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Abstract. When rewriting is used to generate convergent and complete rewrite systems in
order to answer the validity problem for some theories, all the rewriting theories rely on a
same set of notions, properties and methods. Rewriting techniques have mainly been used to
answer the validity problem of equational theories, that is to compute congruences. However,
recently, they have been extended in order to be applied to other algebraic structures such as
pre-orders and orders. In this paper, we investigate an abstract form of rewriting, by following
the paradigm of “logical-system independency”. To achieve this purpose, we provide a few
simple conditions (or axioms) under which rewriting (and then the set of classical properties
and methods) can be modeled, understood, studied, proven and generalized. This enables us to
extend rewriting techniques to other algebraic structures than congruences and pre-orders such
as congruences closed under monotonicity and modus-ponens. Finally, we introduce conver-
gent rewrite systems that enable one to describe deduction procedures for their corresponding
theory, and propose a Knuth-Bendix style completion procedure in this abstract framework.

Keywords: rewrite system, abstract rewriting, axiomatization, abstract deduction procedure,
abstract completion procedure.

1. Introduction

1.1. MOTIVATION

One of the main purposes of rewriting is the generation of convergent and
complete rewrite systems which can be used to automatically prove the valid-
ity of formulæ in some theories [16]. This technique has mainly been applied
to answer the validity problem for equational theories, that is, to compute
congruences (e.g. [6, 21] for surveys). This research activity started with the
famous completion algorithm designed by Knuth and Bendix [36]. This algo-
rithm provides for any equational theory, when it does not fail 1, a rewrite sys-
tem which is both terminating and confluent. Moreover, the equational theory
and the rewrite system are proof theoretically equivalent. However, rewriting
has recently been applied to other algebraic structures such as preorders and

1 Unfailing completion procedures have also been defined [9, 32]. Unfailing completion
procedures are programs that may terminate with a non-empty set of equalities, and only
produce ground confluences.

© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

main.tex; 31/08/2006; 10:56; p.1



2

orders [11, 39, 48–50, 53–55]. These researches are the consequence of a
negative result. This negative result states that it is impossible to generate
by the Knuth-Bendix algorithm a rewrite system equivalent to the equational
presentation of lattice theory [27], although Withman’s algorithm has solved
the word problem for this theory when represented under its ordered form.
These works have then defined rewriting theories to solve the word problem
of theories manipulating formulæ of the form t � t

�
where � is any preorder:

inclusion, subtyping, etc. J. Levy and J. Agustí opened this research field by
applying rewriting to all pre-orders [39]. The difference with standard rewrit-
ing is that, when we have to orient a non-symmetric relation � according to a
reduction order � (i.e. a Nœtherian order on terms), two rewrite relations are
needed: both the intersection of � and � , written ��� and the intersection of
� and � , written � � . This is due to the non-symmetry of � : � �
	�� � ����� 1.
Such a pair of rewrite relations is called a bi-rewrite system. From these
pioneer works, two generalizations have been proposed. G. Struth studied
operational rewriting for any non-symmetric transitive relation [53, 55]. He
generalized bi-rewrite systems to any pair of non-symmetric transitive rela-
tions A and B, and studied rewriting as a general theory of commutation from
their composition. Then, he applied it to lattice theory [54]. M. Schorlem-
mer pushed on a bit further by defining a variant of the classical logic of
first order predicates restricted to binary relations in which generalizations
of Leibniz’s law (such as transitivity or typing) can be specified by using
both the composition of binary relations and the set-theoretical inclusion. He
studied rewriting on this logic in [50, 48, 49].
The question is: can rewriting be extended to a larger class of algebraic
structures than congruences, preorders or more generally the composition of
binary relations? To answer this question, we propose a general framework of
rewriting by applying the paradigm of “logical-system independency”, that is,
by providing a general framework and conditions (axioms), and by adapting
and proving, within this general framework, classical definitions and results
which underlie rewriting. The interest here is simple. From the study of all
rewriting theories, we can observe that the same set of notions and results
underlies rewriting. These main notions and results are the following:

� the way to define good proofs and proofs to simplify. In the equational
rewriting setting, “good proofs” are valleys (i.e. elements of ������� ) and
“proofs to simplify” are peaks (i.e. elements of ������� ).

� the result which states that any proof (i.e. defined by a combination of
good proofs and proofs to simplify) can be identified with a good proof 2

2 In the equational rewriting setting, this inclusion is called the Church-Rosser property,
and is expressed by: ( ���� ���� �� )
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provided that proofs to simplify are identified with good proofs3, and
conversely. We will name this result Church-Rosser’s result 4.

� the result which states that proofs to simplify can be eliminated and re-
placed by good proofs, step by step, by reducing basic proofs to simplify5

provided that rewrite systems are terminating, and that this process is
terminating. This last result is well-known as Newman’s lemma.

� the possibility to define for any Church-Rosser and terminating rewrite
system, a decision procedure for its corresponding theory,

� and, the possibility to define a completion procedure which generates
convergent rewrite systems for theories, when it does not fail.

Moreover, rewriting is the main technique used for prototyping algebraic
specifications, and many new algebraic formalisms are (and will be) defined
to answer some specific questions related to the activity of formal specifica-
tion (observability, exception-handling, dynamic data-types, etc.). Hence, in
order to be able to prototype (algebraic) specifications, one does not only need
to define new formalisms, but one also has to adapt these classical notions,
and to show that these fundamental results remain true for such formalisms.
Up to now, this kind of approach - i.e. the study of some properties in the
paradigm of “logical-system independency” - has been widely applied to
semantic aspects of algebraic formalisms [25, 29, 47] and to theorem de-
duction [26, 44]. But as far as we know, operational aspects of algebraic
formalisms (here represented by rewriting) have not received attention at this
abstract level. Therefore, it is useful to provide an axiomatization of rewriting
allowing one to generalize results which are well known for some specific
formalisms. This is what we propose to do here. In this paper, we will then
study rewriting in a generic way and propose a generalized form of usual re-
sults which underlie rewriting such as Church-Rosser’s result and Newman’s
lemma. Moreover, given a convergent rewrite system (according to our new
definition), we will also define a decision procedure for its corresponding
theory. Finally, we will define a Knuth-Bendix style completion method in
this generic framework with all expected results for it (mainly its correctness).
As a result of the rewriting abstraction defined in the paper, all the results as
well as the decision procedure and completion method established here are de
facto generalizations of standard ones we find in different rewriting theories.

3 In the equational rewriting setting, this inclusion is called the confluence property and is
expressed as follows: ���� �� � ���� ��

4 This name must not be confused with the so-called Church-Rosser theorem, which states
the confluence of β-reduction in λ-calculus.

5 In the equational rewriting setting, this inclusion is called the local confluence property
and is expressed as follows: ��� � � �� � ��
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Actually, all rewriting theories that we know satisfy the axioms given in this
paper, and thus enter our framework (see the numerous examples developed
in the paper).

1.2. RELATED WORK

In abstract rewriting, also called abstract reduction systems, a considerable
amount of theory has been developed covering these basic topics (Church-
Rosser’s result, Newman’s lemma, etc.). However, all results developed in
abstract reduction systems concern congruences usually called Thue congru-
ences. Here, we propose to apply rewriting techniques to compute over a
class of algebraic structures larger than congruences and preorders such as
congruences closed under monotonicity and modus-ponens (see Section 9
of this paper). Moreover, the idea of axiomatizing rewriting is not new and
has been pursued with success, especially in the world of λ-calculus. Such
axiomatizations deal with algebraic structures which are also congruences.
The main works in this area are J.-J. Lévy’s residual theory [40] and its
extension by P.-A. Melliès [42]. In residual theory, the structure of the objects
to be rewritten is abstracted through the redex notion (i.e. a place in rewrit-
ten objects which can be reduced by a rewrite rule). In this setting, many
key properties of λ-calculus or of more general rewrite systems have been
generalized, such as Church-Rosser’s theorem [40, 42], the standardization
theorem [30] or the stability theorem [43]. The main goal of these works was
not to generate convergent and complete rewrite systems which answer the
validity problem. However, we share the axiomatic method with them, that is
we formulate through axioms a small number of simple properties which are
shared by the different settings and which are needed to yield the fundamental
results mentioned above. Finally, concerning the completion process, we can
cite N. Dershowitz and C. Kirchner’s work [22, 15] which generalizes the
proof-ordering method to an abstract setting of arbitrary formal systems. This
last work places itself downstream with respect to our work, and then com-
pletes it, in the sense that [22, 15] fix inference and the ordering on proofs
whereas we give axioms to build such an ordering (see Proposition 6.11,
Corollary 6.12, and Theorem 8.8). Actually, [15, 22] aim to give an abstract
form to completion processes whereas we are interested in rewriting from
every angle.

1.3. STRUCTURE OF THE PAPER

The paper is organized as follows: in Section 2, we recall standard notations
about formal systems, theorem deduction and proof trees. In Section 3, we
instantiate formal systems in order to deal with binary relations. Resulting
formal systems will be called rewriting formal systems. In Sections 4 and 5,
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we develop a generic framework for rewriting. In this framework, we adapt
the standard definitions of rewrite system, rewriting step, derivation, termi-
nation, effluence (usually called peak in the equational rewriting setting) and
proof by rewriting (usually called valley). Moreover, we give, for any abstract
rewrite system, a decision procedure for its corresponding theory, and show
its correctness and completeness with respect to the underlying theory. Sec-
tion 6 gives four simple conditions (axioms) in order to obtain an abstract
formulation of Church-Rosser’s result and Newman’s lemma. Therefore, our
generic framework provides a basis for an abstract completion that is pre-
sented in Section 8. In Section 7, we extend our abstract framework in order
to deal with rewriting modulo theories. Section 9 instantiates our abstract
framework of rewriting for two logics: equational conditional logic and M.
Schorlemmer’s logic of special relations [49]. Conditional rewriting has been
intensively studied in the literature [13, 24, 28, 34, 35] but only in order to
answer the validity problem of unconditional equations (this example will be
also instantiated in this paper to illustrate the definitions given in the paper). In
the standard conditional rewriting setting, rewrite rules have conditions. Here,
we will also include conditions in the rewriting process. 6 Logic of special re-
lations is an important example because it is presented as a logical framework
in which many standard algebraic formalisms (equational, conditional, etc.)
and non-standard ones (inclusion, preorder, equational typed logic, rewriting
logic, etc.) can be encoded. We will show that the logic of special relations
can be encoded as a rewriting formal system. This will enable us to obtain all
the classical results such as presented by M. Schorlemmer [49], and to give a
completion method devoted to this logic. As far as we know, completion had
not been studied in this logic.

2. Preliminaries and notations

A formal system (a so-called calculus) S ��� F � R � over an alphabet A consists
of a set F of strings over A (i.e. F

�
A � ), called formulæ, and a finite set R

of computable n-ary relations on F , called inference rules. Thus, a rule with
arity n � n � 1 � is a set of tuples � ϕ1 ��������� ϕn � of strings of F . Each sequence� ϕ1 ��������� ϕn � belonging to a rule r of R is called an instance of that rule with
premises ϕ1 ��������� ϕn � 1 and conclusion ϕn. It is usually written ϕ1 � � � ϕn � 1

ϕn
. A rule

instance ι of R with conclusion ϕ is denoted by ι : ϕ and L � ι � is the multiset
of its premises. A deduction in S from a set of formulæ Γ of F is a finite
sequence � ψ1 ��������� ψm � of formulæ such that m � 1 and, for all i, 1 � i � m,

6 Actually, this form of conditional rewriting is obviously included in works on
superposition-based theorem proving for full first-order clauses with equality (e.g. see [10,
45]). An interesting work would be to compare these works with the conditional rewriting as
developed in Section 9.
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either ψi is an element of Γ or there is an instance ϕ1 � � � ϕn
ψi

of a rule in S
where � ϕ1 ��������� ϕn � � � ψ1 ��������� ψi � 1 � . A theorem from a set of formulæ Γ in
S is a formula ϕ such that there exists a deduction in S from Γ with ϕ as last
element. This is usually denoted by Γ � ϕ. Instances can also be composed to
build proof trees. Thus, we obtain another way to denote deductions in formal
systems. Formally, a proof tree π in a formal system S is a finite tree whose
nodes are labelled with formulæ of F in the following way: if a non-leaf node
is labelled with ϕn and its predecessor nodes are labelled (from left to right)
with ϕ1 ��������� ϕn � 1, then ϕ1 � � � ϕn � 1

ϕn
is an instance of a rule of S . The previous

notations on rule instances can be extended to proof trees: a proof tree π with
root ϕ is denoted by π : ϕ, and L � π � is the multiset of its leaves. We denote by
π � � π1 ��������� πn � ϕ � ι, with n ��� , the proof tree whose the last inference rule is
ι � ϕ1 � � � ��� ϕn

ϕ and such that, for every i, 1 � i � n, πi is the subtree of π leading
to ϕi. Obviously, for any statement of the form Γ � ϕ in a formal system S ,
there is an associated proof tree π : ϕ whose leaves are axioms or formulæ
from Γ. Two proof trees π : ϕ and π

�
: ϕ are equivalent with respect to a set of

formulæ Γ if and only if both are associated to Γ � ϕ.
Using a standard numbering of the tree nodes by natural number strings, we
can refer to positions in a proof tree. Thus, given a proof tree π, a position of
π is a string w on � which represents the path from the root of π to the subtree
at that position. This subtree is denoted by π � w. Given a position ω �	� � in a
proof tree π, π 
 π ��� ω is the proof tree obtained from π by replacing the subtree
π  ω by π

�
. The trees π  ω and π

�
necessarily have the same root. If π and π

�
: ϕ

are two proof trees and w is a leaf position of π such that π � w � ϕ, then we use
the expression π � w π

�
rather than π 
 π ��� w. This operation is called composition

of π and π
�

on (leaf) position w. If R is a set of n-ary rules then R � is the set
of proof trees inductively constructed from all rule instances in R, and closed
under the composition operation.

3. Rewriting formal systems

3.1. DEFINITION

Rewriting is a method to reason with binary relations (equality [6, 21], in-
clusion [39] or other non-symmetric relations [11, 55], the ideal membership
problem [17], etc.). These binary relations, contained in the set E in Defini-
tion 3.1 below, are defined on sets of elements that can be different from one
rewriting theory to another (simple words, λ-terms, first order terms, graphs,
etc.). Moreover, the behavior of these binary relations is specified by infer-
ence rules. For example, in the equational setting, the behavior of equality
is specified by the reflexivity, transitivity and symmetry rules. If we extend
to term equations, we add both context and substitution rules. We can then
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notice that, in all rewriting theories, rewriting relations are specified thanks
to a subset of these inference rules (e.g. substitution, context, reflexivity and
transitivity), and then some of these inference rules are removed from the
process (e.g. symmetry). Moreover, preserved inference rules can be split up
into two disjoint sets, that we call RS and De, specifying rewriting steps and
derivations, respectively. Removed inference rules will be put in the set Rmv.
Rule instances of Rmv are removed because they generate basic loops in the
rewriting process, and then lead to nonterminating rewrite relations. Thus,
we propose the following general framework for rewriting, which applies to
many settings.

DEFINITION 3.1 (Rewriting formal systems). A rewriting formal system (rfs)
is a 5-tuple SP ��� T � E � RS � De � Rmv � such that T is a set, E is a set of binary
relations7 on T , and RS, De and Rmv are three disjoint sets of n-ary relations
on the set F defined by: F � � p � u � v � � p � E � � u � v � � p � .

The set E in Definition 3.1 is the set of syntactically well-formed state-
ments. Not in any ways, does this mean that these statements are true or false.
For instance, in the rfs associated to the mono-sorted equational logic pre-
sented in Example 3.6 below, for the signature Σ � � 0 � succ1 � , E will contain
equations of the form succn � 0 � � succn � 0 � , but also equations succn � 0 � �
succm � 0 � with m 	� n � � . 8

REMARK 3.2. The couple � F � RS � De � Rmv � defines a formal system over
the alphabet A � E � T �	� � � � � , according to the definition of Section 2.

3.2. SEMI-COMMUTATION PROPERTY

We will see in the following that the division of the set of inference rules into
the three sets RS, De and Rmv defines a search proof strategy which restricts
the search proof space by selecting proof trees equipped with the following
structure: RS’s rule instances are always above both De’s rule instances and
Rmv’s rule instances. An important property to check is the completeness
of the strategy, i.e., for every statement Γ � p � u � v � there exists a proof tree
satisfying the above form. Classically, completeness is obtained by defining
basic proof tree transformations (see the example of such a transformation
just below). In [1–3, 12], we have studied how to define the three sets RS, De
and Rmv from a generalization of these transformations that we have called
semi-commutation. Let us recall briefly this work in this section. 9 This notion

7 For any p � E, we will use p both for the relation and for the symbol naming it.
8 succn � 0 � is the ground term succ ��������� succ	 
�� 

n times

� 0 ��� ����� � .

9 For more explanations, we refer interested readers to our papers [2, 3].
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of “semi-commutation" allows us to divide the set of inference rules into two
sets Up and Down. Rules in Up and Down are used to build rewriting steps
and derivations, respectively. More precisely, Rmv will contains all the rules
in Up and Down that generate “basic looping schemata" in rewriting such as
symmetry, 10 and then RS � U p � Rmv, and De � Down � Rmv.

The notion of “semi-commutation" generalizes how some inference rules
can “go over" other ones. For instance, in the equational logic (a complete
presentation of this logic is given in Example 3.6 below) we have the follow-
ing transformation:

t1 � t2 t2 � t3
t1 � t3

C 
 t1 � � C 
 t3 ���
t1 � t2

C � t1 ��� C � t2 �
t2 � t3

C � t2 ��� C � t3 �
C 
 t1 � � C 
 t3 �

However, this does not hold for the tree

t1 � t2
C � t1 ��� C � t2 � C 
 t2 � � t3

C 
 t1 � � t3

because it is not possible to transform such a tree in order to put transitivity
above context. The reason is that we have no information on the structure of
the term t3. The same transformations hold for context with symmetry and for
substitution with symmetry and transitivity. Moreover, all inference rules are
erased when they occur under reflexivity. Hence, it is sensible to put context
and substitution in U p, and transitivity, symmetry and reflexivity in Down.
Formally, the semi-commutation notion is defined as follows:

DEFINITION 3.3 (Structured proof tree). Let T be a set. Let E be a set of
binary relations on T . Let � F � R � be a formal system where F � � p � u � v � � p �
E � � u � v � � p � . Let Up � � Upp � p � E and Down � � Downp � p � E be two E-
indexed non empty sets of rule instances of R such that for every p � E, Up p
and Downp form a partition of the whole set of rule instances of the form
ϕ1 � � � ϕn
p 	 u � v 
 .

Note P rUp � Down the least set (according to the set-theoretical inclusion) in-
ductively defined as follows:

� Up# � Down
� P rUp � Down

11

� Let ι � ϕ1 � � � ϕn
p 	 u � v 
 � Downp and let � π : ϕi � 1 � i � n be a finite sequence of

proof trees such that for every i, 1 � i � n, πi � P rUp � Down. Then, � π1 :
ϕ1 ��������� πn : ϕn � p � u � v ��� ι � P rUp � Down.

10 This notion of “basic looping schema" has been defined in D. Bahrami’s Phd
manuscript [12] and in [2].

11 See Section 2 for the definition of _#.
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DEFINITION 3.4 (Semi-commutation). With the notations of Definition 3.3,
Up semi-commutes with Down if and only if for every proof tree π of the form� ι1 : ϕ1 ��������� ιn : ϕn � ϕ � ι such that:

� ι � Up

��� 1 � i � n � ιi � F � R,

��� 1 � i � n � ιi � Down

there exists an equivalent proof tree π
�
: ϕ in P rUp � Down with respect to L � π � .

We note π � π
�
such a property between π and π

�
.

Hence, the semi-commutation property generates proof tree transformations
defined as the closure of � under proof tree context and composition on
leaf position (see the definition in Section 2). When these transformations are
terminating then the completeness of the strategy holds. All the interest of the
strategy defined by the division of inference rules into U p and Down lies in
this property. In [2, 3], we have provided a general framework under which
the termination of � can be unified and generalized.

