a.7) € Z X Zaa(xlayl) € Epww
(T0,90) ¢ Epy AN(1<SJSN)A(j+1< ke S N)A
zo =ka Ayo =jAm1=jAy =j}

As previously, this set can be simplified as follows:

{(o,z1)13(z1,11) € Eps, (w0,21) € Epu Az1 =91 A2 <29 < N}

If we add that z; < N is always satisfied we have : (note that this simplification
can be automatically performed)

{(@o, 21)|3(z1,41) € Epey (w0,71) ¢ Epe A1 =y1 Az1 < 20}
The generated code for the Cholesky factorization algorithm is given in Figure 7.

Ezample 6.2 (Simple Example). Similarly the simple example detailed in Sec-
tion 3 leads to the program given in Figure 8.

The previous program can be optimized in order to reduce the dimension of
the parameter space. This optimization is based on the fact that checking whether
equalities are satisfied or not can be done by the member primitive. The resulting

24

N1 =F N
while (N, # 0)
Ny =0 ;
doall (al € Ny)
doall (a2 € E)
if (al >=1Aal <=15)Aa2=al —1) then
if (insert(E, a2 + 3)) then
insert(N2,a2+3);
enddoall
enddoall
Ny = N,
endwhile

Figure 8 Filling program

code is given in Figure 9.

6.1.3. Generation of the dependence computation program

As in Section 6.1, generating dependences amounts to satisfying conditions de-
noting respectively: domain by writing, domain by reading, identical references and
unsubstitution properties. Consequently, the generic code is like Figure 6 except
where conditions are those used to generate Ap instead of those used to generate
entries (i.e. conditions denoted by the family F).

6.2. Generation of the numerical program

From a sequential program as described in Section 4, the equivalent parallel
program is based on a scheduler which allows to run tasks in parallel. Since each
task is identified by an iteration, scheduling is represented by an order on iterations.
If we define by D the iteration space then the program of Figure 10 describes a
static scheduling by front for a PRAM model (shared memory). The loop with the
index t schedules fronts. Each front is described by a set of iterations ©(¢). The
partition of the iteration space D can also be made in parallel [18] by performing
a topological sort on the dependence graph. Finally, Sparse(P(I')) embodies the
program rewritten for sparse structures.

This is usual in automatic parallelization [10]. However, other methods [11],
such as a dynamic scheduling [18] (self-scheduling), can be applied.

The program P(I") has all the characteristics of a sequential program with nested
do loops, that is: access to memory is based on a single address space, and the con-
trol flow is sequential. Hence, we can automatically convert it into an equivalent
sparse sequential code by using existing tools designed to this purpose [6, 7, 14, 19].
Moreover, the execution order of the tasks of P is controlled by the scheduler. There-
fore, the proposed approach in this paper is compatible with studies performed to
rewrite dense code to sparse code (cf. Section 2.1). Consequently, they can be in-
tegrated into the sparse parallelization process. In order to fully describe how code

25

N =F
while (N, # 0)
N, =) ;
doall (a € N7)
al =a;a2 =al —1;
if (al >=1Aal <= 15A member(a2, E)) then
if (insert(E, a2 + 3)) then insert(N;,a2+3);
a2 = a; al = a2+1;
if ((a2 >=0A a2 <= 14) A member(E,al)) then
if (insert(E, a2 + 3)) then insert(N3,a2+3);
enddoall
N1 =N,
endwhile

Figure 9 Filling program

compute the filling
compute the sparse dependence graph
© =Partition of D to figure out a scheduling
dot =1, O]

doall I € O(t)

Sparse(P(I"))

enddo

synchronization
ENDDO

Figure 10 Skeleton of the sparse parallel program

26

generation can be handled in the scope of the parallelism coming from sparsity, we
give two simple frameworks to rewrite the program P:

1. The first framework is straightforward but does not use the sparsity to im-
prove the storage. Only the sparse parallelism is considered. In this case,
the program P remains unchanged. Consequently, only the control originally
performed by do loops is achieved by a scheduler in the new version.

