
HAL Id: hal-00341964
https://hal.science/hal-00341964

Submitted on 19 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Testing from algebraic specifications: test data set
selection by unfolding axioms

Marc Aiguier, Agnès Arnould, Clément Boin, Pascale Le Gall, Bruno Marre

To cite this version:
Marc Aiguier, Agnès Arnould, Clément Boin, Pascale Le Gall, Bruno Marre. Testing from algebraic
specifications: test data set selection by unfolding axioms. 5th International Workshop on Formal
Approaches to Testing of Software (FATES 2005), 2005, Edinburgh, United Kingdom. pp.203–217,
�10.1007/11759744_14�. �hal-00341964�

https://hal.science/hal-00341964
https://hal.archives-ouvertes.fr

Testing from Algebraic Specifications: Test Data

Set Selection by Unfolding Axioms

Marc Aiguier1, Agnès Arnould2, Clément Boin1, Pascale Le Gall1

and Bruno Marre3

1Université d’Évry-Val d’Essonne, LaMI CNRS UMR 8042,
523 pl. des Terrasses F-91025 Évry Cedex, France
{aiguier,cboin,legall}@lami.univ-evry.fr
2Université de Poitiers, SIC, CNRS FRE 2731,

SP2MI, F-86962 Futuroscope Cedex
arnould@sic.sp2mi.univ-poitiers.fr
3CEA/DRT/LIST/DTSI/SLA Saclay

F-91191 Gif sur Yvette Cedex
bruno.marre@cea.fr

Abstract. This paper deals with test data set selection from algebraic
specifications. Test data set are generated from selection criteria which
are usually defined to cover specification axioms. The unfolding selection
criterion consists in covering the input domain of an operation using case
analysis. The unfolding procedure can be iterated in order to split input
domains of operations into finer subdomains. In this paper we propose to
extend an unfolding procedure previously developed in [6, 22]. This yields
a generic extension which can be applied to any positive conditional
specification with constructors.

Keywords: Specification-based testing, algebraic specifications, selec-
tion criteria, unfolding, proof tree normalization, conditional rewriting.

1 Introduction

Specification-based testing, or black-box testing, consists in the dynamic verifi-
cation of the specification requirements. Moreover, formal specifications are of
great help for this task since it allows the design of well-founded and powerful
tools for test case generation and for test execution. Test cases are then auto-
matically generated from selection criteria. These criteria are chosen by experts
according to either the application domain or the criticity level. Generally, cri-
teria for specification-based testing allow to cover the specification requirements
(e.g. axioms, transitions or states). In order to provide a success/failure verdict
(oracle problem), test execution tools apply test inputs and analyse the outputs
by comparison with the expected results defined from the formal specification.

Several approaches have been proposed, each one depending on the choice of
formalisms: labelled transition systems [18], model based specifications such as
B method, VDM or Z [12, 19], synchronous reactive languages as LUSTRE [23],
algebraic specifications [6, 14, 7, 2, 3, 17, 20, 21, 13, 10, 9]. In the framework

of testing from algebraic specifications, decision procedures interpret test out-
puts such that the resulting verdicts fit on the notion of program correctness.
Comparing the test outputs with the expected results may be a complex task
when some information is missing (the oracle problem). Different observational
approaches [8] have been proposed to cope with similar problems arising with
specification refinement. Previous works [6, 14] and more particularly [5, 17, 2]
provide a formal framework for a pure black-box testing from algebraic specifica-
tions. Test cases are observable formulas which can be computed by the program
under test and interpreted as “true” or “false”. Correctness of a program un-
der test with respect to a specification is then defined up to some observational
equivalence depending on the set of observable formulas. Obviously, a correct
program is necessarily successful for all test cases. On the contrary, if the suc-
cess of a test set ensures the program correctness, then the test set is said to be
exhaustive. Since under some minimal hypotheses on the program under test, an
exhaustive test set can be viewed as a correctness reference for dynamic testing,
it is a good candidate to be chosen as a starting test set for the selection step.