Definition 3.4 does not ensure unicity for the couple � Up � Down � (when it
exists). For instance, in the equational logic setting, many couples � Up � � Down � �
can be candidate. Let us suppose that Up � contains all rule instances except
the instance of the transitivity rule t1 � t2 t2 � t3

t1 � t3
for given terms t1, t2 and t3

(which is then the only instance of Down � ). We easily show that all the appro-
priate instances of symmetry, context and substitution rules semi-commute
with this instance (see [3]). Moreover, we have:

t1 � t2 t2 � t3
t1 � t3

t3 � t4

t1 � t4
� t1 � t2

t2 � t3 t3 � t4
t2 � t4

t1 � t4
�

Consequently, Up � semi-commutes with Down � .
However, for many logics (anyway, all logics used in computer science and
mathematics) the set of rule instances is represented by a finite set of rule
schemata (up to meta-variable renaming), that is a single form with infinitely
many instantiations. We take advantage of this to give a choice strategy for
both sets: we put all the instances of a same rule schema in the same set (either
Up or Down). This also makes the study of semi-commutation easier. Instead
of checking the semi-commutation property on an infinite set of instances, we
do it on the finite set of rule schemata. Going further in the implementation
of this strategy would necessarily require two things:

1. formalizing the notion of rule schemata. But this turns out to be a diffi-
cult task. This is mainly due to heterogeneity of meta-variable meanings
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manipulated within rule schemata. Indeed, some of them are interpreted
like simple terms, others are formulæ or more complex mathematical ob-
jects such as mappings denoting substitutions. Moreover, these variables
can be constrained under their form or other criteria (e.g. variables can
only be substituted by defined terms, or conditions can be given on the
scope of variables in the framework of first order logics). As far as we
know, there are no works on a general formalization of rule schemata.
Only some works have been defined for some classes of logics (proposi-
tional logic [51], first order logic [52]) and in the restricted framework of
Hilbert-style calculus.

2. automatically checking the semi-commutation property between instances
of Up and Down. As we have already noticed, the study of the semi-
commutation property gives rise to basic proof tree transformation rules.
For instance, in the equational logic setting, these basic transformation
rules consist in “distributing” replacement, symmetry and substitution
over transitivity. These basic transformation rules are usually tedious but
easy to define. We can then reasonably hope to automatize their defini-
tion, especially because, in most formalisms equipped with a rewriting
theory, applying the semi-commutation property consists in “distribut-
ing” rules in Up over rules in Down. It is easy to show that, in this case,
transformations generated by the semi-commutation property are termi-
nating by using proof terms for proofs with a recursive path ordering for
the precedence ordering � on U p � Down defined by:

ι � ι
�����

ι � RS � ι
� � Down

3.3. EXAMPLES OF REWRITING FORMAL SYSTEMS

EXAMPLE 3.5 (Abstract reduction systems). The rfs for abstract reduction
systems is defined for any alphabet A by the tuple � T � E � RS � De � Rmv � where:

� T � A � ,
� E � ��� � s.t. � de f� T � T (syntactic definition of word equations, that
is all pairs of words are correct syntactic equations),

� RS is the set containing all instances of the following deduction rule:

Context
α � β

δ1 � α � δ2 � δ1 � β � δ2
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� De is the set containing all instances of the two following deduction
rules:

Reflexivity
α � α

Transitivity
α � β β � δ

α � δ
� Rmv is the set of all instances of the following deduction rule:

Symmetry
α � β
β � α

EXAMPLE 3.6 (Mono-sorted equational logic). Before defining the rfs for
Mono-sorted equational logic, let us recall the basic definitions and notations
of this logic. A signature Σ is a set of function names, each one equipped
with an arity in � . A function name f equipped with an arity n � � will
be noted f n. Given a set of variables, let us denote by TΣ

� V � the set of free
terms with generators in V . Given a term t � TΣ

� V � , Var � t � denotes the set
of variables occurring in t. A Σ-equations is any sentence of the form t � t

�
where t and t

�
are terms in TΣ

� V � . A substitution is an application σ : V �
TΣ
� V � . It is naturally extended to terms and equations.The rfs for mono-sorted

equational term rewriting is then defined for any signature Σ by the tuple� T � E � RS � De � Rmv � such that:

� T � TΣ
� V � ,

� E � � � � s.t. � de f� T � T (i.e. all pairs of equations are syntactically
correct),

� RS is the set of all instances of the two following deduction rules: σ :
V � TΣ

� V � is a substitution and C is a context (i.e. a term with a unique
occurrence of the constant � ), and C 
 t � denotes the result of replacing
in C the occurrence of � by t

Substitution
t � t

�
σ � t � � σ � t � � Context

t � t
�

C 
 t � � C 
 t � �
� De is the set of all instances of the two following deduction rules:

Reflexivity
t � t

Transitivity
t � t

�
t
� � t
� �

t � t
� �

� Rmv is the set of all instances of the following deduction rule:

Symmetry
t � t

�
t
� � t
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EXAMPLE 3.7 (Conditional equational logic). The rfs developed in this ex-
ample is the logic that underlies the conditional rewriting to answer the
validity problem of unconditional equations. Only rewrite rules will have
conditions.
Before defining this rfs let us recall some notions and notations of the con-
ditional equational logic. Signatures, terms with variables, and substitution
are defined as in Example 3.6.
Atoms are Σ-equations, and formulæ are sentences of the form α1 � ����� � αn

�

αn � 1 where for every i, 1 � i � n � 1, αi is a Σ-equation.
In order to make conditional formulæ enter the definition of rfs which only
manipulates predicates, any formula of the form c

�
t � t

�
where c � �

1 � i � n

ti � t
�
i

(i.e. c is a finite conjunction of equations), will be denoted by t � c t
�
. Uncon-

ditioned equations t � t
�
will be denoted by t � /0 t

�
. Hence, in the associated

rfs, this gives rise to a family of predicates � c indexed by finite conjunctions,
and inference rules will be n-ary relations on such formulæ.
Therefore, given a signature Σ, we define the rfs � T � E � RS � De � Rmv � for the
conditional equational logic as follows:

� T � TΣ
� V � ,

� E � � � c � c : finite conjunction � s.t. for every c, � c
de f� T � T (syntactic

definition),

� RS is the set of all instances of the following deduction rule: let σ :
V � TΣ

� V � be a substitution and let C be a context

Replacement/Congruence

t � �
1 � i � n

ti � t
�
i

t
� � 1 � i � n � σ � ti � � /0 σ � t �i �

C 
 σ � t � � � /0 C 
 σ � t � � �

� De is the set of all instances of the two following deduction rules:

Reflexivity
t � /0 t

Transitivity
t � /0 t

�
t
� �

/0 t
� �

t � /0 t
� �

� Rmv is the set of all instances of the following deduction rule:

Symmetry
t � /0 t

�
t
� �

/0 t

EXAMPLE 3.8 (Multi-sorted equational logic). For this rfs, a signature Σ is
a pair � S � F � where S is a set of sorts and F is a set of function names, each
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one equipped with an arity in S � � S. A set of variable V � � Vs � s � S is an S-
indexed family of sets. Given a set of variables, let us denote by TΣ

� V � �� TΣ
� V � s � s � S the S-indexed family of sets where for every s � S, TΣ

� V � s is
the set of free terms of sort s with generators in V . Σ-equations are any
sentence of the form t � t

�
where there is s � S such that t and t

�
are terms

in TΣ
� V � s. A substitution is an application σ : V � TΣ

� V � such that σ � Vs � �
TΣ
� V � s. It is naturally extended to terms and equations. The rfs for multi-

sorted equational term rewriting is then defined for any signature Σ by the
tuple � T � E � RS � De � Rmv � such that:

� T � TΣ
� V � ,

� E is the S-set of binary relations � s on T such that � s
de f� TΣ

� V � s �
TΣ
� V � s (all pairs of terms define equations if both terms are of the same

sort),

� RS, De and Rmv are defined as in Example 3.6.

EXAMPLE 3.9 (Non-symmetric transitive logic). The rfs for arbitrary (non-
symmetric) transitive relations is defined as in Example 3.6 except that E �
��� � such that � de f� T � T. Moreover, we assume that every function f n is
monotonic on all its positions with respect to � , that is: � 1 � i � n � ti � t

�
i

�

f � t1 ��������� ti ������� � tn � � f � t1 ��������� t
�
i ��������� tn � . 12 Therefore, the deductive rules are:

� RS is the set of all instances of the two following deduction rules:
σ : V � TΣ

� V � is a substitution and C is a context

Substitution
t � t

�
σ � t � � σ � t � � Monotonicity

t � t
�

C 
 t � � C 
 t � �

� De is the set of all instances of both following deduction rules:

Reflexivity
t � t

Transitivity
t � t

�
t
�
� t
� �

t � t
� �

� Rmv � /0

12 Otherwise, some restrictions need to be put on the context rule (called “Monotonicity” in
this example and given below).
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4. Rewrite systems

4.1. BASIC DEFINITION

Rewriting orients binary predicates. We briefly saw in the introduction of
this paper that for any symmetric relation p, one rewriting relation suffices
because � p

� � � p � � 1, but for any non-symmetric transitive one, two are
needed. This was first observed by J. Levy and J. Agustí and gave rise to
bi-rewrite systems [39]. In our generalization, since binary predicates in E
are not necessarily symmetric, we follow [39] and define rewrite systems as
follows:

DEFINITION 4.1 (Rewrite systems). Let SP � � T � E � RS � De � Rmv � be an rfs.
An SP -rewrite systems R is an E-sorted set of pairs of binary relations� � p � � p � p � E on T such that: � p � E � � p � � p

�
p (compatibility with

the syntactic definition of p given in SP ).

EXAMPLE 4.2. In the rfs for abstract reduction systems, we can consider
the following set of rules from the alphabet A � � a � b � c ������� � z � � ��� � true � f alse �
which defines the lexicographic order: if ε denotes the empty word, then for
every α and every β in A �

ε � α ��� true
a � τ � � true with τ � � b � c � d ������� � z �
b � τ ��� true with τ � � c � d ������� � z �

...
y � z ��� true

α � ε � � f alse
τ � a ��� f alse with τ � � b � c � d ������� � z �
τ � b ��� f alse with τ � � c � d ������� � z �

...
z � y � � f alse

τ � α � τ � β ��� α � β with τ � � a � b ������� � z �
τ � α � τ

�
� β ��� τ � τ

�
with τ 	� τ

� � � a � b ������� � z �
Because � is symmetric, ��� is not considered here.

EXAMPLE 4.3. In the rfs for mono-sorted equational logic, we can consider
the following set of rules from the signature Σ � � � 00 � s1 � � 2 � � 2 � � � x � y � � ,
which defines arithmetic:

x � 0 � � x
x � s � y � � � s � x � y �

x � 0 � � 0
x � s � y � � � x � y � x
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Because � is symmetric, � � is not considered here.

EXAMPLE 4.4. In the rfs developed for the conditional equational logic, we
can consider the following set of rules from the signature

Σ � � true0 � f alse0 � 00 � eq?2 � _ mod _2 � gcd2 �
which specifies the greatest common divisor: in order to improve rule read-
ability, throughout the paper, we will write � c, � c

R and �� c
R rather than

� � c , � � c
R and �� � c

R

gcd � n � m � � eq? 	 n mod m � 0 
 � true m
gcd � n � m � � eq? 	 n mod m � 0 
 � f alse gcd � m � n mod m �

As in the two previous examples, because for every condition c, � c is sym-
metric, � � c is not considered here.

EXAMPLE 4.5. In the rfs for non-symmetric transitive rewriting where
�

denotes the set-theoretical inclusion, we can consider the following set of
rules from the signature Σ � � � 2 � , which defines the inclusion theory of
union [39]:

X � X ��� X
X ��� X � Y
Y ��� X � Y

4.2. REWRITING STEPS AND REWRITINGS

We could be tempted to define rewriting steps and rewritings as the closures
of binary relations � p and � p under RS’s and De’s rule instances, respec-
tively, that is by orienting the conclusion of RS’s and De’s rule instances
in the same direction as all their premises (this is how the standard rewrit-
ing relation is built in the unconditioned equational rewriting setting). But
there are many deduction rules which do not satisfy such a condition. For
instance, this is not observed by the rule Replacement/Congruence given in
Example 3.7. Indeed, when dealing with conditional rewrite rules, we have
(at least) three potentially interesting definitions of � /0

R : 13 natural, join, and

13 Other rewriting relations of the form � c
R with c �� /0 are not considered because simply

restricted to rewrite rules (i.e. � c
R
� �

c). Indeed, the rfs defined in Example 3.6 is the logical
setting which parameterizes classic conditional rewriting. But, the classic conditional rewrit-
ing was defined to answer the validity problem of unconditioned equations (the conclusions
of all deduction rules are of the form t � /0 t � ). Only rewrite rules are with conditions.
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normal rewriting. They were proposed in [24]. 14 Hence, � /0
R can be defined

as follows: given a rewrite system R � � � c � c:con junction , then let us define
Θ � � t � c t

� � t � c t
� � R �

1. Natural conditional rewriting C 
 σ � t � � � /0
R C 
 σ � t � � � if t ���

1 � i � nti � t �it
� � R and

for every i, 1 � i � n, Θ � σ � ti � � /0 σ � t �i � ,
2. Join conditional rewriting C 
σ � t � � � /0

R C 
 σ � t � � � if t � �
1 � i � nti � t �it

� � R and for

every i, 1 � i � n, σ � ti ��� /0 σ � t �i � where � /0 means there is a term t
� �

such

that σ � ti � �� /0
R t
� � /0

R �� σ � t �i � , or

3. Normal conditional rewriting C 
 σ � t � � � /0
R C 
 σ � t � � � if t ���

1 � i � nti � t �it
� � R and

for every i, 1 � i � n, σ � ti � �� /0
R σ � t �i �

We observe that in the three cases, the orientation of the conclusion C 
σ � t � � � /0
C 
σ � t � � � of the Replacement/Congruence rule only depends on the orientation
of t � �

1 � i � nti � t �it
�
in R .

In Section 9, we will extend the classic conditional rewriting by closing
rewriting steps under monotonicity, transitivity and modus-ponens. This will
give rise to the following deductive rule:

Trans/Mod
t � c t

�
t
� �

c � t
� � � i � I � ui

�
ci vi

t �
c � �

i � I

ci
t
� �

where c � c � c
� � � ui

� vi � i � I � . 15

It is clear that the orientation of the conclusion t �
c � �

i � I

ci
t
� �

will only

depend on the orientation of t � c t
�
and t

� �
c � t
� �
. Each equation ui

�
ci vi must

only be satisfied according to one of the three possibilities among natural,
normal or join rewriting which can be easily extended (see Section 9.1 for a
complete presentation of this rewriting setting).
A similar phenomenon occurs in the logic of special relations [49] 16. Here,
two kinds of atoms are considered: tγt

�
and γ � δ, where t � t

�
are terms, and

14 We can also cite [37] for the natural rewriting, and [18, 19] for the join rewriting.
15 c is then the conjunction of c and c � where each equation ui

� vi has been removed.
16 The general method developed in this paper has also been applied to M. Schorlemmer’s

logic with special relations. Actually, M. Schorlemmer does not treat sentences of the form
γ 	 δ as atoms of its logic of special relations; instead he assumes that the partial order on
binary relations is “hardwired” into the signature. Subsequently, he does not consider the
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γ � δ are binary relations on terms (the “special relations”). The composition
rule is formulated as follows: tαt � t � γt � � α;γ � δ

tδt � � (“;” is the relation composition
and α, γ, δ and � are binary relations which can be rewritten). Here, tδt

� �
is

oriented in one direction if and only if both tαt
�
and t

�
γt
� �

are oriented in that
same direction. Therefore, the orientation of tδt

� �
only depends on the orien-

tation of the first two premises. The third one must only be satisfied according
to one of the three possibilities among natural, normal or join rewriting which
can also be easily extended (see Section 9.2 for a complete presentation of this
rewriting setting).

After seeing these three examples, it becomes obvious that some premises
of rule instances have a special status. For any rule instance ι � RS � De, we
gather its “special” premises in the multi-set F L � ι � � L � ι � and call them
fixed leaves. A sensible constraint is that F L � ι � is non empty. The definition
of these fixed leaves are ad-hoc for each rfs. Therefore, given a deduction rule
in RS � De, the orientation of its conclusion will only be influenced by the
orientation of its fixed leaves. In next definition, we will define in the abstract
framework, both natural and normal rewritings. Join rewriting can also be
abstractly defined but before that, we need to give an abstract meaning of the
notion of valleys, which will be done in Section 5.

DEFINITION 4.6 (Rewriting step and rewriting relations). Let R be an SP -
rewrite system. For every p � E, � p

R and �� p
R are two binary relations on T

defined as the least binary relations (according to set-theoretical inclusion)
inductively defined as follows:

1. � p
� � p

R and � p
R

� �� p
R , and

2. for every ι : p � t � t � � � RS (resp. ι : p � t � t � � � De) such that:

� for every leaf p
� � u � v � � F L � ι � , u � p �

R v (resp. u �� p �
R v), and

� for every leaf p
� � u � � v � � � L � ι � � F L � ι � ,

� Natural rewriting Θ � p
� � u � � v � � where Θ � � p � t � t � � � t � p t

� �
R �

t � p t
� � R �

� Normal rewriting u
� �� p �

R v
�
or u
� �� p �

R v
�

we have t � p
R t
�
(resp. t �� p

R t
�
)

relation 	 to be rewritten. Here, we will extend the rewriting theory for the logic of special
relations by allowing to rewrite in addition the relation 	 . This extension can be found in
Section 9.
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We denote by � R
���

p � E

� p
R and �� R

���
p � E

�� p
R .

� R
���

p � E

� p
R and �� R

���
p � E

�� p
R are defined analogously.

REMARK 4.7. The two relations �� R and �� R should not be confused with
the reflexive and transitive closures of � R and � R . There are only the
closures of � R and � R under rules in De.

EXAMPLE 4.8. In the abstract reduction system setting, a rewrite system R
is given by any binary relation � � on A � . Moreover, all the premises of each
instance ι of both deductive rules Context and Transitivity belong to F L � ι � .
Therefore, following Definition 4.6, � �R is the least binary relation on A �
satisfying the following clauses:

� ��� � � �R ;

� if α � �R β then for every � δ1 � δ2 � � A � � A � , δ1 � α � δ2 � �R δ1 � β � δ2.

�� �R is then the reflexive and transitive closure of � �R . 17

EXAMPLE 4.9. In the setting of mono-sorted equational rewriting, a rewrite
system R is given by any binary relation � � on TΣ

� V � . Moreover, all the
premises of each instance ι of the three deductive rules Substitution, Context
and Transitivity belong to F L � ι � . Therefore, following Definition 4.6, � �

R is
the least binary relation on TΣ

� V � satisfying the following clauses:

� � �
� � �

R ;

� if t � �
R t
�
then σ � t � � �

R σ � t � � where σ : V � TΣ
� V � is any substitution;

� if t � �
R t
�
then C 
 t � � �

R C 
 t � � where C is a context.

�� �
R is then the reflexive and transitive closure of � �

R .

EXAMPLE 4.10. In the classic conditional rewriting setting, a rewrite sys-
tem R is given by a family of binary relations � c (c being a finite conjunction

of equations) on TΣ
� V � . Moreover, for every instance ι

t � �
1 � i � nti � t �i t ��� 1 � i � n � σ 	 ti 
 � /0σ 	 t �i 


C � σ 	 t 
 ��� /0C �σ 	 t � 
 �
of the deductive rule Replacement/Congruence, the set of its fixed leaves is
F L � ι � � � t � �

1 � i � n

ti � t
�
i

t
� � . All the premises of every instance ι of the deduc-

tive rule Transitivity belong to F L � ι � . Therefore, following Definition 4.6, for

17 The symmetric closure of ����R is usually called Thue congruence.
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every finite conjunction of equations c 	� /0, � c
R
� � c, and � /0

R is the least
binary relation on TΣ

� V � satisfying the following clause:

s � /0
R t �

��� �� � l � �
1 � i � nli � ri

r � R � ω � σ �

s  ω � σ � l � � t � s 
σ � r � � ω � �
1 � i � n

σ � li ��� σ � ri �

In the natural and normal rewritings, � is �� /0
R and �� /0

R , respectively, where

�� /0
R and �� /0

R are the reflexive, symmetric and transitive closure and the
reflexive and transitive closure of � /0

R .