2. Another possible implementation which suits the method is to consider the
sparse structure as a relational table. This follows [14]. Here, schematically,
sparse formats are considered as a specialized implementation of them. This
can also be implemented by a hash table. In this case, the records of the table
used to implement E are extended to store values. Each record is defined by
a pair (d, A(a@)), where @ is an entry and A(@) is its value.

These frameworks can be improved by using the same optimizations as those used
by the works mentioned in Section 2.

6.3. Experiments

Experiments described in this section, compares [18]’s method (see Section 2.2)

and the proposed method when applied to the program described in Example 2.
In the following, we will name [18]’s analysis DAE analysis (Dynamic dependence
Analysis restricted to Entries).
These experiments have been performed on a SGI ORIGIN 2000 (8 processors).
They have been obtained from arrays of different sizes. The presented results
of experiments has been performed for a vector of size 1000. Other experiments
performed on arrays with other sizes lead to similar results. The curves depict two
kinds of experiments which differ on how arrays are initially filled: arrays of the first
class of experiments (tests A) are filled in such a way that each address of filled cell
has been randomly selected in different segments of size 3. This avoids large fillings.
The second class (tests B) corresponds to an initial random fill. The left curve of
Figure 11 describes the evolution of the number of entries introduced during the
computation when the initial density varies from 1 % to 50 % (for higher densities,
arrays are considered as always filled). The curve located on the right of Figure 11
represents the maximum number of iterations for reaching the fix-point. The result
of the test B emphasizes a sensibility to the initial conditions of the filling. More
precisely, the appearance of three consecutive filled cells leads to a filling of all the
cells located on the right of these three cells. The curve of Figure 12 represents
the number of steps required to achieve the computation. This corresponds to the
length of the longest path in the dependence graph. The number of iteration to
reach the fixpoint is bounded by & 40 iterations. In comparison to the size of the
vector which corresponds to the upper bound of the computation, we can notice
that the number of iteration corresponds to less than 0.5% of the maximal number
of iteration. Since the complexity of the filling is the same as the complexity of
the program, the time is proportional to the filled values. In practice, the time
spent to fill and to perform the numerical computation of the vector is negligible
in comparison to the time spent performing a computation in dense vector.

Indeed, the order of a speedup® exceeds 10 when less than 40% of arrays are
filled. The speedup between the sequential sparse version and the parallel sparse

6Let us recall that the speedup is defined as follows: Let Tdense b€ the execution time of the

27

350 [

00 |

250 [
200 |
150 -

100 -

§ g
sdais o Jaquinn
W !
bop
| zze@ *
§E5E%
ESER S
[Eziz
2583
P eé
& g g g g g

s8UIU3 Jo JaquunN

Iniial Density

Initial density

Figure 11 fill-in

Sparse (A)
Sparse (8)

pe’

500

450 |

400 [

350 -

300 [
250 -
200 -
150 -

sdais jo aquiny

100

15 20 25 30

Density after the introduction of fil-in

10

100

50 60 70 80

40
Density after introduction of fl

bin

Figure 12 Scheduling

28

0.00035 4000
Test (A) — Sparse —
DAE -

0.0003 3500 [

000025 - 3000 [

edges

0.0002 2500 [

se (sec.)

000015 2000 [

Cebre-Cspar

0.0001 1500 [

Number of dependence

1000 [

L L L L L L L L L o L T ! L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Size of array Size of the dense vector

Figure 13 Dependencies

one on 8 processors is between 2 and 4. The computation time of the sparse parallel
method includes the time spent to compute the filling, the dependence graph and
the parallel numerical computation (and not merely the numerical computation).

This confirms the importance of the method for the parallelization process as it
is admitted that a structure is considered to be sparse if less than 5% of the cells
are filled. Thus, the main limitation of the method lies on the overhead induced
by both management of the sparsity and computation of the dependence graph.
Let us recall that the DAE method also describes a “sparse parallelizing method”.
The right curve of Figure 12 represents the time of execution according to the
two methods for arrays which have less than 40% of fill-in. Let us notice that the
absorption properties increase the speedup by an average factor of 2 in comparison
to the DAE method. If we consider cases where 5% at most of the array are filled,
the speedup is 5 times greater than DAE.