In this paper, we are interested in the process of selecting test sets from alge-
braic specifications. Within this framework, a selection criterion has to be viewed
as the coverage of some formulas which represent some test objectives, such as
the axioms of the specifications. There are two main strategies to select test
cases: one that performs any selection of test cases based on some deterministic
choice or on a distribution on the considered input domain (random testing) and
one that performs a selection of test cases in order to cover subdomains iden-
tified by a domain coverage (partition testing). In the latter case, subdomains
partition the initial domain and correspond to the various cases addressed by
the specification. Concerning random testing, it has been advocated by several
works [7, 10] since either it is really easy to implement or it brings a quantitative
evaluation of the testing process. The widely well-known drawback of random
testing is the case of a subdomain with a low probability level but with a high
probability level of failure rate. Within the framework of testing from algebraic
specifications, such an unlikely subdomain arises with conditional axioms of the
form ϕ(X) ⇒ ψ(X) with X a variable vector. If the subdomain making true
the condition ϕ(X) has a low probability to be drawn, then random testing can
miss the verification of ψ(X) which is precisely required on this problematic
subdomain [6, 9]. On the contrary, partition testing is based on a case analy-
sis of the formula under test. The formula under test is preprocessed in order
to reveal pertinent subdomains. For example, [12] translates formula under test
into an equivalent disjunctive normal form, each conjunction representing a test
subdomain. Another formula translation consists in applying a proof strategy
such that the remaining lemmas represent a test subdomain [9]. [6, 22] have
given importance to case analysis by unfolding specification axioms. It consists
in splitting the input domain of an operation from specification axioms. Selec-
tion criteria based on axiom unfolding allow the tester to progressively refine the
coverage domain in order to control the size of the resulting test set.

The paper is organized as follows. In Section 2, we recall standard nota-

tions about algebraic positive conditional specifications. In order to be as self-
contained as possible, Section 3 gives relevant definitions of [17]. In Section 4,
we recall the previous unfolding procedure defined for a restricted class of condi-
tional conditional specifications, the executable ones for which each computation
has a unique normal form. Section 5 introduces an extension of this unfolding
procedure allowing us to define a selection criterion for the class of all positive
conditional specifications. Both unfolding procedures perform a case analysis on
specification axioms defining the operations. We will show that the unfolding
selection criterion performs at each step an adequate partition of the input do-
main insofar as it is a sound (no test is added) and complete (no test is lost)
selection criterion.

2 Preliminaries

An (algebraic) signature Σ = (S, F, V) consists in a set S of sorts, a set F of
function names each one equipped with an arity in S∗ × S and a S-indexed sets
of variables V . In the sequel, a function f with the arity (s1 . . . sn, s) will be
noted f : s1 × . . . × sn → s. A signature with constructors is a signature Σ =
(S, F, V) such that F has a subset C elements of which are called constructors.
We note Ω = (S,C, V) the restriction of Σ to constructors of C. Given a signature
Σ = (S, F, V), TΣ(V) and TΣ are both S-sets of terms with variables in V and
ground terms, respectively, freely generated from variables and functions in Σ and
preserving arity of functions. Using a standard numbering of the tree nodes by
natural number strings, we can refer to positions in a term. Thus, given a term t,
a position of t is a string ω in N which represents the path from the root of t to the
subterm whose the head function occurs at this position. This subterm is noted
t|ω . Given a position ω ∈ N

∗ in a term t, t[t′]ω is the term obtained from t by
substituting the subterm t|ω by t′. A substitution is any mapping ρ : V → TΣ(V)
that preserves sorts. They are naturally extended to terms with variables. Σ-
equations are formulae of the form t = t′ with t, t′ ∈ TΣ(V)s for s ∈ S. A positive
conditional Σ-formula is then any sentence of the form α1 ∧ . . . ∧ αn ⇒ αn+1

where each αi is a Σ-equation (1 ≤ i ≤ n+ 1). Sen(Σ) is the set of all positive
conditional Σ-formulae. Given a formula ϕ ∈ Sen(Σ), V ar(ϕ) is the set of all
variables occurring in ϕ. A (positive conditional) specification SP = (Σ, Ax)
consists in a signature Σ and a set Ax of positive conditional formulae often
called axioms.
A Σ-algebra A is a S-indexed set A equipped for each f : s1 × . . . × sn →
s ∈ F with a mapping fA : As1 × . . . × Asn

→ As. A Σ-morphism µ from
a Σ-algebra A to a Σ-algebra B is a mapping µ : A → B such that for all
s ∈ S, µ(As) ⊆ Bs and for all f : s1 × . . .× sn → s ∈ F and all (a1, . . . , an) ∈
As1×. . .×Asn