EXAMPLE 4.11. In the setting of multi-sorted equational rewriting, a rewrite
system R is given by an S-indexed family of binary relations � � s on TΣ

� V � s
with s � S. Moreover, all the premises of each instance ι of the three deduc-
tive rules Substitution, Context and Transitivity belong to F L � ι � . Therefore,
following Definition 4.6, for every s � S � � s

R is the least binary relation on
TΣ
� V � s satisfying the following clauses:

� � � s

� � � s
R ;

� if t � � s
R t
�

then σ � t � � � s
R σ � t � � where σ : V � TΣ

� V � is any substitu-
tion;

� if t � � s
R t
�
then C 
 t � � � s

R C 
 t � � where C is a context.

For every s � S, �� � s

R is then the reflexive and transitive closure of � � s
R .

EXAMPLE 4.12. In the setting of non-symmetric transitive rewriting, a rewrite
system R is given by two binary relations on TΣ

� V � , �	� and �
� , respec-
tively. Therefore, following Definition 4.6, � �R and � �R are both least binary
relations on TΣ

� V � satisfying the following clauses:

� � � � � �R and � � � � �R ;

� if t � �R t
�

(resp. t � �R t
�
) then σ � t � � �R σ � t � � (resp. σ � t � � �R σ � t � � )

where σ : V � TΣ
� V � is any substitution;

� if t � �R t
�
(resp. t � �R t

�
) then C 
 t � � �R C 
 t � � (resp. C 
 t � � �R C 
 t � � ) where

C is a context.

�� �R and �� �R are then the reflexive and transitive closures of � �R and � �R ,
respectively.
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DEFINITION 4.13 (Convertibility relation). With all the notations of Defi-
nition 4.6, we denote by � R

� �
p � E

� p
R where for every p, � p

R is the least

binary relation satisfying: t � p
R t
�
iff either t � p t

�
or t � p t

�
or there exists

ι : p � t � t � � � RS such that:

� for every p
� � u � v � � F L � ι � � u � p �

R v

� for every p
� � u � v � � L � ι � � F L � ι � � u �� p �

R v

Finally, we denote by �� R
� �

p � E

�� p
R the closure of � p

R under trees of De and

Rmv, that is t �� p
R t
�

iff either t � p
R t
�

or there exists ι : p � t � t � � � De � Rmv

such that: � p
� � u � v � � L � ι � � u �� p �

R v.

�� R is called convertibility relation.

REMARK 4.14. The relation �� R should not be confused with the reflexive
and transitive closure of � R . It is only the closure of � R under rules in De
and Rmv.

From Definition 4.13, the convertibility relation �� R defines proof strate-
gies which restrict the proof search space by selecting proof trees equipped
with the following structure: RS’s rule instances are always above both De’s
rule instances and Rmv’s rule instances. Let us call such proof trees rewrite
trees. We must check that derivability (i.e. syntactic consequences obtained
from � ) coincides with convertibility in rewriting, This property, named log-
icality, 18 is expressed by: Γ � p � t � t � � � t �� p

R t
�

(Γ � � p � u � v � � u � p v �
R �

u � p v � R � ).
Obviously, we have t �� p

R t
� �

Γ � p � t � t � � because the convertibility relation
defines rewrite proofs which are peculiar proof trees. The other direction is
more difficult to prove because it requires that all statements of the form
Γ � p � t � t � � accept some rewrite proofs as proof trees. In all logics where
the logicality result holds, this is checked thanks to basic proof tree trans-
formations produced from the semi-commutation property of rule instances
in RS with rule instances in De � Rmv. For instance, in the equational logic,
substitution semi-commutes (denoted by � ) with transitivity:

Subst
Trans t � t � t � � t � �

t � t � �
σ � t � � σ � t � � �

�
Trans

Subst t � t �
σ
�
t ��� σ

�
t � � Subst t � � t � �

σ
�
t � ��� σ

�
t � � �

σ � t � � σ � t � � �
The difficulty is to show that the induced global proof tree transformation is
normalizing. In [4], we have provided a general setting under which results

18 In the equational logic setting, this result is the so-called Birkhoff’s theorem.

main.tex; 31/08/2006; 10:56; p.20



21

of normalization of proof trees such as, for instance, the logicality result in
equational reasoning and the cut-elimination property in sequent or natural
deduction calculi, can be unified and generalized. This has been achieved by
giving simple conditions which are sufficient to ensure that such normaliza-
tion results hold. These conditions are based on basic properties of elementary
combinations of inference rules which assure that the induced “global” proof
tree transformation processes do terminate. We refer the reader to terms of
this generalized version of the logicality theorem as well as its proof in [3, 4].
Here, we suppose that convertibility coincides with deductions, that is: Γ �
p � t � t � � � t �� p

R t
�
.

4.3. DERIVATIONS AND PROOFS

In the equational and non-symmetric transitive rewriting setting, derivations
and proofs can be simply defined by a sequence of rewriting steps. The tran-
sitivity application order on this sequence does not matter: different orders
always end in the same conclusion. This comes from the fact that transitivity
instances can permute with each other:

t1 r t2 t2 r t3
t1 r t3

t3 r t4

t1 r t4
� t1 r t2

t2 r t3 t3 r t4
t2 r t4

t1 r t4
r � ��� � � � � � � /0 �

Notice that both trees can be represented by the same sequence t1 r t2 r t3 r t4.
In our generalization, we cannot define derivations and proofs as sequences

of rewriting steps because the applications of rule instances in De do not per-
mute with each other a priori. This leads us to denote them by trees. Hence,
a derivation is a rewrite tree whose internal nodes and leaves are labelled by
elements of �� R (resp. �� R ) and � R (resp. � R ), respectively. Formally, this
is defined as follows:

NOTATION 4.15. Let us note t � p
R t
�
and t ��

p

R t
�
to mean either t � p

R t
�
or

t � p
R t
�
, and t �� p

R t
�
or t �� p

R t
�
, respectively.

REMARK 4.16. In any case, t � p
R t
�

should not be confused with t � p
R t
�
.

In the first case, rewriting direction does not matter but it exists. In the second
case, we have closed � p

R under rule instances in Rmv.

DEFINITION 4.17 (Derivations and proofs). A derivation d is any tree

d1 : u1
��

p1

R v1 ����� dn : un
��

pn

R vn

un � 1
��

pn � 1

R vn � 1

such that:
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� each di is a derivation (1 � i � n),

� for all i � j, 1 � i � j � n � 1, ui �� pi

R vi
���

u j �� p j

R v j (di and d j are
oriented in the same direction), and

� there is an instance ι : pn � 1
� un � 1 � vn � 1 � � De such that:

� F L � ι � � � p1
� u1 � v1 � ��������� pn

� un � vn � � , and
� for all p

� � u � � v � � � L � ι � � F L � ι � , p
� � u � � v � � holds in R (according to

the normal or natural rewriting)

A proof π is any tree
π1:u1 �� p1

R v1 � � � � πn:un �� pn
R vn

un � 1 �� pn � 1
R vn � 1

such that:

� each πi is a proof (1 � i � n), and

� there is an instance ι : pn � 1
� un � 1 � vn � 1 � � De � Rmv such that:

� if ι � Rmv then L � ι � � � p1
� u1 � v1 � ��������� pn

� un � vn � � ,
� else (i.e. ι � De) F L � ι � � � p1

� u1 � v1 � ������� � pn
� un � vn � � , and for all

p
� � u � � v � � � L � ι � � F L � ι � � u

� �� p �
R v
�
.

We will note � d1 : u1
��

p1

R v1 ������� dn : un
��

pn

R vn � un � 1
��

pn � 1

R vn � 1 � ι (resp. � π1 :

u1 �� p1

R v1 ��������� πn : un �� pn

R vn � un � 1 �� pn � 1

R vn � 1 � ι) to mean that the last rule ap-

plied in the derivation
d1:u1 �� p1

R v1 � � � dn:un �� pn

R vn

un � 1 �� pn � 1
R vn � 1

(resp. the proof
π1:u1 �� p1

R v1 � � � πn:un �� pn
R vn

un � 1 �� pn � 1
R vn � 1

)

is ι � De (resp. ι � De � Rmv).

Derivations are then trees inductively constructed over instances in De
with rewriting steps as generators such that all fixed leaves of instances in De
are oriented in the same direction.

Proofs are also trees inductively constructed over instances in De � Rmv
with rewriting steps as generators, but satisfying that somewhere in the tree:

1. an instance of Rmv may occur, and/or

2. an instance of De may occur with (at least) two of its fixed leaves oriented
in opposite directions.

EXAMPLE 4.18. In the equational and non-symmetric transitive rewriting
setting, for short the transitive rewriting setting, a sequence of rewriting steps
then represents all trees composed of transitivity instances and whose leaves
are the rewriting steps of the sequence, but in which the applications of the
transitivity rule are not made in the same order. Hence, in our framework,
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from the sequence of rewritings t1 � �
R t2 � �

R ����� � �
R tn, many derivations

can be considered such as for instance the application of the transitivity rule
from left to right:

d1

d0 t1 � �R t2
d
�
0 t2 � �R t3

t1 �� �
R t3 d

�
1 t3 � �R t4

d2

t1 �� �
R t4

...
dn � 3

� � � � � �
t1 ��
�
R tn � 1

d
�
n � 3 tn � 1 � �R tn

dn � 2

t1 �� �
R tn

Here, for each i, 1 � i � n � 2, each derivation di is denoted by � di � 1 : t1 �� �
R

ti � 1 � d
�
i � 1 : ti � 1 � �

R ti � 2 � t1 �� �
R ti � 2 � t1 � ti � 1 ti � 1 � ti � 2

t1 � ti � 2

.

In the non-symmetric but transitive rewriting setting, because the transi-
tivity rule is of the form t � t � t � � t � �

t � t � � , sequences of rewriting are:

� either of the form t1 � �R t2 � �R t3 ����� � �R tn,

� or tn � �R tn � 1 � �R tn � 2 ����� � �R t1, that is t1
�

R � t2
�

R � t3 �����
�

R � tn

Therefore, by applying the transitivity rule from left to right, for instance, we
have both following derivations:

1.

d1

d0 t1 �
�
R t2

d
�
0 t2 �

�
R t3

t1 ��
�
R t3

d
�
1 t3 �

�
R t4

d2

t1 ��
�
R t4

...
dn � 3

� � �
t1 ��

�
R tn � 1

d
�
n � 3 tn � 1 �

�
R tn

dn � 2

t1 ��
�
R tn
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2.

d1

d0 t1
�

R � t2
d
�
0 t2
�

R � t3

t1
�

R �� t3
d
�
1 t3
�

R � t4
d2

t1
�

R �� t4
...

dn � 3
� � �

t1
�

R �� tn � 1

d
�
n � 3 tn � 1

�

R � tn
dn � 2

t1
�

R �� tn

As an example of proof, let us consider the following sequence of term
rewriting:

t1 � �
R t2 �

R � t3 �
R � t4 � �

R t5 �
R � t6 � �

R t7

The following trees are examples of proofs which are the results of different
application orders of transitivity on the above sequence:

d0
0 : t1

���

R t2 d1
0 : t2

�

R
� t3

d0
1

t1
�
�
�

R t3

d2
0 : t3

�

R
� t4 d3

0 : t4
���

R t5
d1

1

t3
�
�
�

R t4d0
2

t1
�
�
�

R t5

d2
1 : t5

�

R
� t6 d3

1 : t6
���

R t7
d1

2

t5
�
�
�

R t7d3

t1
�
�
�

R t7

d0
2 : t1

���

R t2

d0
0 : t2

�

R
� t3 d1

0 : t3
�

R
� t4

d0
1

t2
�

R

�
� t4 d1

1 : t4
���

R t5
d1

2

t2
�
�
�

R t5
d0

3

t1
�
�
�

R t5

d2
2 : t5

�

R
� t6 d3

2 : t6
���

R t7
d1

3

t5
�
�
�

R t7d4

t1
�
�
�

R t7
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d0
0 : t1

���

R t2 d1
0 : t2

�

R
� t3

d0
1

t1
�
�
�

R t3 d1
1 : t3

�

R
� t5

d0
2

t1
�
�
�

R t4 d1
2 : t4

���

R t5

t1
�
�
�

R t5

d2
2 : t5

�

R
� t6 d3

2 : t6
���

R t7
d1

3

t5
�
�
�

R t7d4

t1
�
�
�

R t7

5. Properties of rewrite systems

In the transitive rewriting setting, rewrite systems are used to answer the
validity problem of theories when they are both confluent and terminating,
that is convergent. To define convergent rewrite systems in our framework,
we must then give an abstract formulation of termination and confluence.

5.1. TERMINATION

A naive approach to define the termination of rewrite systems would be that
derivations cannot be expanded indefinitely, expansion of derivations mean-
ing that there are some other derivations which contain them as subtrees. Of
course, this condition is sufficient but is too weak. Indeed, in the equational
rewriting setting, the instantiation of such a definition would be: a rewrite
system is terminating if every derivation t1 � t2 � ����� � tn is:

� un-expandable to the right t1 � t2 � ����� � tn 	� tn � 1

� un-expandable to the left t0 	� t1 � t2 � ����� � tn

Condition 1. is the right one which is usually taken into account to define
termination of rewrite systems. On the contrary, Condition 2. cannot be im-
posed, otherwise most classic rewrite systems would be considered as un-
terminating what would be counter-intuitive.
In our generalization, expansion to the left or to the right has no meaning,
because the algebraic structures under consideration are not necessarily tran-
sitive. We then have to denote derivations by trees (see the previous section).
Therefore, we have to define a similar notion to the notion of expanding to
the left and to the right but for trees. To achieve this purpose, we can notice
that for every ι � p1 	 u1 � v1 
 � � � pn 	 un � vn 


p 	 u � v 
 in De, whether we are dealing with �� p
R

or �� p
R , we can associate a number i, 1 � i � n, such that pi

� ui � vi � � F L � ι � ,
which denotes the position among the premises of ι where derivations are

to be expanded. We will denote this position by
�

Ex � ι � (resp.
�

Ex � ι � ). For
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instance, in the equational rewriting setting, for every transitivity instance

ι � u � v v � w
u � w ,

�
Ex � ι � � 1 (

�

Ex � ι � is not considered because equalities are

symmetric). Hence, if we consider the derivation d : u �� �
R v, any expansion

of d from ι has necessarily the following form
d:u ��

�
R v d � :v ��

�
R w

u ��
�
R w

. From such an

expanding position, we can define an expanding relation ER on derivations
as follows:

d : u �� �
R v ER

d : u �� �
R v d

�
: v �� �

R w

u �� �
R w

Let us also denote by ER the transitive closure of this expanding relation.
Therefore, in the equational rewriting setting, we can re-define the termina-
tion of rewrite systems as follows: a rewrite system is terminating if and only
if ER is Nœtherian. 19

Because ER has been defined on derivations denoted by trees, it can be
generalized in our abstract framework as follows:

DEFINITION 5.1 (Expanding positions and expanding relation). Let SP be

an rfs. Expanding positions are defined by two applications
�

Ex �
�

Ex: De � �
satisfying for every ι � p1 	 u1 � v1 
 � � � pn 	 un � vn 


p 	 t � t � 
 in De:

� �
Ex � ι � 	�

�

Ex � ι � ,

� 1 � �
Ex � ι � � n and 1 �

�

Ex � ι � � n, and

� if j � �
Ex � ι � and k �

�

Ex � ι � then p j
� u j � v j � and pk

� uk � vk � belong to
F L � ι � .

Let R be an SP -rewrite system. Let us denote by ER the binary relation on
derivations defined as the transitive closure of:

d : u �� p �
R v ER

� d � � � d1 ��������� dm � t �� p
R t
� � ι �

���
d �

Ex 	 ι 

� d

d : u �� p �
R v ER

� d � � � d1 ��������� dm � t �� p
R t
� � ι �

���
d �

Ex 	 ι 

� d

19 A Nœtherian relation is not necessarily irreflexive. A reflexive binary relation can be
Nœtherian provided that all infinite ordered sequences are stationary, that is there is a position
i � �

from which the following elements in the sequence are equal.
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EXAMPLE 5.2. The symmetric and transitive rewriting setting has already
been handled above. In the non-symmetric transitive rewriting setting, both

expanding positions for every instance ι of the transitivity are respectively,
�

Ex
� ι � � 1 and

�

Ex � ι � � 2. Therefore, the expanding relation for any SP -rewrite
system R is defined as shown in the figure below.

�
t � t ��� t ���

t
����

R t �

d
ER t �

����
R t ���

t
��	�

R t ���

t
��	�

R t �

d d �

�
t � t ��� t ���

t �
�
 �

R t

d
ER t �

�
 �
R t

t”
�
��

R t

t”
�
 �

R t �

d � d

Let us observe that ER induces a partition of derivations, that is if d ER d
�

then d and d
�
have their conclusions which are oriented in the same direction.

Although defining termination from Nœtherianess of ER is sufficient for
both equational and conditional rewriting settings, this is too weak for the
non-symmetric transitive one. Indeed, in such a rewriting setting, this would

be equivalent to impose that both �� �R and
�

R �� are Nœtherian orderings. 20

However, it has been shown in [39] that this is a weaker condition not suf-
ficient to have Newman’s lemma (i.e. the equivalence between the Church-
Rosser and local confluence properties under termination of rewrite systems).
To obtain such a result, we have to define the termination of rewrite systems
by: � � �R �

�

R � � � is a Nœtherian ordering. This motivates the concept of
reduction relation, that is a binary relation which is known to be terminating
and embodies in its definition the closure properties under instances in RS
and De. Moreover, proving termination of a rewrite system often requires to
check an infinite set of expansions of each derivation in R . A way to answer
this problem is also to use the concept of reduction relation as is stemmed
from Theorem 5.7 below. Here, as previously, reduction relations are not
necessarily orders.

DEFINITION 5.3 (Reduction relation). Let SP � � T � E � RS � De � Rmv � be an

rfs equipped with both expanding position applications
�

Ex and
�

Ex. A rewrit-

20 This is because two derivations d and d � satisfying d ER d � have their conclusions which
are oriented in the same direction.
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ing relation � is an E-indexed family of binary relations � p on T satisfying
for each p � E:

� � p
�

p � p � 1,

� � p is closed under instances in RS and De (cf. Definition 4.6).

A reduction is any tree resulting from the inductive construction of � , that is
any tree r � r1:u1 � p1 v1 � � � rn:un � pn vn

un � 1 � pn � 1vn � 1
such that:

� each ri is a reduction (1 � i � n), and

� there is an instance ι : pn � 1
� un � 1 � vn � 1 � � De or ι : pn � 1

� vn � 1 � un � 1 � �
De such that:

� for all i, 1 � i � n, pi
� ui � vi � � F L � ι � or pi

� vi � ui � � F L � ι � , and
� for all p

� � u � � v � � � L � ι � � F L � ι � , we have either u
�

� p � v
�
or v
�

� p �
u
�
.

As for derivations, we can define an expanding relation E � on reductions

according to
�

Ex, that is:

r : u � v E �
� r � ��� r1 ��������� rm � t � t

� � ι �
���

r �
Ex 	 ι 


� r

Therefore, a reduction relation is any rewriting relation � such that its ex-
panding relation E � is Nœtherian.

EXAMPLE 5.4. In the abstract reduction system rewriting, a reduction rela-
tion is any well-founded order stable under context. In both mono-sorted and
multi-sorted rewriting settings, a reduction relation is any well-founded order
stable under context and substitution. In the conditional rewriting setting, a
reduction relation is a family of well-founded binary relations � c (c:finite
conjunction of equations) such that � /0 is an order stable under replace-
ment/congruence, that is if u � �

1 � i � nti � t �iv and for every i, 1 � i � n, we have

either ti � /0 t
�
i or t

�
i � /0 ti, then, u � /0 v.

In order to benefit from all classic methods that facilitate proof of termination
such as reduction and simplification orders, we can establish that for every
finite (possibly empty) conjunction c, � c

� � where � is a well-founded or-
dering on terms stable under substitution and context. This is compatible with
the definition of reduction relations such as proposed in this paper. Indeed,

� � �
c

� c
� � is obviously stable under replacement/congruence.