Figure 13 details the difference of the dependence computation cost between the
DAE method and the sparse method, that is: (Costpar — Costsperse). The sizes
of tested arrays are ranged from 100 to 10000 with 20% of filled cells. Since the
computation of the fill-in is necessary for both methods, its cost is removed from the
computation of the difference. One can remark that for a given size (1500 for the
figure) the cost of the sparse dependence is less than the cost of the DAE method.
This can be explained as follows : If we assume that the time access complexity
in a hash table is logs (| fizsiui|) then the time cost computation of the dependence
graph for both methods are defined as follows :

Costpar = o.|fizfu|.|Apar| + B (1)
COStsparse = al-|fixfill|-(|Asparse| + log2(|fi$fz'll |)) + BI

where a, o, 8 et 8" are constants which depend on the implementation. Given
that the implementation of both programs are similar, we can admit that o ~ o'
et B ~ . Hence, the difference Costpar — Costsparse > 0, when a.|Apag| —
o' |Asparse| > loga(|fizgiu]) = (8 — B')/|fizgiu]. Consequently, the gain of the
sparse method is explained by the number of dependence edges which can be safely
discarded by this method. This analytical result is experimentally confirmed by

dense (necessary) sequential program, and let Tsparse be the execution time of the sparse parallel
program, then the speedup is the ratio s = Tyyep 50 /T5parse-

29

the right curve of Figure 13 where the two curves represent the number of depen-
dence edges obtained with both methods. The number of edges computed by the
sparse method is much lower than the one computed by the DAE method. These
Experiments put the element which favors the speedup forward: the dependence
edge removal. This gives rise to the reduction of the cost of the symbolic com-
putation because the amount of treated data decreases in comparison of the DAE
method. In the example, this also leads to a reduction of the completion time of
the algorithm. Actually, the number of dependence edges computed by the DAE
method represents the asymptotic bound of our method. This is also the case for
the number of steps needed to compute the parallelized program.

7. CONCLUSION

In this paper, we have presented an automatic method which from sequential
programs working on dense matrices generates a parallel counterpart working on
sparse matrices. This work is divided into a static part and a code generation part.
The static part is itself split up into two steps. In the first step, we have defined
the filling function to symbolically compute the indexes of the matrix in input
whose the content will be nonzero at least once in the course of the execution. To
achieve this purpose, we have used a non-standard semantics of numerical expres-
sions from the propositional calculus. With such an abstraction, we have shown by
Theorem 5.18 that the filling function can be computed. The resulting algorithm
computes, from the program text and a matrix in input, the necessary memory
which will be used to store the matrix content during the real execution of the
program. Theorem 5.19 establishes the partial correctness of this algorithm. In
the second part, we have generated the sparse dependence graph. This graph has
been obtained from data-dependencies of DO-loop nests. These dependencies have
been computed by refining the usual Bernstein’s conditions to dynamical concepts.
These dynamical concepts denote both that a memory cell used by two different
iterations is an entry,(the whole set of entries is the result yielded by the filling
function), and that the cell read in one of these iterations is not substitutable by
any values (i.e. their contents are important in the numerical expression where they
occur). The code generation part generates an SPMD sparse program for shared
memory architecture. Therefore, from an automatic analysis, we have first defined
the two symbolic programs associated respectively to the fill-in and the sparse de-
pendence graph. we have also defined a numerical parallel sparse program using a
dynamic scheduling policy with the help of the MT1 compiler [6].

30

Appendix A: THEOREMS AND PROOFS OF SECTION 5

A.1. Partially ordered sets and Tarski’s theorem

Here, we recall some basic definitions and results about partially ordered sets,
for short often called posets.

DEFINITION A.1 (Partially ordered sets). A partial order is a reflexive, transi-
tive and antisymmetric relation which is usually written <. The pair (A, <) con-
sisting of a set A and a partial order < is called o partially ordered set or poset.