µ(fA(a1, . . . , an)) = fB(µ(a1), . . . , µ(an)). Alg(Σ) is the category
objects of which are all Σ-algebras. The set of ground terms TΣ can be extended
into a Σ-algebra by providing each function name f : s1 × . . . × sn → s ∈ F

with an application fTΣ : (t1, . . . , tn) 7→ f(t1, . . . , tn). Given a Σ-algebra A,
we note A : TΣ → the unique Σ-morphism that maps any f(t1, . . . , tn) to

fA(tA1 , . . . , t
A
n). A Σ-algebra A is said reachable if A is surjective. Gen(Σ) is

the full subcategory of Alg(Σ) objects of which are all reachable Σ-algebras.
Given a Σ-algebra A, a Σ-interpretation in A is any mapping ι : V → A.
They are naturally extended to terms with variables. A Σ-algebra A validates

a Σ-formula ϕ :
∧

1≤i≤n

ti = t′i ⇒ t = t′, noted A |= ϕ, if and only if for every

Σ-interpretation ι in A, if ι(ti) = ι(t′i) then ι(t) = ι(t′). Given Ψ ⊆ Sen(Σ) and
two Σ-algebras A and B, A is Ψ-equivalent to B, noted A ≡Ψ B, if and only
if we have: ∀ϕ ∈ Ψ, A |= ϕ ⇐⇒ B |= ϕ. Given a specification SP = (Σ, Ax),
a Σ-algebra A is a SP -algebra if for every ϕ ∈ Ax, A |= ϕ. Alg(SP) and
Gen(SP) are both full subcategories of Alg(Σ) and Gen(Σ), respectively, objects
of which are all SP -algebras. A Σ-formula ϕ is a semantical consequence of a
specification SP = (Σ, Ax), noted SP |= ϕ, if and only if for every SP -algebra
A, we have A |= ϕ. SP • is the set of all semantical consequences. A sound
and complete calculus for positive conditional specifications is defined by the
following inference rules:

Ref .
SP ⊢ t = t

Sym.

SP ⊢
∧

1≤i≤m

αi ⇒ t = t′

SP ⊢
∧

1≤i≤m

αi ⇒ t′ = t

Trans.

SP ⊢
∧

1≤i≤m

αi ⇒ t = t′ SP ⊢
∧

1≤i≤m

αi ⇒ t′ = t′′

SP ⊢
∧

1≤i≤m

αi ⇒ t = t′′

Context

SP ⊢
∧

1≤i≤m

αi ⇒ t1 = t′1 . . . SP ⊢
∧

1≤i≤m

αi ⇒ tn = t′n

SP ⊢
∧

1≤i≤m

αi ⇒ f(t1, . . . , tn) = f(t′1, . . . , tn)

Axiom
ϕ ∈ Ax

(Σ, Ax) ⊢ ϕ
Subst.

SP ⊢
∧

1≤i≤m

αi ⇒ α

SP ⊢
∧

1≤i≤m

σ(αi) ⇒ σ(α)

Monotony

SP ⊢
∧

1≤i≤m

αi ⇒ α

SP ⊢
∧

1≤i≤m

αi ∧ β ⇒ α
M.P

SP ⊢
∧

1≤i≤m

αi ∧ u = v ⇒ α SP ⊢
∧

1≤i≤m

αi ⇒ u = v

SP ⊢
∧

1≤i≤m

αi ⇒ α

3 Testing from algebraic specifications

The interpretation of test case submission as a success or failure is closely related
to the notion of program correctness. More precisely, any test case submitted to
a correct program should be analysed in a success case while ideally, an incor-
rect program should fail for at least a test case. In the context of testing from
algebraic specifications, a first natural testing hypothesis is to suppose that pro-
grams are denoted by Σ-algebras. Hence, the test case interpretation can be
defined from the satisfaction of some formulae. These formulae link input test
data to expected results using operations, predicates or connectors of the specifi-
cation. Thus, following our previous works [6, 17, 2], test cases are then denoted
by formulae. As test case submission should yield a verdict, the formulae that
represent test cases correspond to a subset of all formulae: the set of all formulae
which can be interpreted by a computation of the program as “true” or “false”.
These “executable” formulae are also called observable. In practice, observable
formulae are ground formulae only involving equalities on some given sorts (for
example, all sorts provided with an equality predicate within the programming
language). Some abstract data types (sets, stacks, etc) do not provide an equality
procedure within the program under test and then, have to be observed through
successive applications of functions leading to an observable result. For example,
we can use set cardinality and element membership to observe the set data type
as well as the height and the top of all successive poped stacks for the stack data
type. Thus, a non observable ground equality of the form t = t′ is often observed
through all observable contexts c[.] applied to both t and t′. It amounts to apply
to both terms t and t′ the same successive application of operations yielding an
observable value, and to compare resulting values.