Finally, in the setting of non-symmetric transitive rewriting, a reduction
relation is any well-founded order monotonic and stable under substitution.
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Termination of rewrite systems is then defined as follows:

DEFINITION 5.5 (Termination of rewrite systems). Let R be an SP -rewrite
system. Let us define, for every p � E, � p

R
� � � p � � � p � � 1 � � ( � ����� � � mean-

ing “closed under instances in RS and De”). Obviously, � R
� � � p

R � p � E is
a rewriting relation. Therefore, R is terminating if and only if E � R is a
reduction relation.

EXAMPLE 5.6. In the equational rewriting setting, because � �
R
� � � �

R

��� 1, we have � �
R
� �� �

R and then E � R
� ER . On the contrary, in the non-

symmetric transitive rewriting setting, �
�
R
� � � �R � � � �R � � 1 � � . Therefore,

ER
� E � R .

THEOREM 5.7. An SP -rewrite system R is terminating if and only if there
exists a reduction relation � such that: � p � E � � p � � � p ��� 1 �

� .

Proof If R is terminating, set � � � R . Conversely, we have E � R

� E � . As
E � is Nœtherian, so is E � R . �

In the term equational rewriting setting, this last theorem was established
by Lankford [38] (see [6], p. 103, for the statement of this theorem). Here,
Theorem 5.7 is a generalized form of this result.

5.2. GENERALIZED FORM OF CHURCH-ROSSER AND CONFLUENCE

PROPERTIES

From Definition 4.17, proofs are composed of derivations connected together
via rule instances in De � Rmv. Therefore, among proofs we have derivations
as well as all proofs composed of derivations connected together via one
instance of a rule in De with some orientation conflicts on fixed leaves. Let
us call such proofs basic proofs. They are defined as follows:

DEFINITION 5.8 (Basic proofs). A basic proof is either a derivation or a
proof π of the form � d1 ��������� dn � u �� p

R v � ι with ι � De and for every i, 1 � i � n,
di is a derivation. Let us denote by BP the set of basic proofs.

EXAMPLE 5.9. In the equational rewriting setting, basic proofs are ele-
ments of � �� � �� � � � �� � �� � , that is a basic proof is a proof which has one
of the two following forms:

1.
d1:u �� �

R w d2:w ��
�
R v

u �� �
R v

, or

2.
d1:u ��

�
R w d2:w �� �

R v

u �� �
R v
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In the non-symmetric transitive rewriting setting, basic proofs are elements

in � �� �R � �� �R � � � �� �R � �� �R � , that is a basic proof is a proof which has one
of the two following forms:

1.
d1:u ��

�
R w d2:w ��

�
R v

u �� �
R v

, or

2.
d1:u ��

�
R w d2:w ��

�
R v

u �� �
R v

Obviously, proofs are then basic proofs connected together via a finite
set of rule instances in De � Rmv. In order to reduce the proof search space
when we want to establish that two elements are convertible, the adopted
strategy is to replace some basic proof trees, called in this paper effluences,
by other ones, called here proofs by rewriting. This is Church-Rosser’s result,
that we will generalize in next section. When all effluences can be replaced
by proofs by rewriting for an SP -rewrite system R , R is said confluent.
To test automatically this property, effluences have to be eliminated step by
step by replacing local effluences which are effluences whose derivations are
restricted to rewriting steps (this is a general form of Newman’s lemma that
we will formally give and prove in the next section).
Therefore, the generalization of the confluence property requires us first to
divide basic proofs into effluences and proofs by rewriting such that one must
be able to generate proofs by rewriting from the decision procedure used to
answer the validity problem of theories. Proofs by rewriting and effluences
are then defined as follows:

DEFINITION 5.10 (Proof by rewriting and effluence). Proofs by rewriting and
effluences form a partition P R and E f f of BP (the set of basic proofs) such
that for any formula p � u � v � , the set RS 
 p � u � v � � defined by:

� u � � R v
� � � � d1 ������� � dn � u �� p

R v � � P R � � 1 � i � n � u
�

� R v
�
ER di �

is finite and computable, that is we can construct the Turing-machine capable
of listing all its members out of a given rewrite system.

A local effluence is an effluence of E f f of the form � u1 � R v1 ������� � un � R

vn � u �� R v � .
REMARK 5.11. Given a formula p � u � v � , the set RS 
 p � u � v � � then contains all

the rewriting steps that start the proof by rewriting with u �� p
R as conclusion.

The condition of Definition 5.10 will be useful to define a decision proce-
dure used to answer the validity problem of theories (see the algorithm just
below).
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EXAMPLE 5.12. In the equational rewriting setting, proofs by rewriting and
effluences are valleys and peaks, respectively. Following our notations, peaks
and valleys are defined as follows:

� a peak is any basic proof tree of the form
d1:u �� �

R w d2:w ��
�
R v

u �� �
R v

� a valley is either a derivation or any basic proof tree of the form
d1:u ��

�
R w d2:w �� �

R v

u �� �
R v

This partition satisfies the condition of Definition 5.10. Indeed, suppose an
equation u � v. Then, let us define the set S as follows:

S �
�� � � u
� � u � �

R u
� �

�
� v � � v � �

R v
� �

For any derivation d : u
�� �

R w 21 there is a term u
�
such that d � d1:u � �R u � d2:u � ��

�
R w

u ��
�
R w

.

This means, by the definition of the expanding position application
�

Ex, that
d1 : u � �

R u
�
ER d. Consequently, we have:

RS 
 u � v
�
�� � � u � �

R u
� � u � � S �
�

� v � �
R v
� � v � � S �

Moreover, for any rewrite system R , the rewriting relation � R is finitely
branching, that is each term has only finitely many direct successors which
can be automatically listed. Therefore, RS 
 u � v

�
is finite and computable.

On the contrary, if proofs by rewriting were peaks and effluences were valleys,
then for some u � v, the set RS 
 u � v

�
would not be computable anymore.

Indeed, there could be an infinite set of terms t such that u �� t �� v.

Similarly, in the non-symmetric transitive rewriting setting, proofs by rewrit-

ing and effluences are elements in � �� �R � �� �R � and �� �R � �� �R , respectively.
Then, suppose a formula u � v and define S as follows:

S �
�� � � u
� � u � �R u

� �
�

� v � � v � � �R v �
21 Recall that

��
R is the transitive closure of � R . Hence, u

�� �
R w contains at least a

rewriting step.
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For any derivation d : u
��
�
R w (resp. d : u �� �R w) there is a term u

�
such

that d � d1:u �
�
R u � d2:u � ��

�
R w

u ��
�
R w

(resp. d � d1:u �
�
R u � d2:u � ��

�
R w

u ��

�
R w

). This means, by the

definition of the expanding position application
�

Ex (resp.
�

Ex), that d1 : u � �R
u
�
ER d (resp. d1 : u � �R u

�
ER d). Consequently, we have:

RS 
 u � v
� �

�� � � u � �R u
� � u � � S �
�

� v � � �R v � v � � S �
Moreover, for any rewrite system R , both rewriting relations � �R and � �R

are also finitely branching. Therefore, RS 
 u � v
�

is finite and computable.

But, when dealing with conditional rewriting, the set RS 
 u � c v
�
is not nec-

essarily computable. Indeed, performing rewriting steps requires to rewrite
(join 22 and normal rewriting) or to satisfy (natural rewriting) the premises
of rewriting rules. In the literature, some conditions such as “decreasing-
ness” [23], have been proposed so that joinability and rewriting are decid-
able.

Now, the join rewriting which had been left in pending in the previous
section, can be defined. This gives rise to the following definition:

DEFINITION 5.13 (Join rewriting). Let R be an SP -rewrite system. For ev-
ery p � E, � p

R and �� p
R are the least binary relations on T (according to the

set-theoretical inclusion) inductively defined as follows:

1. � p
� � p

R and � p
R

� �� p
R , and

2. for every ι : p � t � t � � � RS (resp. ι : p � t � t � � � De) such that:

� for every leaf p
� � u � v � � F L � ι � , u � p �

R v (resp. u �� p �
R v), and

� for every leaf p
� � u � � v � � � L � ι � � F L � ι � , there is π : u

� �� p �
R v
� � P R ,

we have t � p
R t
�
(resp. t �� p

R t
�
)

We define � R
���

p � E

� p
R and �� R

���
p � E

�� p
R .

� R
���

p � E

� p
R and �� R

���
p � E

�� p
R are defined analogously.

22 A generalization of such a rewriting is given in Definition 5.13.
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In the following of this section, we will only consider join rewriting.

In order to define a decision procedure from a given terminating rewrite
system, the expanding relation ER of any SP -rewrite system R must satisfy
two supplementary properties:

1. rewritings can be characterized by some derivations which can be gener-
ated step by step, and

2. when dealing with finite rewrite systems, the choice to extend derivations
by rewriting steps is finite and computable, that is we can construct the
Turing-machine capable of listing all its members out of a given rewrite
system.

Formally, this is expressed as follows:

NOTATION 5.14. Let us define

�

Ex to mean either
�

Ex or
�

Ex.

DEFINITION 5.15 (Sensible rewrite system). An SP -rewrite system R is sen-
sible if and only if its expanding relation ER satisfies both following proper-
ties:

1. Generated step by step: For any rewriting u �� R v, there is a derivation

d : u �� R v and a finite sequence of derivations d1 ER ����� ER dn such that:

� d � dn,
� d1 : u1 � R v1 is a rewriting step, and

� for all i, 2 � i � n, di
� � d �1 ��������� d

�
m � ui

�� R vi � ι such that for every

j, 1 � j 	�
�

Ex � ι � � m, d
�
j is a rewriting step.

2. Finite and computable derivation extension choice: Let d be a deriva-
tion. Let us denote by D 
 d � the set of derivations d

�
satisfying the follow-

ing properties:

� d ER d
�
, and

� d
�

is of the form � d1 ��������� dn � ϕ � ι such that for every j, 1 � j 	�
�

Ex� ι � � n, d j is a rewriting step.

Then, for every derivation d, D 
 d � is finite and computable.

D 
 d � is the set of derivations which expand the derivation d by adding a
rewriting step.
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EXAMPLE 5.16. When dealing with transitive rewriting settings (i.e. both
equational and non-symmetric transitive rewriting) for each rewriting t �� t

�
,

since �� is transitive, there exist n terms t1 ��������� tn such that:

t � t1 t1 � t2

t �� R t2 t2 � t3

t �� R t3
�����������

t �� R tn tn � t
�

t �� R t
�

Finally, given a derivation d : u �� R v, we have seen in Example 5.12 that v

can be rewritten in one step, into a finite set of terms v
�
, that is d ER

d:u �� R v d � :v � R v �
d:u �� R v � .

Moreover, generating the set of terms v
�

such that v � R v
�

is a finite and
computable task. Therefore, D 
 d � defined as the set of derivations of the form
d:u �� R v d � :v � R v �

u �� R v � , is also finite and computable.

Based on the sensible SP -rewrite system R � � � p � � p � p � E , a decision
procedure for its corresponding theory Th � Γ � � � p � u � v � � Γ � p � u � v � � where
Γ � � p � u � v � � u � p v � R � , can be defined. To prove Γ � p � u � v � , we perform
the following algorithm A on p � u � v � , written A 
 p � u � v � � :
Input a rewrite system R and a formula p � u � v � .
Initialization S : � RS 
 p � u � v � � , Tmp : � RS 
 p � u � v � � , and answer : � f alse;

Loop while T mp 	� /0 do:

1) choose d in Tmp and Tmp : � Tmp � � d � ;
2) T mp : � Tmp � D 
 d � ; (cf. Definition 5.15)

3) S : � S � Tmp;

4) if there is � d1 ��������� dn � u �� p
R v � ι � P R such that:

� di � S (1 � i � n), and
� � p

� � u � � v � � � L � ι � � F L � ι � � A 
 p � � u � � v � � �

then T mp : � /0;

answer : � true;

end of loop

Output return � answer �
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The above procedure calls for some comments:

� As assured by Point 4) in the algorithm, proofs generated by the above
decision procedure are proofs by rewriting.

� The kind of rewriting which is taken into account by the above procedure
is the join one. Indeed, as this is expressed by the second bullet under
Item 4, we apply the algorithm A to each formula p

� � u � � v � � � L � ι � �
F L � ι � with p

� � E . Hence, we try to find a proof by rewriting π : u
� �� p �

R
v
�
.

EXAMPLE 5.17. When dealing with transitive relations, the direct instanti-
ation of the above procedure is as follows:

Initialization S : � � d � � w� d : u � r
R w

�
d : w � r

R v � and Tmp : � � d � � w� d :
u � r

R w
�

d : w � r
R v � with r � � � � � � , and answer : � f alse.

Loop while T mp 	� /0 do:

1) choose d : a ��
r

R b in Tmp and Tmp : � Tmp � � d � ; 23

2) T mp : � Tmp �	� d � : a ��
r

R c � b � r
R c � � a �� r

R b � b � r
R c � � ; 24

3) S : � S � Tmp.

4) if there are u �� r
R c and c �� r

R v in S then Tmp : � /0;

answer : � true;

end of loop

Output return � answer �
The above procedure defines a breadth first search proof for the theory R .

Note that the above algorithm is recursive, and hence can loop even when
rewrite systems are terminating. Indeed, nothing prevents from applying again
A 
 p � u � v � � in the execution of A 
 p � � u � � v � � � . A sufficient condition to prevent
such a situation is the following:

DEFINITION 5.18 (Adequacy). Let SP be an rfs. Let ��� be a binary relation
on formulæ defined by:

p � u � v � ��� p
� � u � � v � � ��� � ι : p � u � v � � De � p

� � u � � v � � � L � ι � � F L � ι �
Therefore, SP is adequate if and only if the transitive closure ��� � of ��� is
Nœtherian.

23 a is necessarily either u or v.
24 The last condition means that both rewritings are in the same direction.
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The intuition under Definition 5.18 is that in any proof π : u �� p
R v, there

is no subproof � π1 ������� � πn � u
� �� p �

R v
� � ι such that p � u � v � belongs to unfixed

leaves of ι (i.e. p � u � v � � L � ι � � F L � ι � ). Would such a subproof exist, solving
p � u � v � by rewriting should require to search a proof by rewriting π : u �� p

R v
and would then loop.
This condition is obviously satisfied by all the examples developed up to
here in this paper because the set of unfixed leaves of transitivity instances
is empty. With conditional rewriting, undecidability problems of joinabil-
ity have been relegated to the level of the execution of rewriting steps (see
Example 5.12).

Given an rfs SP � � T � E � RS � De � Rmv � , its adequacy can be obviously
checked when the set E is finite and we are dealing with a finite set of
inference rule schemas.

We are in a position to define properties of rewrite systems.

DEFINITION 5.19 (Properties of rewrite systems). An SP -rewrite system R
is:

� confluent (resp. locally confluent) if for any effluence (resp. local ef-
fluence) there is an equivalent proof by rewriting, and

� Church-Rosser if for any proof there is an equivalent proof by rewrit-
ing.

For any adequate rfs SP , Church-Rosser and terminating rewrite sys-
tems can be used to answer the validity problem as this is expressed by the
following result:

THEOREM 5.20. Let SP be an adequate rfs. If the SP -rewrite system R �� � � � � is Church-Rosser then Γ � p � u � v � if and only if the procedure defined
above terminates and answers true. Moreover, if R is Church-Rosser and
terminates, then the validity problem is decidable.

Proof Theorem 5.20 is composed of two properties. Let us prove the first one
defined by the following equivalence:

Γ � p � u � v � (p � E) if and only if the procedure defined above terminates and
answers true

The if implication is easily proven from Point 4) of the procedure.
By the generalized version of the logicality theorem established in [3], when
Γ � p � u � v � , we have necessarily u �� p

R v. As R is Church-Rosser, then there is
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a proof by rewriting π : u �� p
R v which establishes the statement Γ � p � u � v � .

Therefore, let us prove the only if implication by induction with respect to
the ordering ��� . Let π � � d1 ������� � dn � u �� p

R v � ι be a proof by rewriting. From
both constraints requiring that RS 
 p � u � v � � and D 
 d � are finite and computable
for every derivation d, each derivation di (1 � i � n) will be generated in a
finite time by the above decision procedure. Moreover, for every p

� � u � � v � � �
L � ι � � F L � ι � , by induction hypothesis, the decision procedure terminates and
answers true. Therefore, π will be generated in a finite time by the above
decision procedure.

The second property is given by the implication:

if R is Church-Rosser and terminates, then the validity problem is decidable

As R is terminating and from all explanations given just before, given a
formula p � u � v � , the set of proofs by rewriting π : u �� p

R v can be generated in a
finite time, when they exist. Therefore, for any p � u � v � , the algorithm answers
in a finite time that the statement Γ � p � u � v � is true or not. �

6. Generalization of Church-Rosser’s result and Newman’s lemma

Congruences (defined by a set of equations), which are a typical example
of algebraic structure where rewriting has been intensively studied and ap-
plied, have a number of (implicit) properties which are useful for rewriting
but which are not necessarily satisfied in all rfs (as they are not required in
Definition 3.1). In this section, we will thus give, via a set of axioms, the
conditions needed for a rfs to satisfy these useful properties. First of all,
Church-Rosser’s result establishes a correspondence between Church-Rosser
systems and confluent systems. Obviously, Church-Rosser systems are con-
fluent systems because effluences are peculiar proofs. The opposite implica-
tion is more difficult. In the transitive rewriting setting, this implication has a
diagrammatic proof based on the two following observations:

1. proofs can be written as a series of maximal peaks (i.e. peaks which are
not contained in another one) ;

2. replacement of any maximal peak by a valley decreases the number of
maximal peaks. 25

In all rewriting theories, these two basic requirements are behind all proofs
of Church-Rosser’s result. Their abstraction requires first to give an abstract
formulation of maximal peaks. This leads to the following definition:

25 Actually, this number decreases of one unit.
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DEFINITION 6.1 (Maximal effluences). Let π : ϕ and π
�
: ϕ be two proofs

with L � π � � L � π � � . Let ω � � � be a position such that π
�  ω is an effluence.

The pair � π � � ω � is a maximal effluence of π if and only if there are no other
pairs � π � � � ω � � satisfying the same conditions as � π � � ω � and such that L � π �  ω ���
L � π � �

ω � � .
Let us denote NEM � π � the number of maximal effluences in π. The notation
π � em π

�
means that NEM � π � � NEM � π � � .

EXAMPLE 6.2. Let π be the tree obtained from the following rewriting
sequence by applying transitivity instances from left to right:

t1 � t2 � t3 � t4 � t5 � t6 � t7

The following pairs are examples of effluences of π:

1.

�������
�

t1
� t2

� t3

t1
�
� t3

t3
� t4

� t5

t3
�
� t5

t1
�
� t5

t5
� t6

� t7

t5
�
� t7

t1
�
� t7

� 0 � 1
�	������



2.

�����������
�

t1
� t2

t2
� t3

� t4

t2
�
� t4 t4

� t5

t2
�
� t5

t1
�
� t5

t5
� t6

� t7

t5
�
� t7

t1
�
� t7

� 0 � 1

�	����������



3.

�����������
�

t1
� t2

� t3

t1
�
� t3 t3

� t4

t1
�
� t4 t4

� t5

t1
�
� t5

t5
� t6

� t7

t5
�
� t7

t1
�
� t7

� 1

� ����������



But only the second and the third ones are maximal effluences of π (not the
first one because � t3 � t4 � t4 � t5 � is included in � t2 � t3 � t3 � t4 � t4 � t5 � ).

Given a finite set S of rewriting steps, there will be a finite set (possibly
empty) of maximal effluences with premises in S if we can only build a finite
set of proofs from S. This will be our first postulate:
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AXIOM 1. Given a finite set S of rewriting steps, there exists a finite set of
proofs π with L � π � � S.

In our general setting, the first requirement above (i.e. writing proofs as a
series of maximal peaks) obviously holds for any proof that does not contain
instances of rules in Rmv. This is a consequence of the fact that effluences and
proofs by rewriting form a partition of all basic proofs. Therefore, any proof
without maximal effluences nor instances of rules in Rmv, is necessarily a
proof by rewriting. But, when dealing with proofs containing some instances
of rules in Rmv, we have to impose the following axiom:

AXIOM 2. For any proof � π1 ������� � πn � u �� p
R v � ι where each πi � P R (1 �

i � n) and ι � Rmv, there is π : u �� p
R v � P R .