DEFINITION A.2 (directed and complete posets). Given a poset (X, <), a sub-
set of X is directed if any two of its elements has an upper bound in E.
A poset (X, <) is complete if it has a least element according to the order < and if
any directed subset E of X has an upper bound Sup E.

DEFINITION A.3 (Continuous functions). A function f: X — Y where X and
Y are complete posets is continuous if for every directed subset E of X, we have:

f(Sup E) = Sup f(E).

THEOREM A.4 (Tarski). If f is a continuous endofunction (ie. f: X — X
where X is a complete poset) then it has a least fizpoint noted fixy.

A.2. Proof of Theorem 5.18

This is easy to see that given any set X, the set 2% equipped with the subset
relation as partial order is complete. Indeed, 2% has () as least element and for any
directed subset F, Sup F = U e. Hence, By the Tarski’s theorem, it is sufficient

ecE
to show that fill is continuous.

LEMMA A.5. fill is continuous

Proof. Let E be a subset of 2%. As 22 is a complete poset, the set E has an upper
bound Sup E. Obviously, fill is monotone. Thus, we have: Ve € E,;e C Sup E.
Since fill is continuous, and VE C A, E U [P],, C A, fill has a least fixpoint
fizgu. This least fixpoint is defined as the limit (i.e. the least upper bound) of
the set {fill™(@) | n > 0} (i.e. fizpu = Sup {fill™(@) | n > 0}). This describes
the general outline of the algorithm. The program generated from this scheme is
detailed in Section 6.

By definition, this algorithm stops whatever the program and the array in input
are, since E is bounded by the number of cells contained in the array. Moreover,
the number of steps is bounded by the cardinality of the iteration space.

A.3. Proof of Theorem 5.19

This is proven by induction on the size of the sequence (pg, ..., p%) resulting of
the interpretation of P in C. By definition, E,, = E,, where pp is compatible with
pc- Then, by Definition 5.17 we have: E,, C fixzyy. Let e be an entry of Epé+1.
Here, two cases have to be considered:

e There exists j < i such that e € Epé . The conclusion is obvious;

31

e Otherwise, this means that there exists an assignment of the form:

A[f(Ila s 7Id)] = g(A[gl (Il7 EERE Id)]7 LR A[gm(Ila s 7Id)])
and a tuple (i1,...,44) of the iteration space so that:
— pi(I;) =ij forall 1 < j < d
- [g(A[gl (Il7 veey Id)], tee JA[gm(Il7 veey Id)])]]pe 75 0.
Consequently, the tuple (i1,...,74) denotes a significant iteration and then
f(i1,-..,iq) belongs to fizsu.
A.4. proof of Theorem 5.26

This is proven by following the same induction step than in Definition 5.25.
Here, we only give the proof for the case where exp is of the form exp; ® exps. The
others cases are handled in the same way.

By Definition 5.23, this means that there are both environments p¢ and p, with p}
z-equivalent to pc such that:

[ezpr ® expslexp'/x]],, # [exp1 @ expa],.
Therefore, we have [exp;[exp’/z]],, # [expi]ye or [expalexp’/z]],, # [exp2]pe-
Consequently, by the induction hypothesis, we conclude:

S(ir,....ia) (exzpl exp’) V S(i, i) (expa, exp)

Finally, from the inequality just above, we have:

(lezpr ® expslexp’/x]],, # 0) V ([expr ® exps]p. # 0)

From which we directly conclude that:

(lexpr @ expsalexp'[x]],, O true) A ([expr ® exps],. § true)

Consequently, for any pg such that E,, = fizsy and for every j € {1,...,d}
pB(I;) = i; we obtain: [exp; ® exps],, = true.

References

[1] R. Adle : “Outils de parallélisation automatique des programmes denses pour
les structures creuses”. PhD’s thesis, University of Evry, 1999. In French. avail-
able at ftp.lami.univ-evry.fr/pub/publications/these/PhD0199.ps.gz

[2] M. Ujaldon, E. L. Zapata, B. M. Chapman, H. P. Zima “Vienna-Fortran/HPF
Extensions for Sparse and Irregular Problems and Their Compilation.” IEEE
Transactions on Parallel and Distributed Systems Vol 8 N 10: 1068-1083, 1997.