3.1 A general framework

Let SP = (Σ, Ax) be a positive conditional specification and Obs ⊆ Sen(Σ) any
set of observable formulae. Let P be a program which is assimilated to a Σ-
algebra of Alg(Σ). It is sensible to assume that all values used by P are denoted
by operation composition of Σ and that P has a functional behaviour with
respect to the operations of Σ. Actually, our notion of correctness is based on
this hypothesis. Indeed, under this minimal hypothesis, the program under test
can be viewed as a simple reachable Σ-algebra which evaluates terms as the way
the program computes the observable formulae. Then, test cases are observable
formulae, which are successful for the program under test if and only if the
Σ-algebra P satisfies them (i.e. executes them and interpret them as “true”):

Definition 1 (Test case and test set). A test case is a formula of SP •∩Obs.
A test set T is a set of test cases. T is said to be successful for P if and only if
∀ϕ ∈ T, P |= ϕ.

Correctness for dynamic testing is defined following an observational ap-
proach comparable to the ones used to define refinement of specifications: it is

required that an algebra of the concrete specification is observationally equiva-
lent to an algebra of the abstract specification. Here, by analogy, to be qualified
as correct with respect to a specification, a program is required to be observation-
ally equivalent to an algebra of the specification up to the observable formulae
of Obs.

Definition 2 (Correctness). P is correct for SP viaObs, denoted by CorrectObs(P, SP),
if and only if there exists an algebra A in Alg(SP) such that A ≡Obs P .

Note that our definition of test cases guarantees that any correct program
is necessarily successful for the set of all test cases SP • ∩ Obs. Indeed, SP • is
clearly the largest set of formulae which are both satisfied by all SP -algebras
and executable by any program under test capable of interpreting formulae in
Obs. This property is also called the unbiased property ([6]). When reciprocally,
a successful test set ensures correctness of the program under test, then we say
that the test set is exhaustive:

Definition 3 (Exhaustiveness). A test set T is exhaustive for SP via Obs if
and only if

∀P ∈ Alg(Σ), P |= T ⇔ CorrectObs(P, SP)

The existence of an exhaustive test set Exhaust means that the considered
specification SP is testable via Obs since correctness can be assymptotically
approached by submitting a (possibly infinite) test set. However, depending on
the nature of SP and Obs, such an exhaustive test set does not necessarily
exist. In [17], there is a counter-example of a specification SP and a set Ob of
observable formulae for which the largest test set SP • ∩Obs is not exhaustive.

Test sets can be compared with respect to their ability to reject (or to accept
from a dual point of view) programs: a test set T is more efficient than a test set
T ′, denoted by T ≤ T ′, if and only if for all programs P in Alg(Σ), then P |= T

implies P |= T ′. T and T ′ verifying both T ≤ T ′ and T ′ ≤ T are said equivalent.
Since SP • ∩Obs is the largest acceptable test set, then SP • ∩Obs is equivalent
to any test set exhaustive for SP via Obs.

The works [20, 21] have proposed a slightly different point of view to for-
mally define testing from algebraic specifications. The authors propose an oracle
procedure combining black-box and white-box testing. A non observable equal-
ity is interpreted using two approximate equalities, qualified as resp. sound and
complete. In practice, the complete equality often stands for an observation of
equalities through a finite set of observable contexts (black-box testing) while
the sound equality stands for an observation of equalities using the concrete
implemented equality (white-box testing). This approach may be applied with
first order formulae with some restrictions about the use of universal and ex-
istential quantifiers. Depending on its place in the formulae, an occurence of a
given equality is observed through either the complete or the sound equality. In-
tuitively, equalities within positive (resp. negative) literals are observed through
complete (resp. sound) equalities. Finally, testing each axiom of the specification

through approximate equalities guarantees that any SP -algebra successfully in-
terprets all test cases. Moreover, the approach has been extended to structured
or CASL architectural specifications. However, there is no counterpart to the
unbiased property: there is no care to the correctness question: how far can a
successful program be declared as correct with respect to the specification?