EXAMPLE 6.3. In the equational rewriting setting, Axiom 2 obviously holds.
Indeed, for any u �� R w �� R v, we also have the valley v �� R w �� R u.
In the non-symmetric transitive rewriting setting, Axiom 2 is meaningless
because Rmv is empty.

In our general setting, the second requirement (i.e. replacing a maximal
proof in a proof by a rewriting proof decreases the number of maximal proofs)
does not necessarily hold. Therefore, it has to be imposed:

AXIOM 3 (Cut in maximal effluences). For any proof π, the replacement of
one of its maximal effluences � π � � w � by an equivalent proof by rewriting
π
� �

(i.e. with the same conclusion as π
�  ω ) decreases the number of maximal

effluences: π
� 
 π � � � ω � em π

�
.

EXAMPLE 6.4. In the transitive rewriting setting, Axiom 3 holds. Indeed,
we saw previously that proofs can be written as a series of maximal peaks. It
is clear that the replacement of any maximal peak by a valley reduces by one
unit the number of maximal peaks.

Axioms 1-3 induce Church-Rosser’s result:

THEOREM 6.5 (Generalized Church-Rosser’s result). For every rewrite sys-
tem R for which Axioms 1-3 hold, R is Church-Rosser if and only if R is
confluent.

Proof The only if part. Obvious.

The if part. Proved by induction on the number of maximal effluences in a
proof.
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� If π has no maximal effluences, then π is either a proof by rewriting or is
of the form � π1 ��������� πn � u �� p

R v � ι where each πi is a proof by rewriting
and ι � Rmv. The last case is then solved by Axiom 2.

� Let � π � � ω � be a maximal effluence of π. Let π
� �

be a proof by rewriting
with the same conclusion as π

�  ω . By Axiom 3, π
� 
 π � � � ω � em π

�
. Hence,

because we have L � π � � L � π � � , π
� 
 π � � � ω � em π. By induction hypothesis,

there exists a proof by rewriting with the same conclusion as π
� 
 π � � � ω, and

thus with the same conclusion as π.

�

Newman’s lemma makes sense provided that all effluences contain a local
effluence. This leads to the third axiom:

AXIOM 4 (Existence of local effluence). Any effluence π : ϕ contains a local
effluence, that is there is a pair � π � : ϕ � ω � such that L � π � � L � π � � and π

�  ω is
a local effluence.

EXAMPLE 6.6. In the transitive rewriting setting, every peak contains a
unique local peak.

In the transitive rewriting setting, Newman’s lemma holds because termi-
nation of rewrite systems induces a Nœtherian relation � on peaks defined as
follows: u �� t �� v � u

� �� t
� �� v

�
if and only if there exists a finite sequence

of proofs � π1 : u �� v������� � πn : u �� v � such that π1
� u �� t �� v, for every

i, 1 � i � n, πi has been obtained from πi � 1 by replacing a local peak by
an equivalent valley (i.e. with the same conclusion), and u

� �� t
� �� v

�
is a

maximal peak of πn.

The abstract form of � is defined as follows:

DEFINITION 6.7 (Relation on effluences). Let R be a rewrite system. Let
� be the binary relation on proofs defined as follows: π1

� π2 if and only if
there is a local effluence � π � ω � of π1, and a proof by rewriting π

�
with the

same conclusion as π  ω such that π2
� π 
 π � � ω.

We denote by π1
� 	 π � ω 
 π2 the fact that π2 has been obtained from π1 by

reducing the local effluence � π � ω � .
Therefore, let us denote � the binary relation on effluences defined as

follows: π1 � π2 if and only if there is a proof π
�

and a maximal effluence� π � � � ω � of π
�
such that π1

� � π
�
, 26 and π2

� π
� � ω .

EXAMPLE 6.8. In the transitive rewriting setting, � is defined as follows:

26 � � is the reflexive and transitive closure of � .
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* * * * * ** * * * * * * *

x1

y1 y2

xn

yn � 1

x1

y1 y2
xi

x �i x”i

xi

yi yi � 1 yn

x”i

yi � 1

x �i
yi wi

xn

yn yn � 1

π : π � :

where the local peak x
�
i � xi � x

� �
i in π has been replaced by the valley x

�
i ��

wi �� x
� �
i .

Therefore, � is defined on peaks as follows: y �� x �� y
�

� yi �� xi �� yi � 1 if
and only if there exists a proof

* * * ** *

x1

y y2

xn

y �

xi

yi yi � 1 yn

such that

* ** ** * * *
� � xnxi

yi yi � 1 yn

x

y y �

x1

y2y y �

PROPOSITION 6.9. � is transitive.

Proof Suppose π1 � π2 and π2 � π3. By Definition 6.7, π1 � π2 (resp. π2 �
π3) means that there are a sequence π11

� 	 π �11 � ω11 
 π12
� 	 π �12 � ω12 
 ����� � 	 π �1n1 � 1 � ω1n1 � 1 


π1n1 (resp. π21
� 	 π �21 � ω21 
 π22

� 	 π �22 � ω22 
 �����
� 	 π �2n2 � 1 � ω2n2 � 1 
 π2n2 ) and a maxi-

mal effluence � π �1 � ω
�
1 � of π1n1 (resp. � π �2 � ω

�
2 � of π2n2 ) such that π11

� π1

and π2
� π
�
1  ω �1 (resp. π21

� π2 and π3
� π
�
2  ω �2 ). � π �1 
 π

�
21

�
ω �1 � ω

�
1 � ω21 � is a lo-

cal effluence of π1n1 . More generally, we have for all i, 1 � i � n2, that� π �1 
 π
�
2i

�
ω �1 � ω

�
1 � ω2i � is a local effluence of π

�
1 
 π2i � 1

�
ω �1 . Consequently, we have

π11
� 	 π �11 �ω11 
 π12

� 	 π �12 �ω12 
 �����
� 	 π �1n1 � 1 � ω1n1 � 1 
 π1n1

� 	 π �1 � π �21 � ω �1 �ω �1 � ω21 

π
�
1 
 π22

�
ω �1

� 	 π �1 � π �22 � ω �1 � ω �1 � ω22 
 �����
� 	 π �1 � π �2n2 � 1 � ω �1 �ω �1 � ω2n2 � 1 
 π

�
1 
 π2n2

�
ω �1 . �

In the equational rewriting setting, under the termination condition of
rewrite systems, � is Nœtherian because, for any peak z �� y � x � y

� �� z
�
,

when replacing the local peak y � x � y
�

by any valley y �� w �� y
�
, we

obtain two effluences z �� y �� w and w �� y
� �� z

�
, that is z �� y � x �

y
� �� z

�
� z �� y �� w and z �� y � x � y

� �� z
�

� w �� y
� �� z

�
. When we

do not have y � z (resp. y
� � w) nor y � w (resp. y

� � z
�
), then there exist

intermediate points i1 and i2 (resp. i
�
1 and i

�
2) such that w �� i2 � y � i1 �� z

(resp. w �� i
�
1 � y

� � i
�
2 �� z

�
). Obviously, we have the following deriva-

tions x � y � i1 (resp. x � y
� � i

�
1) and x � y � i2 (resp. x � y

� � i
�
2).
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By repeatedly applying this kind of replacement, for any infinite sequence
π1 � ����� � πn � ����� we can generate an infinite derivation by connecting to-
gether the branches of transformed local peaks, and then termination implies
that � is Nœtherian. Therefore, � describes an algorithm that eliminates
peaks, step by step. To define this algorithm, we need to use the local conflu-
ence of the rewrite system. Its termination results from the termination of the
system.
However, in the non-symmetric transitive rewriting setting, π1 � π2 does not
mean there exists a derivation built from rewriting steps of the local peaks
which have been reduced to obtain π2. Indeed, we can have the following
situation: π1 � π2 where

π2

π1

y

z

x

z �

y �

z

y

x

y �

z �w

� � �

� �� �

� � �

=
� � = � �

But, x
�

R � y �� �R w is not a derivation. However, we have x � R y � R w where

� R
� � � �R �

�

R � � � . Consequently, the termination of rewrite systems also
implies that � is Nœtherian.
This will define our fourth axiom. Briefly, Axiom 5 will express that, for
any π � π

�
, there exists an order of reduction of local effluences (i.e. a finite

sequence π � 	 π �1 � ω1 
 �����
� 	 π �m � 1 � ωm � 1 
 π

� �
s.t. π

�
is a maximal effluence of π

� �
)

such that we can build a reduction by connecting together some rewriting
steps (transformed into reductions) of each reduced local effluence � π �i � ωi � .
This is expressed as follows:

AXIOM 5 (Connection). Let R be an SP -rewrite system. For any π1 � π2
�

� d1 ��������� dn � ϕ � such that each di for i � 1 ��������� n stands for a derivation, there
exists a finite sequence of proofs

π1
� 	 π �1 � ω1 
 �����

� 	 π �m � 1 �ωm � 1 
 πm

and a sequence of reductions r1 E � R
����� E � R rm satisfying the following state-

ment: if d is the reduction obtained from d by replacing every node and every
leaf u �� R v (resp. u �� R v) by u � v (resp. u � v), then

� π2 is a maximal effluence of πm,
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� there exists a rewriting step rs � L � π �1  ω1
� s.t. r1

� rs, 27

� for each r j
� � r j

1
��������� r j

p j
� ϕ j � ι 2 � j � m, and for every k, 1 � k 	� �

Ex
� ι � � p j, there exists rs

� � L � π � j  ω j
� s.t. r j

k
� rs
�
, and

� for rm
� � rm

1
��������� rm

pm
� ϕm � ι, and for any 1 � k 	� �

Ex � ι � � pm, rm
k �

� d1 ��������� dn � .
EXAMPLE 6.10. In the transitive rewriting setting, given a rewrite system
R , for any π1 � π2 where π2

� y �� R x �� R y
�

there exists, by definition, a
sequence S of proofs of the form:

π1
�

x � �1 � R x1 � R x �1 π
�
2

�
x � �2 � R x2 � R x �2 �����

�
x � �n � 1 � R xn � 1 � R x �n � 1

π
�
n

such that π2 is a maximal peak of π
�
n. Therefore, let us define from S the

following finite set of proof sequences as follows:

� S0
� π j0 where j0 � min � 2 � j � n � π2 is a maximal peak of π

�
j � , and

� Si � 1
� π ji � 1

�
x � �ji � 1

� R x ji � 1 � R x � ji � 1
Si such that 2 � ji � 1 � ji satisfies either

x ji
� x
�
ji � 1

or x ji
� x
� �
ji � 1

The process is stopped when at a step k there is no longer jk, 1 � jk � jk � 1,
satisfying either x jk � 1

� x
�
jk or x jk � 1

� x
� �
jk .

Hence, Sk is the minimal sequence ordered by � that can be associated to
π1 � π2 where only reductions of local peaks which allow us to reach π2 are
preserved. Other reductions of local peaks are removed from S.
By definition, for any sequence Si we have the reduction x ji � R x ji � 1 � R
����� � R x j1 . Moreover, if k is the last step of the above process, then we have
respectively that π jk

� π1 because π1 is a peak and that either x � x
�
j1 or

x � x
� �
j1 . Therefore, we can define k � 1 reductions as follows:

� r1
� x jk � R x jk � 1 , and

� ri
� ri � 1 � R x jk � i

Let us define rk
� rk � 1 � R x � R z with z � � y � y � � . Thus, we have r1E � R

����� E � R rk.
This proves that Axiom 5 holds in the transitive rewriting setting.

PROPOSITION 6.11. For any rewrite system R for which Axiom 5 holds, if
R is terminating then � is Nœtherian.

27 Let us recall that rewriting steps are basic derivations.
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Proof Let π1 � π2 � ����� � πn � ����� be a non-stationary infinite sequence
of effluences. By Proposition 6.9, � is transitive. Therefore, by Axiom 5, we
can build a non-stationary infinite sequence of reductions

r1 E � R r2 E � R
����� E � R rn E � R

�����

�

COROLLARY 6.12. If R is terminating then � is Nœtherian.

This last result enables us to obtain our expected theorem:

THEOREM 6.13 (Generalized Newman’s lemma). For any rewrite system R
for which Axioms 1-5 hold, if R is terminating then confluence follows from
local confluence.

Proof Suppose that R is terminating and locally confluent. Then, by Proposi-

tion 6.11, � is Nœtherian. Therefore, we will prove by well-founded induc-
tion on � that every effluence π has the property P defined by:
P � π � if and only if there exists a proof by rewriting with the same conclusion
as π.

� Since R is locally confluent, minimal elements with respect to � are
local effluences. Obviously, P � π � holds for each local effluence π.

� Let π be an effluence. By Axiom 4, π has a local effluence � π � � ω � . Let
us denote by πloc

� π
�  ω . By hypothesis, πloc has an equivalent proof by

rewriting πrew. By Definition 6.7, the replacement of πloc by πrew in π
�

yields a proof whose maximal effluences are smaller than π with respect
to � . Thus, by induction hypothesis, each one of these maximal efflu-
ences can be replaced by an equivalent proof by rewriting. Moreover, by
Axiom 3, such replacements reduce the number of maximal effluences
of the initial proof.
We thus obtain a proof by rewriting equivalent to π in a finite number of
step (new maximal effluences being smaller with respect to � and their
number decreasing).

�

Theorem 6.13 is a basis for an abstract formulation of Knuth-Bendix com-
pletion. This will be given in Section 8.
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7. Abstract rewriting modulo theories and more

This section is devoted to generalize, in our abstract framework, the notion of
rewriting modulo theories. The way we will handle rewriting modulo theories
in our abstract framework will also allow us to deal with rewriting of binary
relations constrained by any other n-ary relations such as the definedness
predicate in the framework of the partial function logic, or the membership
predicate in the framework of label algebras [14].

Theories may contain formulæ which are inherently nonterminating (e.g.
when dealing with commutative operators in the equational rewriting setting).
As this is usual in the classical term rewriting theory, the obvious idea is not
to use these non-orienting formulæ directly, but to take them into account
when applying some other rewrite rules.
Here, we propose to apply this idea to our abstract rewriting. To achieve this
purpose, we extend Definition 3.1 as follows:

DEFINITION 7.1 (Extended rewrite formal systems). An extended rewrite for-
mal system (erfs) is a 7-tuple � T � E � P� RS � De � Rmv� Oth � 28 such that T is a set,
E is a set of binary relations on T , P is a set of n-ary relations on T disjoint
of E, and RS, De, Rmv and Oth are four disjoint sets of n-ary relations on the
set F � � p � u1 ��������� un � � p � E � P � � u1 ��������� un � � p � satisfying:

� all instances in RS � De � Rmv have conclusions of the form p � u � v �
with p � E, and

� all instances in Oth have conclusions of the form p � u1 ������� � un � with
p � P.

EXAMPLE 7.2 (Rewriting modulo equational theories). The erfs for term rewrit-
ing modulo equational theories is defined for any signature Σ � � F � V � by the
tuple � T � E � P� RS � De � Rmv� Oth � such that:

� T is the standard set of terms with generators in V ,

� E � � � � such that � de f� T � T,

� P � � � � such that � de f� T � T,

� RS is the set containing all instances of substitution and context rules,
and the two following deductive rules:

s � s
�

s
� � t
�

s � t
� s � t

�
t
�

� t
s � t

28 Oth for Other rules.
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� De is the set of all instances of transitivity and reflexivity rules of � ,

� Rmv is the set of all instances of symmetry rule of � , and

� Oth is the set of all instances of rules defined by the usual deductive
rules of equational reasoning applying to equations of the form t � t

�
.

EXAMPLE 7.3 (Partial function logic). Let us define the erfs for partial func-
tion logic with definedness, total valuation and existential equality [5]. First,
we recall the basic notions and notations of this logic. Signatures are usual
signatures, that is a set of partial function names equipped with an arity in
� . Given a set of variables V , TΣ

� V � denotes the standard set of terms with
generators in V . Given a term t in TΣ

� V � , Var � t � denotes the set of variables
occurring in t. Formulæ are either equations t � t

�
where t and t

�
are terms in

TΣ
� V � , or formulæ D � t � where t is a term in TΣ

� V � . Semantically, t � t
�
states

that both sides of the equality are defined and denote the same value and D � t �
states that t is defined, i.e., t necessarily yields a value when it is evaluated. A
substitution is a function σ : V � TΣ

� V � . It is naturally extended to terms and
formulæ. Given a set of formulæ Γ, a substitution σ is defined with respect to
Γ if and only if for all x � V , we have Γ � D � σ � x ��� .
Given a signature Σ, we define the erfs for partial function logic by the tuple� T � E � P� RS � De � Rmv� Oth � such that:

� T is TΣ
� V � ,

� E � � � � such that � de f� T � T,

� P � � D � such that D
de f� T (syntactic definition), 29

� RS is the set of all instances of the following deductive rules:

Replacement t � t � D 	 f 	 � � � � t � � � � 
 

f 	 � � � � t � � � � 
 � f 	 � � � � t � � � � � 


Substitution t � t �
σ 	 t 
 � σ 	 t ��
 where σ is a defined substitution

� De is the set of all instances of the transitivity rule and the following
deductive rule:

D � t �
t � t

� Rmv is the set of all instances of the symmetry rule, and

29 D
de f� T means that every axiom D � t � is syntactically correct. Of course, this does not

imply that all terms are defined.
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� Oth is the set of all instances of rules defined by the following deduc-
tive rules:

Strictness
D � f � t1 � � � � � tn ���

D � ti � Existential equality t � t
�

D � t �
Rewrite systems are extended by adding a set ∆ of formulæ of the form

p � u1 ��������� un � with p � P in order to constrain rewriting. This leads to the
following definition:

DEFINITION 7.4 (Extended rewrite systems). Let SP � � T � E � P� RS � De � Rmv� Oth �
be an erfs. An extended SP -rewrite system R is defined as in Definition 4.1
except that we add a set ∆ of formulæ of the form p � u1 ������� � un � with p � P.

EXAMPLE 7.5. In the erfs for rewriting modulo an equational theory, we
can consider the following rewrite system for the signature

Σ � � � 00 � 10 � � 2 � � 2 � � � x � y � z � �
which defines Boolean rings:

∆ �
�

x � y � y � x � x � y � y � x �� x � y � � z � x � � y � z � � � x � y � � z � x � � y � z ���
� � �

�� � x � x � 0 � x � x � x �
0 � x � x � 0 � x � 0 � �����

x � � y � z � � � x � y � � � x � z � � 1 � x � x �

���
�

(see [31] for the complete presentation of the rewrite system for Boolean
rings).

Rewriting steps and their closure are then extended by adding the satisfac-
tion of premises of the form p � u1 ��������� un � with p � P for any instance of rules
in RS � De � Rmv. This leads to the following definition:

DEFINITION 7.6 (Rewriting and convertibility relations). Extended Rewrit-
ing steps are defined as in Definition 4.6 except that we add to Point 2. the
following step:

� for every leaf p
� � u1 ������� � un � � L � π � with p

� � P, we have Θ � p
� � u1 ��������� un �

with Θ � ∆ �	� p � u � v � � p � E � u � p v � R �
In the same way, the convertibility relation �� R is defined as in Defini-

tion 4.13 except we add the following condition:

for every p
� � u1 ��������� un � � L � ι � with p

� � P, we have Θ � p
� � u1 ������� � un � .
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Of course, termination of rewrite systems necessarily requires that state-
ments of the form Θ � p

� � u1 ��������� un � are computable.

EXAMPLE 7.7 (Rewriting modulo equational theories). In the framework of
term rewriting modulo equational theories, a rewrite system is then given by
a couple � ∆ � � � where ∆ is a set of equations and � is a binary relation on
terms. Therefore, following Definition 7.6, � R is the least binary relation on
terms satisfying the following clauses:

� � � � R ,

� if t � R t
�
then σ � t � � R σ � t � � where σ : V � TΣ

� V � is any substitution,

� if t � R t
�

then C 
 t � � R C 
 t � � where C is a context (i.e. a term with
a unique occurrence of the constant � , and C 
 t � denotes the result of
replacing in C the occurrence of � by t),

� if ∆ � s � s
�

30 and s
� � R t then s � R t, and

� if s � R t
�
and ∆ � t

�
� t then s � R t.

In the literature, � R is unusually denoted by � R � ∆ . Therefore, � R � ∆ is a
rewrite relation which is defined on term equivalence classes 
 s � ∆ where � ∆
is the least congruence deduced from equations in ∆.