[3] R. Adle and F. Delaplace : “Extension of the Dependence
Analysis for Sparse Computation”. Technical Report, LaMI-
2297, University of Evry, 1997. available at ftp.Jami.univ-
evry.fr/pub/publications/reports/1997 /index.html/lami 22.ps.fz

32

[4] U. Banerjee : “Dependence Analysis for Supercomputing”. Kluwer Academic
Publisher, Vol. 60, 1988.

[5] A. Bernstein : “Analysis for parallel Processing”. In: Proc. IEEE Transactions
on Electronic Computers, Vol. EC-15, No. 5, 1966.

[6] A. Bik and H. Wijshoff : “Advanced compiler optimizations for sparse compu-
tations”. J. Par. Dist. Comp., 31:109-126. Academic Press, 1995.

[7] A. Bik and H. Wijshoff : “Automatic Data Structure Selection and Trans-
formation for Sparse Matrix Computation”. In: Proc. IEEE Transactions on
Parallel and Distributed Systems, 7(2):109-126, 1996.

[8] P. Cousot and R. Cousot : “Abstract interpretation and application to logic
programs”. J. Logic Prog., 13(2-3):103-179. Amsterdam: Elsevier, 1992.

[9] I. Duff, A. Erisman and J. Reid : “Direct Methods for Sparse Matrices”. Oxford
Sciences Publications, 1986.

[10] P. Feautrier : “Techniques de paralllisation”. In: M. Cosnard, M. Nivat and
Y. Robert (eds), Algorithmique parallele, pp. 243-257. Masson, 1992.

[11] C. Fu, and T. Yang : “Run-time Techniques for Exzploiting Irregular Task
Parallelism on Distributed Memory Architecture”. J. Par. Dist. Comp., 42:143-
156. Academic Press, 1997.

[12] A. Gupta, G. Karypis and V. Kumar : “Highly Scalable Parallel Algorithms
for Sparse Matrixz Factorization. In: Proc. IEEE Transactions on Parallel and
Distributed Systems, 8(5):502-520, 1997.

[13] M. Heath, E. Ng and B. Peyton : “Parallel Algorithm for Sparse Linear Sys-
tems”. Siam Review, 33(3):420-460, 1991.

[14] V. Kotlyar, K. Pingali and P. Stoghill : “Compiling Parallel Code for Sparse
Matriz Applications. In: Proc. SuperComputing (SC), ACM/IEEE, November
1997.

[15] J.-C. Mitchell : “Foundations for Programming Languages’. Foundations of
Computing. Boston: MIT Press, 1996.

[16] Rohit Chandra, Ramesh Menon, Leo Dagum, David Kohr, Dror Maydan and
Jeff McDonald : “Parallel Programming in OpenMP” . Morgan Kaufmann Pub-
lishers. 2000.

[17] W. Pugh and D. Wonnacott : “An Exact Method for Analysis of Value-based
Data Dependances”. In: Proc. Sixth Annual Workshop on Programming Lan-
guages and Compilers for Parallel Computing, 1993.

[18] J. Saltz, R. Mirchandaney and K. Crowley : “Run-Time Parallelization and
Scheduling of Loops”. In: IEEE Transaction on Computer, 40(5):603-611, 1991.

[19] P. Stodghill : “A Relational Approach to the Automatic Generation of Sequen-
tial Sparse Matrix Codes”. PhD thesis, Cornell University, 1997.

[20] M. Wolfe : “Optimizing Supercompilers for Supercomputers”. MIT Press, 1989.

33

[21] M. Wolfe : “High Performance Compilers for Parallel Computing’. Addison
Wesley, 1996.

[22] T. Yang and C. Fu : “Space/Time-Efficient Scheduling and Execution of Par-
allel Irregular Computations”. ACM Transactions on Programming Languages
and Systems (TOPLAS), 1999.

34