The main problem with � R � ∆ is that in order to reduce 
 s � � ∆ w.r.t. � R � ∆ ,
we need to explore all 
 s � � ∆ , that is enumerate all terms that are ∆-equivalent
to s to find one that is reducible via � R . This requires all ∆-equivalence
classes to be finite. In order to improve efficiency of the method, � R � ∆ has to
be refined. A way is to refine rewriting steps such that they involve matching
modulo � ∆ [33, 46]. This can be formalized in our abstract framework by
removing, in the erfs defined in Example 7.2, all rules of RS and by replacing
them by the following one:

t � σ � u � u � t
�

f � ����� � t ������� � � f � ������� σ � t � � ������� � σ:substitution

Therefore, following Definition 7.6, � R is the least binary relation on terms
satisfying the following clauses:

� � � � R ,

� if ∆ � t � σ � u � and u � R t
�
then C 
 t � � R C 
 σ � t � � �

30 Here, we have ∆ � s � s ����� Θ � s � s � because all rules in Oth are defined from formulæ
of the form t � t � . They do not manipulate equations of the form t � t � .
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A shorter definition of � R can be given as follows:

s � R t iff there is a rule u � v � R, a term w, a context C and a substitution
σ such that w � ∆ σ � u � , s � C 
w � and t � C 
 σ � v � � .

In the literature, � R is denoted by � R � ∆. � R � ∆ is weaker than � R � ∆ . In-
deed, we have the following counter-example taken from [6]: if ∆ � � � x �
y � � z � x � � y � z � � and R � � 0 � x � x � , then 
 � a � 0 � � b

�
� ∆ � R � ∆ 
 a � b

�
� ∆ ,

but � a � 0 � � b is in normal form with respect to � R � ∆.

EXAMPLE 7.8 (Partial function logic). Given a rewrite system R � � ∆ � � �
in the erfs of the partial function logic, � R is the least binary relation on T
satisfying the following clauses:

� � � � R ,

� if t � R t
�

and σ is a substitution defined with respect to Θ, then
σ � t � � R σ � t � � ,
� if t � R t

�
and C is a context such that Θ � D � C 
 t � � , then C 
 t � � R C 
 t � � .

As previously, a shorter definition can be given as follows: t � R t
�

iff there
are u � v � R , a substitution σ and a context C such that:

� for every x � Var � u � � Var � v � , Θ � D � σ � x ��� ,
� Θ � D � C 
 t � � , and

� t � C 
 σ � u � � and t
� � C 
 σ � v � � .

Some restrictions have to be made on Definition 4.17 to define derivations
and proofs. These restrictions consist in removing from trees resulting from
the inductive construction of both �� R and �� R , the formulæ that do not
concern relations to rewrite (i.e. formulæ of the form p � u1 ��������� un � with p � P)
in all rule instances of De � Rmv. This leads to the following definition:

DEFINITION 7.9 (Derivation and proof). With all the notations of Defini-
tion 7.6, derivations (resp. proofs) are inductively defined as follows:

� any element of �� R (resp. �� R ) is a derivation (resp. proof),

� if d1 : u1
��

p1

R v1 ������� � dn : un
��

pn

R vn (resp. π1 : u1 �� p1

R v1 ������� � πn : un �� pn

R
vn) are derivations (resp. proofs) and ι : p � u � v � � De (resp. ι : p � u � v � �
De � Rmv) such that:
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� F L � ι � � � p1
� u1 � v1 � ��������� pn

� un � vn � � (the set of fixed leaves for ι is
exactly the set � p1

� u1 � v1 � ������� � pn
� un � vn � � ),

� for all p
� � u � � v � � � L � ι � � F L � ι � with p

� � E, we have p
� � u � � v � � holds

in R according to normal, join or natural rewriting,
� for all p � w1 ��������� wm � � L � ι � with p � P we have Θ � p � w1 ��������� wm � ,

and
� (Only for derivations) for all 1 � i 	� j � n, we have: ui �� pi

R vi
���

u j �� p j

R v j (fixed leaves of ι are oriented in the same way)

then � d1 ��������� dn � u ��
p

R v � ι (resp. � π1 ��������� πn � u �� p
R v � ι) is a derivation

(resp. a proof).

(u ��
p

R v is oriented in the same way as all fixed leaves of ι)

All properties and results established in Section 5 and Section 6 are di-
rectly adaptable in the extended framework developed in this section.

EXAMPLE 7.10. In both above examples, manipulated formulæ are equa-
tions. Therefore, the definition of the associated expanding relation is de-
fined as in Example 5.2 except that for rewriting modulo equational theories,
rewritten elements are term equivalence classes. Consequently, effluences
and proofs by rewriting denote peaks and valleys, respectively. Confluence
and local confluence are then the usual notions of confluence and local con-
fluence, respectively. We can easily show that the four axioms hold. Therefore,
Church-Rosser’s result and Newman’s lemma are satisfied.

8. Completion of rewrite systems

In this section, we give a completion method which is adapted to our general
framework. As it is usual since Bachmair, Dershowitz and Hsiang’s works [7,
8], a completion method is described by a set of inference rules. Here, given
an rfs SP � � T � E � RS � De � Rmv � , inference rules work on pairs � Γ � R � where
Γ is a set of formulæ p � u � v � , and R is an SP -rewrite system.

For a pair � Γ � R � , a mixed proof of p � u � v � is defined as follows:

DEFINITION 8.1 (Mixed proof). For every pair � Γ � R � and every p � E,

let us denote by �� p
Γ � R the binary relation on T defined as the convertibility

relation in Definition 4.13 for � p
R � � p

R � � � u � v � � p � u � v � � Γ � .
Let us call mixed proof every proof tree resulting from the inductive construc-
tion of �� Γ � R ���

p � E

�� p
Γ � R .
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By definition, given a pair � Γ � R � , �� R
� �� Γ � R . Hence, basic proofs are

specific instances of mixed proofs. Mixed proofs are then basic proofs and
proofs in �� Γ (the convertibility relation defined for � � u � v � � p � u � v � � Γ � ) 31

connected together via a finite set of rules intances in De � Rmv. The notions
of effluence, local effluence and maximal effluence are then defined as in
Definition 5.10 and Definition 6.1 by replacing the word “proof” with “mixed
proof”.

A completion procedure has in input:

� a set of formulæ Φ of SP of the form p � u � v � with p � E , and

� a reduction relation � .

The first step of the procedure consists in defining the pair � Γ0 � R0 � such that
Γ0
� Φ and R0

� /0.

The completion method is defined by the set C of inference rules given in
Figure 1.

The inference rules of Figure 1 call for some comments:

� DEDUCE adds a formula which can be derived from local effluences of
R . In the equational rewriting setting, when rewrite systems are termi-
nating, effluences (by applying Newman’s lemma) can be automatically
tested by computing all overlaps between rules, so-called critical pairs.
This result is known as the critical pair lemma. The process to perform
critical pairs is terminating when the set of rules is finite. Here, critical
pairs cannot be defined at this abstract level because they depend on both
the main general unifier notion and the inductive structure of first order
terms. Here, objects are simply elements of a set T ; no conditions are
given on their structure.

� SIMPLIFY uses the rules of R to simplify formulæ. It consists in looking
for an instance ι in De whose conclusion belongs to Γ, removing it from
Γ and adding in Γ all premises of ι that have not been rewritten. Condi-
tion 2. is necessary to establish that SIMPLIFY is sound.
In the equational rewriting setting, SIMPLIFY is simply instantiated as
follows:

SIMPLIFY
Γ ��� u � v � � R
Γ ��� u � � v � �R if u �� R u

�

This is obtained from the instance of the transitivity rule ι � u � u � u � � v
u � v .

Indeed, for such an instance, we have
�

Ex � ι � � 1 (see Section 5.1), then

31 In the equational rewriting setting, elements of �� Γ are called “plateaux”.
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DEDUCE
Γ � R

Γ ��� p 	 u � v 
 � � 	 L 	 ι 
 �
F L 	 ι 
 
 � R if there is a local effluence

� u1 � R v1 ��������� un � R vn � u �� p
R v � ι

ORIENT 1 Γ ��� p 	 u � v 
 � � R
Γ � R � � u � pv � if u � v

ORIENT 2 Γ ��� p 	 u � v 
 � � R
Γ � R � � u �

pv � if u � v

SIMPLIFY
Γ ��� p 	 u � v 
 � � R

Γ � Γ � � R if there exists ι � p1 	 u1 � v1 
 � � � pn 	 un � vn 

p 	 u � v 
 � De s.t.

1. either u �
Ex 	 ι 
 �� �

p �
Ex � ι �

R v �
Ex 	 ι 
 and

in this case Γ
� � � pi

� ui � vi � � 1 � i 	� �
Ex � ι � � n �

or u �
Ex 	 ι 
 �� �

p �
Ex � ι �

R v �
Ex 	 ι 
 and

in this case Γ
� � � pi

� ui � vi � � 1 � i 	�
�

Ex � ι � � n � ,
2. and for all pi

� ui � vi � � Γ
�
, ui �� pi

Γ ��� p 	 u � v 
 � � R vi

Figure 1. Inference rules for completion

u �� �
R u
�
, and then Γ

� � � u � � v � .
Condition 2. (i.e. u

� �� Γ ��� u � v � � R v) is satisfied because we have u
� �

R ��
u � Γ ��� u � v � v.

Both conditions of SIMPLIFY have to be computable. Obviously, Point
1. satisfies such a property because for any � Γ � R � the rewrite system R is
terminating. However, Point 2. is unlikely to be computable. For instance,
in the non-symmetric transitive rewriting setting, SIMPLIFY is instantiated as
follows:

SIMPLIFY
Γ ��� u � v � � R

Γ � Γ � � R either u �� �R u
�
and

in this case Γ
� � � u � � v � and u

� �� �Γ ��� u � v � v

or u
� �� �R v and

in this case Γ
� � � u � u

� � and u �� �Γ � � u � v � u
�

But, as expressed above, SIMPLIFY is unlikely to be computable because

of the proof obligation u
� �� �Γ ��� u � v � v (resp. u �� �Γ ��� u � v � u

�
). In Knuth-Bendix

completion for non-symmetric transitive relations developed by G. Struth
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in [56], SIMPLIFY is not considered but replaced by the three following infer-
ence rules:

SIMPLIFY

Γ �	� s � t � � R
Γ � R

Γ � R �	� s �	� t �
Γ � R

Γ � R �	� s �
� t �
Γ � R

if s � t, s � � t or s � � t is redundant, that is it can be replaced by a smaller
proof in Γ � R using the proof ordering and measure � .
A basic way to express redundancy in our abstract framework is as follows:

SIMPLIFY

Γ �	� p � u � v � � � R
Γ � R

Γ � R �	� u � p v �
Γ � R

Γ � R �	� u � p v �
Γ � R

if there is a proof by rewriting π : u �� p
R

� � u �
pv � v.

EXAMPLE 8.2. In the equational rewriting setting, basic inference rules for
completion are then the following:

DEDUCE
Γ � R

Γ � � u � v � � R if u �
R � u

� � �
R v

ORIENT
Γ ��� u � v � � R

Γ � R ��� u � � v � if u � v

SIMPLIFY
Γ ��� u � v � � R
Γ � � u � � v � � R if u �� R u

�

In the conditional rewriting setting, the direct instantiation of inference
rules of Figure 1 is: we assume that for every finite conjunction c, � c

� �
where � is a well-founded ordering stable under substitution and context (cf.
Example 5.4)

DEDUCE
Γ � R

Γ � � u � /0v � � R if u /0
R � u

� � /0
R v

ORIENT
Γ ��� u � cv � � R
Γ � R ��� u � cv � if u � v

SIMPLIFY
Γ ��� u � /0v � � R
Γ � � u � � /0v � � R if u �� /0

R u
�

With such rules, for the different rewrite systems R the relation � /0
R is not

necessarily decidable. For this purpose, we saw that we have to manipulate
decreasing rewrite systems. Therefore, � has to be a simplification order (i.e.
contain in addition the proper subterm relation). Moreover, we have to add in
the ORIENT rule the following condition: � t � t

� � c � u � t � u � t
�
. This last
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condition enables us to consider only decreasing rewrite systems for which
joinability is decidable. From there, the two following inference rules which
cannot be defined at our abstract level, can be added:

SIMPLIFY CONDITION1 Γ � � u � c � t � t � � c � v � �R
Γ ��� u � c � w � w � � c � v � � R if t �� /0

R w and t
� �� /0

R w
�

SIMPLIFY CONDITION2 Γ � R ��� u � c � t � t � � c � v �
Γ � R ��� u � c � w � w � � c � v � if t �� /0

R w and t
� �� /0

R w
�

In the non-symmetric transitive rewriting setting, basic inference rules for
completion are then the following:

DEDUCE
Γ � R

Γ � � u � v � � R if u
�
R � u

� � �R v

ORIENT 1 Γ ��� u � v � � R
Γ � R ��� u � � v � if u � v

ORIENT 2 Γ ��� u � v � � R
Γ � R ��� u � � v � if v � u

SIMPLIFY

Γ �	� s � t � � R
Γ � R

Γ � R �	� s � � t �
Γ � R

Γ � R � � s � � t �
Γ � R

if s �� �R u �� �R t

REMARK 8.3. Usually, tautologies are simply recognized on their syntacti-
cal structure. For instance, in equational logic, tautologies are all equations
of the form t � t. Regarding conditional equational logic, tautologies are
either of the form t � c t or t � c t

�
where t � t

� � c. In this case, tautologies
are removed from Γ, and we add the following supplementary inference rule
to the set C of Figure 1:

DELETE
Γ ��� p 	 u � v 
 � � R

Γ � R if /0 � p � u � v �

8.1. CORRECTNESS

NOTATION 8.4. If Γ � R
Γ � � R � is an instance of any inference rule of Figure 1, we

will denote this instance � Γ � R � � � Γ � � R � � .
The inference rules of Figure 1 are sound, that is they do not change the

underlying theory.

PROPOSITION 8.5. If � Γ1 � R1 � � � Γ2 � R2 � then �� Γ1 � R1
� �� Γ2 � R2 .
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Proof This is obvious for the first three rules. For SIMPLIFY, let us denote
by Γ1

� Γ �	� p � u � v � � and Γ2
� Γ � Γ

�
, R1

� R2
� R . By hypothesis, for ev-

ery pi
� ui � vi � � Γ

�
we have ui �� pi

Γ1 � R1
vi. Therefore, we have �� Γ2 � R2

� �� Γ1 � R1 .

Conversely, the three following hypothesis Γ
� � Γ2, u �

Ex 	 ι 
 �� � v �
Ex 	 ι 
 (resp.

u �
Ex 	 ι 
 �� � v �

Ex 	 ι 
 ), and ι � p1 	 u1 � v1 
 � � � pn 	 un � vn 

p 	 u � v 
 � De imply u �� Γ2 � R2 v. Conse-

quently, �� Γ1 � R1

� �� Γ2 � R2 . �

Moreover, any rewrite system generated by inference rules is terminating.

PROPOSITION 8.6. If E � R

� E � and � Γ � R � � � Γ � � R � � , then E � R �
� E � .

Proof Formulæ are oriented with the help of the reduction ordering � . �

Finally, each step of the completion method defines mixed proof transfor-
mations. Here, reduced subproofs are twofold:

1. maximal effluences, and

2. proofs containing at least a leaf of the form u � Γ v.

If these transformations are terminating, and if at the end we have an
empty set of formulæ to orient, then by Proposition 8.5, Proposition 8.6 and
Theorem 5.20, we have obtained a decision procedure for the starting theory
Γ. As usual, a sufficient condition has to be imposed to have such a result.
This condition is natural when we are dealing with non-deterministic choices
on formulæ of the form p � u � v � to orient or to delete as well as rules to reduce.
The underlying idea is that any finitely accessible choice is not indefinitely
dismissed. We talk about fairness. Here, fairness is defined as follows:

DEFINITION 8.7 (Fairness). Let ��� Γi � Ri ��� i �
0 be a chain such that � Γ0 � R0 � �� Γ1 � R1 � � ����� We say that a formula is persistent if it occurs in any Γi beyond

some rank. Let us denote by Γ∞
� �

i
�

0

�

j
�

i

Γ j the set of persistent formulæ, and

by R∞
� �

i
�

0

�

j
�

i

R j the set of persistent rules.

The chain ��� Γi � Ri ��� i �
0 is fair if no formula of the form p � u � v � is persistent

and any local effluence is eventually transformed into a formula.

Since Bachmair’s works, inference rules of completion can be used to
define proof orders on mixed proofs. Here, the proof normalization con-
sists essentially on replacing a local effluence into an equivalent proof by
rewriting. Of course, this is not possible if Γ is not empty and if R is not
confluent. The idea due to Bachmair, Dershowitz and Hsiang is then to see

main.tex; 31/08/2006; 10:56; p.55



56

the completion process as a transformation of the axiom system allowing to
write proofs more and more normal. To achieve this purpose, we have to show
that inference rules of completion make decrease mixed proof complexity.
In equation rewriting setting, this is obtained by using Bachmair’s ordering.
Hence, if we note � the ordering on mixed proofs defined by:

� DEDUCE: u R � t � R v � u � Γ v

� EFFLUENCE: u R � t � R v � u �� R w R �� v

� ORIENT:

� u � Γ v � u � v
� u � Γ v � v � u

� SIMPLIFY:

� u � Γ v � u �� R u
� �

Γ v

� u � Γ v � u � u
�

R �� v

then the closure � of � under mixed proof tree contexts and transitivity is
well-founded by using Bachmair’s ordering defined as the extension of the
reduction ordering � to multisets and then to multisets of these multisets
when mixed complexity is defined by:

� complexity of elementary proof: � � u � R v � � � � � u � � and � � u � Γ v � � �
� � u � v � � 32

� complexity of mixed proofs: the multiset of the complexity of its elemen-
tary proofs.

In our abstract framework, the ordering � is defined by: Let Γω
� �

i
�

0

Γi

and Rω
� �

i
�

0

Ri, and for all p � u � v � � Γω let us denote by u � p
Γω

v the mixed

proof tree reduced to this leaf. Let � be the binary relation on mixed proofs
defined as follows:

� DEDUCE: � u1 � Rω v1 ������� � un � Rω vn � u �� p
Rω v � � u � p

Γω
v,

� ORIENT: u � p
Γω

v � u � p
Rω

v,

32 ��� ����� ��� denotes finite multisets.
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� SIMPLIFY: u � p
Γω

v � � ����� � u �
Ex 	 ι 


�� Rω v �
Ex 	 ι 


��������� ui
�

Γω vi ��������� u �� p
Γω � Rω

v � ι, and

� EFFLUENCE: π : u �� p
Rω v � π

�
: u �� p

Rω v if π is a local effluence and π
�
a

proof by rewriting

Let us denote by � the closure of � under mixed proof tree context and
transitivity.

The equivalent of Bachmair’s ordering cannot be asbtractly defined be-
cause based on reduction orderings on terms whilst here reduction orderings
are on derivations.

AXIOM 6 (Proof normalization). � is well-founded.

When fairness and Axiom 6 are ensured, proofs have normal forms with
respect to � . The following normalization theorem is the basis of Church-
Rosser property.

THEOREM 8.8. If the chain ��� Γi � Ri ��� i �
0 is fair and Axiom 6 is satisfied,

then for every mixed proof π obtained at step i there is an equivalent proof by
rewriting in R∞

� �
i

�
0

�

j
�

i

Ri.

Proof To prove Theorem 8.8, we reason by well-founded induction on � . Let
π : u �� p

Γi � Ri
v be a mixed proof. By definition, if π is not a proof by rewriting,

then it has a leaf of the form u
� �

Γi v
�
, or a local effluence � π � � ω � . By fairness,

u
� �

Γi v
�

will have disappeared at a step j1 � i, and the local effluence will
be transformed into a formula at a step j2 � i. In all cases, π is transformed
into a mixed proof π

�
at a step j such that j � i and π � π

�
. By induction

hypothesis, there is a step k � j and a proof by rewriting π
� �

: u �� p
Γk � Rk

v. As
rewrite rules are never removed from Rω, we have R∞

� Rω. �

8.2. REDUNDANT RULES PROCESSING

The inference rules of Figure 1 lead to nondeterministic and inefficient com-
pletion procedures. Indeed, rules which can be deduced from other rules are
not necessarily removed. A way to answer this problem will be to add the
inference of Figure 2.

Briefly, REDUCE uses rules of R to simplify rules. It consists in looking
for an instance ι in De whose conclusion belongs to � Γ � R, removing it from
R and adding in Γ all premises of ι (those indexed by I) which cannot be
rewritten. In the equational rewriting setting, REDUCE is instantiated into two
inference rules as follows:
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REDUCE
Γ � R ��� u �

pv �
Γ � Γ � � R if there exists ι � p1 	 u1 � v1 
 � � � pn 	 un � vn 


p 	 u � v 
 � De s.t.

1. either u �
Ex 	 ι 
 �� �

p �
Ex � ι �

R v �
Ex 	 ι 
 and

in this case Γ
� � � pi

� ui � vi � � 1 � i 	� �
Ex � ι � � n �

or u �
Ex 	 ι 
 �� �

p �
Ex � ι �

R v �
Ex 	 ι 
 and

in this case Γ
� � � pi

� ui � vi � � 1 � i 	�
�

Ex � ι � � n � ,
2. and for all pi

� ui � vi � � Γ
�
, ui �� pi

Γ � R ��� u �
pv � vi

Figure 2. Inference rule for simplification

1. COMPOSE
Γ � R � � u � v �
Γ � � u � v � � � R if v �� R v

�

This is obtained from the instance of the transitivity rule u � v � v � � v
u � v . Ac-

cording to the rewriting orientation applied between v and v
�
, two cases

can occur: either v �� R v
�

and then by a direct application of ORIENT 1,

we have u � v
�
, or v �� R v

�
and in this case the equation u � v

�
can be

removed from Γ at the next step by SIMPLIFY. For these two reasons, the
inference rule usually given is the following:

COMPOSE
Γ � R ��� u � v �
Γ � R � � u � v � � if v �� R v

�

2. COLLAPSE
Γ � R � � u � v �
Γ � � u � � v � � R if u �� R u

�

This is obtained from the instance of the transitivity rule u � u � u � � v
u � v . With-

out a well-founded strict order on rewrite rules, it is known that COL-
LAPSE does not decrease complexity of proof trees through completion [8].
Moreover, it may even not preserve the starting equational theory. How-
ever, this well-founded strict order on rewrite rules is based on pattern-
matching and subterm relation which cannot be defined at our abstract
level (terms being simple elements of a set T without structuration).

Of course, we are again confronted with the problem that Point 2. of RE-
DUCE condition is unlikely to be computable. However, we saw that in this
case, a solution is to remove all redundant rules, that is rules u � p v � R
for which there are proofs by rewriting π : u �� p

R
� � u �

pv � v. In Section 4,
we have supposed that the logicality property holds and then R is Church-
Rosser. Moreover, R is terminating. By Theorem 5.20, we can decide if there
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exists a proof by rewriting u �� R
� � u �

pv � v. Therefore, we have a mechanical
redundancy test.

9. Other examples

In this section, we will instantiate our abstract framework on two logics:
extended conditional equational logic and M. Schorlemmer’s logic of spe-
cial relations [49]. This last logic is the most important of our applications
because itself has been defined as a general framework for unifying a variety
of rewriting theories. Here, we will show that we obtain the same results as
M. Schorlemmer [49] and, furthermore, we will define a completion method
which, as far as we know, has not been studied yet.

9.1. CONDITIONAL REWRITING

Conditional rewriting has been intensively studied (see [13, 24, 28, 34, 35]).
Up to our knowledge, conditional rewriting has been studied to solve the
word problem associated with unconditioned equations (this rewriting set-
ting has been developed as a running example in both previous sections).
Only rewrite rules are equipped with a condition, that is they are of the
form �

1 � i � n

ti � t
�
i

�
t � t

�
. Actually, when dealing with conditioned equations,

superposition-based theorem proving for full first-order clauses with equality
(e.g. see [11, 45]) is usually used. Here, to exemplify our abstract framework,
we propose to extend the classic conditional rewriting to formulæ of the form�
1 � i � n

ti � t
�
i

�
t � t

�
by using exclusively rewriting techniques. To achieve this

purpose, rewritings and derivations will be closed under transitivity, mono-
tonicity and modus-ponens, respectively. This will be obtained by inserting
both monotonicity and modus-ponens in the deduction rule of transitivity.
The resulting deduction rule will be called Trans/Mod (see below for its
statement).
To define the associated rfs, we will use the notions and notations that have
already been presented in Example 3.7. Let us recall that in order to enter
conditional formulæ into the definition of rfs which only manipulates pred-
icates, standard conditional formulæ c

�
t � t

�
are represented by t � c t

�
in

our framework (t and t
�
being terms and c being a finite conjunction of equa-

tions of the form c � �
1 � i � n

ti � t
�
i ). In the following, we will use the following

supplementary notations:

� u � v � c to mean that the equation u � v occurs in the finite conjunction
c,
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� c
�

c
�
to mean that all equations in c occur in c

�
, and

� c � c
�
to denote the finite conjunction of equations obtained by removing

all equations of c that occur in c
�
.

9.1.1. Rewriting formal system
Given a signature Σ defined by a set of function names equipped with arities
in � , and a set of variables V , we define the rfs for conditional term rewriting
SP � � T � E � RS � De � Rmv � as follows:

� T � TΣ
� V � ,

� E � � � c � c : finite conjunction � such that for every c, � c
de f� TΣ

� V � �
TΣ
� V � (syntactic definition),

� RS is the set of all instances of the following deduction rules: let σ : V �
TΣ
� V � be a substitution and let C be a context

Substitution
t � c t

�
σ � t � � σ 	 c 
 σ � t � � Context

t � c t
�

C 
 t � � c C 
 t � �

� De is the set of all instances of the two following deduction rules:

Reflexivity
t � /0 t

Trans/Mod
t � c t

�
t
� �

c � t
� � � i � I � ui

�
ci vi

t � c � �
i � I

ci
t
� �

where c � c � c
� � � ui

� vi � i � I � .

9.1.2. Conditional rewrite systems
Since all binary relations of E are symmetric, a conditional rewrite system
for SP is simply a family � � c � c:condition .

Given an instance ι � t � ct � t � � c � t � � � i � I � ui � ci vi

t � c �
�
i � I

ci
t � � of Trans/Mod, its set of fixed

leaves is F L � ι � � � t � c t
�
� t
� �

c � t
� � � .

Following Definition 4.6, rewriting steps are defined as follows: t � c
R t
�

if and only if there exist a rule u � c � v � R , a substitution σ : V � T , and a
context C such that t � C 
σ � u � � , t

� � C 
 σ � v � � , and c � σ � c � � . For every finite
conjunction c, the rewriting relation �� c

R is then defined as follows: if t �� c1

R t
�
,
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t
� �� c2

R t
� �
, and �

i � I

ui
� vi

�
c1 � c2 such that for every i � I, there exists a finite

conjunction ci such that:

� Normal ui �� ci

R vi,

� Natural ui �� ci

R vi,

� Join ui �� c �
R w c � �

R �� vi and ci
� c
� � c
� �

then t �� c
R t
�
where c � c � �

i � I

ci and c � � c1 � c2 � � � �
i � I

ui
� vi � .

This definition of conditional rewriting subsumes the classical one such as
defined in Example 4.10. Indeed, if s � /0

R t has been obtained from the rewrite

rule �
1 � i � n

li � ri
�

l � r in classic conditional rewriting, then this gives rise to

the following rewritings:

Trans
�
Mod

Cont �

Subst �

l � �
1 � i � nli � ri

r

σ � l � �

�
1 � i � nσ � li � � σ � ri �

R σ � r �

s � C �σ 	 l 
 � �

�
1 � i � nσ � li � � σ � ri �

R t � C �σ 	 r 
 �
t � /0 t � 1 � i � n � σ � li � � /0 σ � ri �

s � /0 t

Proofs are trees composed of instances of Trans/Mod and Symmetry, while
derivations are composed of instances of Trans/Mod only. Therefore, a deriva-

tion is any tree of the form
d1:u ��

c
R v d2:v ��

c �
R w

u ��
c �
�
i � I

ci

R w

such that c � � c � c
� � � � �

i � I

ui
� vi �

where for every i � I, there is a finite conjunction ci such that ui
�

ci vi holds
in R .

9.1.3. Properties of conditional rewrite systems
We choose the expanding position application defined for any instance ι of

the Trans/Mod rule by:
�

Ex � ι � � 1. Hence, ER is defined by:

d : u �� c
R v ER

d1 : u �� c
R v d2 : v �� c �

R w

u ��
c � �

i � I

ci

R w

As for every finite conjunction c, � c is symmetric, we then have, for every
rewrite system R , E � R

� ER . Therefore, termination of rewrite systems is
equivalent to the fact that ER is Nœtherian.
This leads to the following definition of effluences and proofs by rewriting:
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� Effluences are proofs of the form

d1 : u �� c
R v d2 : v �� c �

R w

u �� c � �
i � I

ci

R w

� Proof by rewriting are proofs of the form:

d1 : u �� c
R v d2 : v �� c �

R w

u �� c � �
i � I

ci

R w

Let u � c v be a conditioned equation. Then, let us define the set S as follows:

S �
��
� � u � � u � c �

R u
� �

�
� v � � v � c �

R v
� �

Then, let us show that RS 
 u � c v
� �

��
� � u � c �

R u
� � � c � � u � � S �

�
� v � c �

R v
� � � c � � v � � S �

. Indeed,

for every finite conjunction c, � c
R is finitely branching, that is each term has

only finitely many direct successors. Moreover, � c
R is decidable. 33 Hence,

S is finite and thus computable.
First of all, observe that every proof tree of the form:

t1 � c1 t2
t2 � c2 t3 t3 � c3 t4 � i � I � ui � ci vi

t2 �
c1 �

�
i � I

ci
t4

� j � J � u j
�

c j v j

t1 �
c2 � �

j � J

c j
t4

where c1
� c2 � c3 � � ui

�
ci vi � i � I � and c2

� c1 � c1 � � u j
�

c j v j � j � J � , can
be transformed into the following equivalent proof tree (i.e. with the same
conclusion):

33 In the classic conditional rewriting, rewriting steps are not necessarily computable be-
cause they depend on decidability of joinability. Here, this does not occur because the
satisfaction of premises of conditional rules has been relegated to the level of rewriting step
composition (i.e. in Trans/Mod).
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t1 � c1 t2 t2 � c2t3 � i � I � � ui � ci vi

t1 �
c �1 �

�
i � I �

ci
t3

t3 � c3 t4 � j � J
�
� u j
�

c j v j

t1 �
c �2 � �

j � J

c j
t4

with

� ui
� vi � i � I

�
� �

�� � � ui
� vi � i � I ��� c2

�
� u j
� v j � j � J ��� c1

� u j
� v j � j � J

�
� �

��� ��
� ui
� vi � i � I ��� c3

�
� u j
� v j � j � J ��� � c �1 � �

i � I �
ci �

We have then: c2 � �
j � J

c j
� c
�
2 � �

j � J

c j .

Therefore, for any derivation d : u �� c
R v, there exists an equivalent derivation

d
�
of the form:

d1 : u � c1
R u
�

d2 : u
� �� c2

R v

u �� c
R v

This means, by the definition of the expanding position application, that d1 :

u � c1
R u
�
ER d

�
. Therefore, RS 
 u � c v

� �
�� � � u � c �

R u
� � u � � S �
�

� v � c �
R v
� � v � � S �

. Consequently,

RS 
 u � c v
�

is finite and thus computable.

Moreover, we have:
� for each rewriting t �� c

R t
�
, there exists a derivation d : t �� c

R t
�
. There-

fore, by the above transformation between instances of Trans/Mod, there
exists an equivalent derivation d

�
of the form:

t � c1
R t1 t1 � c2

R t2

t �� c1

R t2 t2 � c3
R t3

t �� c2

R t3
�����������

t �� cn � 1

R tn
tn � cn � 1

R t
�

t �� cn � c
R t

�
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� given a derivation d : u �� c
R v, we have seen just above that v can be

rewritten in one step, into a finite set of terms v
�
, that is d ER

d:u ��
c
R v d � :v � c �

R v �
u ��

c � c �
R v �

.

Moreover, generating the set of terms v
�

such that v � c �
R v
�

is a finite
and computable task. Therefore, D 
 d � defined as the set of derivations

of the form
d:u ��

c
R v d � :v � c �

R v �

u ��
c �
�
i � I

ci

R v �
, is finite. However, without supplementary

conditions, D 
 d � is not necessarily computable. Indeed, it is required for
every i � I that ui

�
ci vi holds in R . Therefore, this process can loop. This

had been already observed in the classic conditional rewriting when we
were generating the set RS 
 u � c v

�
. To solve this problem, the condition

which is imposed on rewrite systems, is decreasingness [23]. Here, this
condition is expressed as follows:

DEFINITION 9.1 (Decreasing). A conditional rewrite system is decreas-
ing if there is a well-founded ordering � on terms which satisfies the
following properties:

1. � R
� � ,

2. � contains the proper subterm relation, and

3. for each rule l � c r with c � �
1 � i � n

ui
� vi, σ � l � � σ � ui � and σ � l � �

σ � vi � for all substitutions σ and all indices 1 � i � n.

Decreasingness is essentially the same condition as imposed on con-
ditional equations by theorem-proving procedures in [18, 19]. Indeed,
in [18, 19], a conditional equation c

�
u � v is decreasing if for every

substitution σ, σ � u � � σ � v � (similar to Point 1. in Definition 9.1) and the
proofs of the conditions only involve terms smaller than σ � u � (similar
to Point 3. in Definition 9.1). The point of decreasingness as defined
in [18, 19] is to enable one to use equations by using only the decreasing
instances of the equations, much like in unfailing Knuth-Bendix com-
pletion or Aka ordered completion where one uses the ordered instances
of equations to perform simplification. Here, we do not present the ap-
proach developed in [18, 19] which defines theorem-proving procedures
for conditional equations rather than completion procedures.

THEOREM 9.2. If R is decreasing then �� R is decidable.

Proof Let us prove this property by induction on the ordering that makes
R decreasing. Let s be a term which is not a normal form. By definition,

main.tex; 31/08/2006; 10:56; p.64



65

there is a rewrite rule l � c r with c � �
1 � i � n

ui
� vi, a context C and a

substitution σ such that s � C 
 σ � l � � � σ 	 c 

R t � C 
 σ � r � � . By definition, s �

C 
 σ � r � � . Therefore, by the induction hypothesis, there is a normal form w

such that C 
 σ � r � � �� c �
R w with c

� � �
1 � j � k

u
�
j
� v
�
j . By definition, C 
 σ � l � � �

σ � l � � σ � ui � � σ � vi � for i, 1 � i � n, and C 
 σ � r � � � σ � r � � σ � u � j � � σ � v
�
j �

for j, 1 � j � k. Therefore, by the induction hypothesis, we can decide
for all i, 1 � i � n and all j, 1 � j � k, if for some ci and c

�
j , ui
� vi and

u
�
j
� v
�
j hold in R . Consequently, for every c

� � � σ � c � � c
�
we can decide

if s �� c � � � cd
R w where cd � �

i � I

ci � �
j � J

c
�
j such that cd

� � σ � c � � c
� � � c

� �
and

for every i � I and j � J, ui
�

ci vi and u
�
j
�

c � j v
�
j hold in R . �

As a corollary of Theorem 9.2, for any decreasing rewrite system R , the
set D 
 d � is computable.

Hence, from the two points above, we can conclude that decreasing condi-
tional rewrite systems are sensible.

By the first condition of the notion of sensibleness, derivations can be writ-
ten as sequences of rewriting steps together with a finite conjunction c. Hence,
any derivation d : t �� c

R t
�

is written � t � c1
R t1 � c2

R t2 ����� � cn � 1
R t

�
� c � where

all ti � ci
R ti � 1 are the leaves (i.e. rewriting steps) occurring in d. Moreover,

among all derivations associated with a sequence � t � c1
R t1 � c2

R t2 ����� � cn � 1
R

t
�
� c � we have the following one:

t � c1
R t1 t1 � c2

R t2

t �� c1 � c2

R t2 t2 � c3
R t3

t �� c1 � c2 � c3

R t3
�����������

t �� c1 � � � � � cn � 1

R tn tn � cn � 1
R t

�

t �� c
R t
�

where only in the last application of the Trans/Mod rule, we check that for
every ui

� vi � � �
1 � j � n � 1

c j � � c there exists a finite conjunction ci
�

c such that

ui
�

ci vi holds in R .

In the same way, a proof can be written as a sequence of rewriting steps (with
some orientation conflicts) together with a finite conjunction c.

main.tex; 31/08/2006; 10:56; p.65



66

The abstract decision procedure given in Section 5 is then instantiated as
follows:

Input a decreasing rewrite system R and a conditional equation u � c v.

Initialization S � Tmp : � RS 
 u � c v
�
, Tmp : � RS 
 u � c v

�
, and answer : �

f alse;

Loop while T mp 	� /0 do:

1) choose d : t1 � c1
R t2 ����� � cn

R tn in Tmp and Tmp : � Tmp � � d � ; 34

2) T mp : � Tmp �	� t1 � c1
R t2 ����� � cn

R tn � cn
R tn � 1 � tn � cn

R tn � 1 � ;
3) S : � S � Tmp;

4) if there exist u � c11
R t11 ����� � c1n

R w and
v � c21

R t21 ����� � c2m
R w in S, such that:

� ui
� vi � � �

1 � i � n

c1i � �
1 � j � m

c2 j � � c � � ci
�

c � A 
 ui
�

ci vi
�

then T mp : � /0;

answer : � true;

end of loop

Output return � answer �

Here, the rfs associated with the conditional logic is not adequate. But, with
the condition of decreasingness, the above process cannot loop.

A conditional rewrite system R is:

� confluent if and only if for every
d1:u

c1
R �� t d2:t ��

c2
R v

u �� c
R v

there exists
d3:u ��

c3
R t d4:t

c4
R �� v

u �� c
R v

� Church-Rosser if and only if for every proof π : u �� c
R v there exists

d1:u ��
c1
R t d2:t

c2
R �� v

u �� c
R v

.

Axiom 2 holds because, for any

d1:u ��
c1
R t d2:t

c2
R �� v

u �� c
R v

v �� c
R u

, we also have
d2:v ��

c2
R t d1:t

c1
R �� u

v �� c
R u

.

Axiom 3 holds because, as in the standard equational rewriting, proofs can be
written as a series of maximal peaks, and then replacing any maximal peak

34 Observe that t1 is necessarily either u or v.
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by a valley reduces by one unit the number of maximal peaks. Therefore,
we have as corollary of Theorem 6.5 that Church-Rosser is equivalent to
confluence.

Every peak obviously contains a local peak, and so, Axiom 4 is obvious.
Finally, we can easily adapt the proof developed in Example 6.10 to show
that Axiom 5 holds.

9.1.4. Completion
Inference rules for completion are the following: let � be a reduction order
which contains the proper subterm relation

DELETE1 Γ ��� u � /0u � � R
Γ � R

DELETE2 Γ ��� u � cv � �R
Γ � R if u � v � c

DEDUCE
Γ � R

Γ ��� u � cv � �R if � u c1
R � u

� � c2
R v� c �

ORIENT
Γ ��� u � cv � � R
Γ � R ��� u � cv � if u � v and for all l � r � c,

u � l and u � r

SIMPLIFY
Γ ��� u � cv � � R

Γ ��� u � � c2 v � ��� t � c � t �  P 	 t � t � � c � 
 � � R if 1. u
�� c1

R u
�

2. � c2 � u
� �� c2

Γ ��� u � cv � �R v

3. � t � t
� � � c1 � c2 � � c �

� c
� �

c � t �� c �
Γ ��� u � cv � � R t

�

where P
�
t � t � � c �����

��
�
�
t 	 t ��
 �

c1 � c2 �� c � ��
c ��� c � ��
t
�
� c �

Γ ��� u � cv ��� R t ���
The supplementary condition in the inference rule ORIENT enables us to ob-
tain decreasing rewrite systems R in pairs � Γ � R � manipulated by the above
completion.

Mixed proofs can also be written as a series of proof steps that are either
rewriting steps or equations. Hence, by using Bachmair’s ordering, we can
easily show that Axiom 6 is satisfied. However, the two last conditions of the
inference rule SIMPLIFY are unlikely to be computable because of both proof

obligations u
� �� c2

Γ � � u � cv � �R v and t �� c �
Γ � � u � cv � � R t

�
. To solve these problems,
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a solution is to break down the deductive rule Trans/Mod into two deductive
rules:

Transitivity
t � c t

�
t
� �

c � t
� �

t � c � c � t
� �

ModusPonens
t � c � �

i � I

ui � vi
t
�

ui
�

c vi

t � c t
�

In this new rfs, all above notions are easily adaptable and left to the reader.
Of course, both new rules are more restrictive than Trans/Mod because in
Modus-Ponens, each equation ui

� vi is satisfied with respect to the finite
conjunction c.

Both new rules give rise to the following inference rules:

SIMPLIFY1 Γ ��� u � cv � � R
Γ ��� u � � c2 v � � R if 1. u

�� c1

R u
�
with c1

�
c and c � c1 � c2

SIMPLIFY2 Γ ��� u � cv � � R
Γ ��� s � ct  s � t � c � � � R if 1. u

�� c � c �
R v

9.2. REWRITING OF SPECIAL RELATIONS

9.2.1. Rewriting formal system
The logic of special relations is both a restriction and an extension of first
order logic. It is a restriction because it only considers binary predicates. It is
an extension because it allows to specify composition laws such as transitiv-
ity or subtyping, and then to define new binary relations. This is obtained
by adding two supplementary syntactic operators “ � ” and “;” which de-
note respectively, the opposite and the composition of binary relations. These
new operators allow to build, in addition to terms with variables of the form
f � t1 ��������� tn � , relational terms of the form

�

α and α;β where α and β are binary
relations. Formulæ are also extended by expressing that a binary relation is
included into another one. More formally, the rfs for logic of special relations
is defined as follows: a signature Σ ��� F � R � contains a set F of function names
with arities in � , and a set R of binary relation names. The set of terms with
variables is the standard set TΣ

� V � of free terms with generators in V . The set
of relational terms TRΣ is the least set inductively defined as follows:

� 1I � TRΣ (1I is the identity relation neutral for composition)

� R
�

TRΣ,

� if α � β � TRΣ then α;β � TRΣ, and
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� if α � TRΣ then
�

α � TRΣ.

“;” denotes the composition of binary relations, and is associative. “ � ” de-

notes the opposite of binary relations, and is an anti-involution, that is,

�
�

α � α,
�

1I � 1I and
�

α;β �
�

β ;
�

α.

Monotonicity and antimonotonicity are inherent features of function names
of signatures, in the same sense as their arities. Hence, a function f n of F
which is said positive in position i with respect to � α � β � satisfies the following
property:

tiαt
�
i
� � f � t1 ��������� ti ��������� tn � β f � t1 ��������� t

�
i ��������� tn �

This can be easily extended to subterm position p within a term t as follows:

� a term f � t1 ��������� tn � � TΣ
� V � is positive in position 1 � i � n with respect

to � α � β � if and only if f is positive in i with respect to � α � β � , and

� if p � q is a subterm position in a term t � TΣ
� V � such that t 

p
is positive in

q with respect to � α � γ � and t is positive in p with respect to � γ � β � , then t
is positive in p � q with respect to � α � β � .

Atoms are either uαv where u � v are terms in TΣ
� V � and α � TRΣ, or α � β

where α � β � TRΣ. Semantically, � means the set-theoretical inclusion.

EXAMPLE 9.3. As explained just above, the logic of special relations has
been defined as an universal algebraic formalism in which other algebraic
formalisms can be encoded. Here, we are going to illustrate such an encoding
for the standard and typed equational logic.

1. Standard equational logic. Given a set F of function names with arities in
� , we define the signature Σ � � F � R � in the logic of special relations as
follows:

� R � � � � , and
� for each function symbol f n � F, f is positive in every position

1 � i � n for � � � � � .

Moreover, for every theory Γ we add the three following axioms:

a) 1I � � (reflexivity)

b) � � �� (symmetry)

c) � ; � � � (transitivity)
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2. Typed equational logic. Typed equational logic [41] extends standard
equational logic by treating sorts semantically (i.e. by axioms). Its for-
mulæ are Horn clauses involving equations t � t

�
as well as type assign-

ments t : t
�

where t � t
�

are terms of TΣ
� V � . Therefore, given a set F of

function names signature, the signature Σ � � F � R � in the logic of spe-
cial relations is defined as for the standard equational logic except that
R � � � � : � . Moreover, in addition to the three above axioms specifying
equality, for every theory Γ, we have the two following axioms to specify
type assignments:

a) � ; : � : (typing of equals)

b) :; � � : (type equality)

Given a signature Σ � � F � R � and a set of variables V , we define the rfs� T � E � RS � De � Rmv � as follows:

� T � TΣ
� V � � TRΣ,

� E � TRΣ � � � � such that for every α � T RΣ, α de f� TΣ
� V � � TΣ

� V � and

� de f� T RΣ � TRΣ,

� If we index each set of deductive rules instances RS, De, and Rmv by the
set E , we have:

� De1I contains all the instances of the following deductive rules:

Reflexivity
t 1I t

� for every α � TRΣ:
� RSα contains all instances of the two following deductive rules:

if σ : V � TΣ
� V � is a substitution and C is a context positive

in subterm position p of the symbol � in C with respect to� β � α � , then

Substitution
tαt
�

σ � t � ασ � t � � Context
tβt
�

C 
 t � αC 
 t � �
� Deα contains all instances of the following deductive rule:

Composition
uγv vβw γ;β � α

uαw
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� Rmvα contains all instances of the following deductive rule:

Converse
uβv

v
�

β u

and then α �
�

β
� and:

� RS � is the set containing all instances of the two following
deductive rules:

Duality
α � β

�

α �
�

β
Context � α � β

γ;α;δ � γ;β;δ
� De � is the set containing all instances of the following deduc-

tive rule:

Reflexivity
α � α

Transitivity
α � β β � δ

α � δ
� Rmv � is empty.

9.2.2. Rewrite systems
Rewriting developed here will be defined to solve the word problem of two
kinds of atoms:

1. relational atoms of the form uαv, and

2. inclusion atoms of the form α � β.

Rewrite systems for the logic of special relations is then defined for any
binary relation α in TRΣ (resp. for � ) by a pair of binary relations � � α � � α �
(resp. � � � � � � � . Given an instance ι � uαv vβw α;β � γ

uγw (resp. ι � α � γ γ � δ
α � δ ),

its set of fixed leaves is F L � ι � � � uαv� vβw � (resp. F L � ι � � � α � γ � γ � δ � ),
and then L � ι � � F L � ι � � � α;β � γ � (resp. L � ι � � F L � ι � � /0).
Following Definition 4.6, a rewriting step is then defined as follows:

� for every α � TRΣ, we have: t � α
R t
�
(resp. t � α

R t
�
) if and only if there

are a rewrite rule u � β v (resp. u � β v), a substitution σ : V � TΣ
� V �

and a context C positive in position p of the constant � with respect to� β � α � such that t � C 
σ � u � � p and t
� � C 
 σ � v � � p.

� � �R is the least set satisfying the following clauses:

� � � � � �R ,
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� if α � �R β then
�

α � �R
�

β ,
� if α � �R β then γ;α;δ � �R γ;β;δ.

� �R is defined as above by replacing � � and � �R by � � and � �R ,
respectively.

Closure of rewriting steps is then defined as follows:

� for every γ � TRΣ, �� γ
R is the least set satisfying the following clauses:

� t �� γ
R t if γ � 1I,

� � γ
R

� �� γ
R , and

� if t �� α
R t
�
, t
� �� β

R t
� �

and:

� Normal α;β �� �R γ,

� Natural α;β ��
�
R γ

� Join α;β �� �R δ �� �R γ

then t �� γ
R t
� �
.

� �� �R is the least set (according to the set-theoretical inclusion) containing
� �R and closed under transitivity.

From the definitions above, derivations can be defined by sequences of form
� t1 �� α1

R t2 �� α2

R ����� �� αn

R tn � 1 � β � or α1 ��
�
R α2 ��

�
R ����� �� �R αn � 1. A deriva-

tion � t1 �� α1

R t2 �� α2

R ����� �� αn

R tn � 1 � β � leads to t1 �� β
R tn � 1 and means that

α1; ����� ;αn � β holds in R . Proofs are defined similarly.

9.2.3. Properties of rewrite systems
For every instance ι of both deductive rules composition and transitivity, we

have
�

Ex � ι � � 1 and
�

Ex � ι � � 2. Hence, termination of rewrite systems is
expressed as the fact that E � R is Nœtherian where E � R

� � E � α
R
� α � T RΣ � E �

�

R
such that:

� for every α � TRΣ, � α
R is the least binary relation that contains � α

R
� � � α

R � � 1, and is stable under substitution, positive context and compo-
sition, that is

� if t � α
R t
�
then σ � t � � α

R σ � t � � ,
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� if t � β
R t
�

and C is a positive context with respect to � β � α � then
C 
 t � � α

R C 
 t � � , and
� if u � γ v, v � β w and γ;β �

�
R α, then u � α w.

� �
�
R is the least binary relation that contains � �R � � � �R � � 1, and is stable

under duality, context � and transitivity, that is

� if α �
�
R β then

�

α �
�
R

�

β ,
� if α �

�
R β then γ;α;δ �

�
R γ;β;δ, and

� if α �
�
R β and β �

�
R δ then α �

�
R δ.

Therefore, a reduction relation � � � �
α � T RΣ

� α � � � � is a binary relation sat-

isfying:

� for every α � TRΣ, � α is a well-founded relation that contains � α
R

� � � α
R � � 1, and is stable under substitution, positive context and com-

position, and

� � � is a well-founded order that contains � �R � � � �R � � 1, and is stable
under duality and context � .

In order to benefit from classic methods to show termination of rewrite sys-
tems, we can set down, for every α � TRΣ, that � α

� � where � is a well-
founded order stable under substitution and positive context. The resulting bi-
nary relation � � � � � � is obviously a reduction relation because transitivity
closure is less restrictive than composition closure.

This leads to the following definition of effluences and proofs by rewriting:

� effluences are proofs of the form � s �� α
R t �� β

R u � γ � , and

� proofs by rewriting are proofs of the form � s �� α
R t �� β

R u � γ � .
such that α;β � γ holds in R .
Regarding the binary relation � , effluences and proofs by rewriting are re-

spectively, peaks ( �� �R � ��
�
R ) and valleys ( �� �R � ��

�
R ).

Let uαβ be a formula. Therefore, let us define the set S as follows:

S �
�� � � u � � γ � � u � γ

R u
� �

�
� � v � � γ � � v � � γ

R v �
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Then, let us show that RS 
 u � α v
� �

�� � u � γ
R u
� � � u � � γ � � S �
�

� v � � γ
R v
� � � v � � γ � � S �

. Indeed, for

every binary relation γ � TRΣ, both � γ
R and � γ

R are finitely branching, that

is each term has only finitely many direct successors. Moreover, � γ
R and � γ

R
are decidable. Therefore, S is finite and computable.

Observe that for every derivation u
�� α

R w (resp. w
�� α

R v) there is a term u
�

(resp. v
�
) and δ � γ � TRΣ such that u � δ

R u
� �� γ

R w (resp. w
�� γ

R v
� � δ

R v)

and δ;γ � α holds in R . This then means that u � δ
R u
�

ER u
�� α

R w (resp.

v
� � δ

R v ER w
�� α

R v). Therefore, RS 
 uαv
� �

�
� � u � γ

R u
� � � u � � γ � � S �

�
� v � � γ

R v � � v � � γ � � S �
. Con-

sequently, RS 
 uαv
�

is finite and computable.
Moreover, we have:

� for each rewriting u �� α
R v (resp. u �� α

R v), there exists a sequence u � α1
R

u1 � α2
R ����� � αn

R v (resp. u � α1
R u1 � α2

R ����� � αn
R v) such that α1; ����� ;αn �

α holds in R .

� given a derivation u �� α
R v (resp. u �� α

R v), v (resp. u) can be rewritten
in one step, into a finite set of terms v

�
(resp. u

�
) such that there exists

γ � TRΣ satisfying v � γ
R v
�
(resp. u

� � γ
R u). Moreover, generating the set

of all v
�
(resp. u

�
) such that there exists γ � TRΣ satisfying v � γ

R v
�
(resp.

u
� � γ

R u), is a finite and computable task. However, D 
 u �� α
R v

�
(resp.

D 
 u �� α
R v

�
) defined as the set of derivations � u �� α

R v � γ
R v
�
� β � (resp.

� u � � γ
R u �� α

R v� β � ), is not necessarily finite and computable because
of the arbitrary choice of β and the proof obligation that α;γ � β (resp.
γ;α � β) holds in R . To have both finiteness and computableness of

D 
 u �� α
R v

�
(resp. D 
 u �� α

R v
�
), we need that � �R � � � �R � � 1 is terminat-

ing. Let us observe that right and left-hand sides of rewrite rules of the
form α � � β are ground (relational terms have no variables). Therefore,
when the set of this kind of rewrite rules is finite then it is known that its
termination is decidable [6]. Moreover, in practice, relational atoms have
usually the following form: α1;α2; ����� ;αn � β with for every i, 1 � i � n,
αi � R and β � R. Such atoms are sufficient to express usual composition
laws such as transitivity of a relation α (α;α � α), typing (:; � � : and� ; : � :) or Leibniz law (

�� ;α � α). 35 Such atoms are obviously oriented

35 Leibniz law is expressed by x � y P
�
x �

P
�
y � where P is a unary predicate. Here, P � _ � � _αz.
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as α1; ����� ;αn � � β. The resulting rewrite system is then called right-
reduced, that is all rewrite rules are right-ground and their right-hand
sides are irreducible. In this case, the rewrite system is terminating.

For the binary relation � , the three sets RS 
α � � , D 
α �� �R β
�
and D 
α �� �R β

�
are defined similarly. Hence, we conclude that when dealing with a rewrite-
system R equipped with a terminating rewriting relation for � then R is
sensible. This gives rise to the following decision procedure:

Input a rewrite system R and a formula ϕ of the form uαv or α � β.

Initialization S : � RS 
 ϕ � , Tmp : � RS 
ϕ � and answer : � f alse;

Loop while T mp 	� /0 do:

1) choose d in Tmp and Tmp : � Tmp � � d � ;
2) T mp : � Tmp � D 
 d � ;
3) S : � S � Tmp;

4) if ϕ is of the form uαv then:

if there exist � u � α11
R t11 ����� � α1n

R w� β1 � and
� w � α21

R t21 ����� � α2m
R v� β2 � in S, such that:

A 
 β1 � α
� � A 
 β2 � α

�

then T mp : � /0;

answer : � true;

else (i.e. ϕ is of the form α � β):

if there exist α � �R ����� � �R γ and γ � �R ����� � �R β in S

then T mp : � /0;

answer : � true;

end of loop

Output return � answer �
Here, the logic for special relations is adequate, and then Theorem 5.20 holds.
A rewrite system R is then:

� Confluent if and only if for for every � u �� α
R t �� β

R v� τ � , there exists
� u �� δ

R w �� γ
R v� τ � , 36 and

36 In [49], τ is α;β.
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� Church-Rosser if and only if for for every u �� α
R v, there exists � u �� δ

R

w �� γ
R v� α � .

Arguments to show that the four axioms of Section 6 hold are similar to those
that can be found in the different examples developed in this paper, and then
are left to the reader.

9.2.4. Completion
Inference rules for completion are then the following: let � be a reduction
relation

DEDUCE 1 Γ � R
Γ ��� uγv� α;β � γ � � R if � u �� α

R t �� β
R v� γ �

DEDUCE 2 Γ � R
Γ ��� α � β � � R if α �� �R δ �� �R β

ORIENT 1 Γ ��� uαv � � R
Γ � R � � u � αv � if u � α v

ORIENT 2 Γ ��� uαv � � R
Γ � R � � u �

αv � if v � α u

ORIENT 3 Γ ��� α � β � � R
Γ � R � � α � � v � β if α � � β

ORIENT 4 Γ ��� α � β � � R
Γ � R � � α � � v � β if β � � α

SIMPLIFY 1 Γ ��� uαv � � R
Γ ��� u � δv � ��� γ;δ � α � � R if 1. u

�� γ
R u
�

2. � δ � TRΣ �

���� ��� u
� �� δ

Γ ��� uαv � � R v

�
γ;δ �� �Γ ��� uαv � � R α

SIMPLIFY 2 Γ ��� uαv � � R
Γ ��� uδv � � ��� δ;γ � α � � R if 1. v

� �� γ
R v

2. � δ � TRΣ �

���� ��� u �� δ
Γ ��� uαv � � R v

�
�

δ;γ �� �Γ ��� uαv � � R α

SIMPLIFY 3 Γ ��� α � β � � R
Γ ��� δ � β � � R if α ��

�
R δ and δ �� �Γ ��� α � δ � β

SIMPLIFY 4 Γ ��� α � β � � R
Γ ��� α � δ � � R if δ ��

�
R β and α �� �Γ ��� α � δ �

The arguments to show that Axiom 6 holds, are similar to other examples
developed in this paper. However, the two last conditions of the inference
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rule SIMPLIFY 1 and SIMPLIFY 2 are unlikely to be computable because of

the arbitrary choice of δ and both proof obligations u
� �� δ

Γ ��� uαv � � R v (resp.

u �� δ
Γ ��� uαv � � R v

�
) and γ;δ �� �Γ ��� uαv � � R α (resp. δ;γ �� �Γ ��� uαv � � R α). We saw

previously that when dealing with rewrite rules for � which are right-reduced

(which is often the case in practice), �� �R and �� �R are decidable, and then so

is �� �R . But, the problem remains with u
� �� δ

Γ � � uαv � � R v and u �� δ
Γ ��� uαv � � R v

�
.

Following [56], we then replace SIMPLIFY 1 and SIMPLIFY 2 by the three
following inference rules:

SIMPLIFY

Γ �	� sαt � � R
Γ � R

Γ � R �	� s � α t �
Γ � R

Γ � R �	� s � α t �
Γ � R

if sαt, s � α t or u � α v is redundant, that is it can be replaced by a smaller
proof in Γ � R using the proof ordering and measure � .

10. Conclusion and perspectives

In this article, we have presented an axiomatic version of abstract rewrit-
ing used to generate convergent and complete rewrite systems. Hence, in
a generic (i.e., logical-system independent) way, we have given meaning
to the usual notions and results which underlie rewriting, such as rewrite
systems, derivations, effluences, proofs by rewriting, termination, Church-
Rosser’ result or Newman’s lemma. Moreover, for any Church-Rosser and
confluent rewrite system R , we have defined a decision procedure that is
correct and complete with respect to the underlying theory of R . Finally,
a completion method has been presented in this abstract framework. This
axiomatization follows a first paper in which we generalized the logical-
ity theorem which states the correspondence between derivability (syntactic
consequences obtained from � ) and convertibility in rewriting ( �� ) [3].

Several research issues can be continued. First, in standard term rewriting,
when rewrite systems are terminating, Newman’s lemma can be automati-
cally tested. This is the critical pair Lemma. This result states that confluence
of terminating systems can be effectively tested by checking joinability of a
finite set of equations called critical pairs, formed by overlapping left-hand
sides. Authors in [15, 20, 22] define an abstract notion of critical pairs as a
proof which is not in normal form, but all its subproofs are. In our abstract
framework, this exactly corresponds to any proof whose direct subproofs
are derivations or proof by rewritings. Hence, such a notion of critical pairs
in [15, 20, 22] does not correspond to the expected one, that is proofs which
reflect all local effluences such that, given a rewrite system R , the whole
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set of critical pairs can be automatically produced. In the standard rewriting
theories, to compute critical pairs, we use the inductive structure of terms.
In our abstract framework, rewritten objects are simply elements of a set T ;
no conditions are given on their structure. Therefore, we plan to restrict the
definition of rfs to a generalization of first order terms (i.e. elements equipped
with an inductive structure from basic elements playing the rôle of variables).
To achieve this, we think that Lévy and Mellies’s nice residual theory could
provide pieces of solutions.
Another important research issue would be to find a way to adapt usual results
of term rewriting such as modularity in our abstract framework. 37

37 A property is said to be modular if it is preserved through disjoint union of rewrite
systems.
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