The challenge of testing consists then in managing (infinite) test sets. In
practice, experts apply some selection criteria on a reference test set in order to
extract a test set of size sufficiently reasonable to be submitted to the program.
The underlying idea is that all test sets satisfying a considered selection criterion
reveal the same class of incorrect programs, intuitively the ones corresponding
to the fault model captured by the criterion. For example, the criterion called
“uniformity hypothesis” postulates that any chosen value is equivalent to another
one. For example, if a test set is given by {σ(ϕ) | σ : V → TΣ} where ϕ denotes
a formula (e.g. an axiom of SP) built over the variable x, then the uniformity
selection criterion consists in choosing one arbitrary substitution σ0 : V → TΣ

in order to select one test: σ0(ϕ).
Roughly, a selection criterion C splits a given starting test set T into a

family of test subsets {Ti}i∈IC(T)
such that T =

⋃

i∈IC(T)

Ti holds. A test set

satisfying such a selection criterion simply contains at least a test case for each
non empty subset Ti. Intuitively, all test cases in Ti are supposed equivalent
to reveal incorrect programs with respect the fault model captured by Ti. In
practice, T represents a property ϕ (an operation, an axiom or any formula
chosen as an testing objective) to be partially covered by testing. The sets Ti

then represent subproperties of ϕ. The selection criterion C is then a coverage
criterion according to the way C is splitting the initial test set T into the family
{Ti}i∈IC(T)

. This is a rather classical way to select test data, known under the
term of partition testing.

Definition 4 (Selection criterion). A selection criterion C is a mapping 1

P(SP •∩Obs) → P(P(SP •∩Obs)). For a test set T , we note |C(T)| =
⋃

i∈IC(T)

Ti

where C(T) = {Ti}i∈IC(T)
.

T ′ satisfies C applied to T , noted by T ′
< C(T) if and only if:

∀i ∈ IC(T), Ti 6= ∅ ⇒ T ′ ∩ Ti 6= ∅.

A selection criterion consists in a mapping that splits test sets into families
of test sets. The selection criterion is satisfied as soon as the considered test
set contains at least a test case within each (non empty) test set of the result-
ing family. To be pertinent, a selection criterion should ensure some properties
between the starting test set and the resulting family of test sets:

Definition 5 (Properties). Let C,C′ be two selection criteria and T, T ′ two
test sets.

1 For a given set X, P(X) denotes the set of all subsets of X.

– C is said sound for T if and only if |C(T)| ⊆ T

– C is said complete for T if and only if |C(T)| and T are equivalent test sets.

– C is partitionning T if and only if ∀i, j ∈ IC(T), i 6= j ⇒ Ti ∩ Tj = ∅

– C is said finer than C′, denoted by C ≤ C′ if and only if

∀T, T ′ ⊆ SP • ∩Obs, T ′
< C(T) ⇒ T ′

< C′(T).

– A family of selection criteria {Ck}k∈C is said iterative if and only if

∀k ∈ C, ∃k′ ∈ C, Ck′ ≤ Ck.

The properties of soundness and completeness are essential for an adequate
selection criterion: soundness ensures that test cases will be selected within the
starting test set (i.e. no test is added) while compleness ensures that we capture
all test cases up to the notion of equivalent test cases (i.e. no test is lost). A suffi-
cient condition to ensure both soundness and completeness of a selection criterion
C for a test set T consists in showing that |C(T)| = T . This condition will be
used in Section ??. When C is partitionning T , this means that the different test
sets Ti are not superposed, and then, that one should choose at least a different
test case for each Ti to build a test set satisfying C for T . An iterative family of
selection criteria allows the tester to extend and to precise the process of test se-
lection up to get a test set of convenient size. In order to obtain such an iterative
family of selection criteria, it suffices to nest selection criteria. More precisely, if
a selection criterion Ck build a test set family {T1, . . . , Tnk

} for a given test set
T , and if a generic selection criterion C applied to any test set of this family, say
Ti for example, provides the family {T 1

i , . . . T
ni

i }, then we can consider the selec-
tion criterion Ck′ defined by Ck′(T) = {T1, . . . , Ti−1, T

1
i , . . . T

ni

i , Ti+1, . . . , Tnk
}.

If moreover the intermediate selection criterion C is sound and complete, then
clearly Ck′ is finer than Ck. We can systematically apply the selection criterion
C to any test set Ti occuring in Ck(T) for arbitrary index k in C and test set T .
Of course, in practice, to define selection criteria in a generic and concise way,
they will be defined on test sets given in an intentional definition. Section ??
will define such an iterative family of selection criteria based on a generic pro-
cedure, the unfolding one which makes a case analysis of each occurrence of
non-constructor operation according to specification axioms.

3.2 A reference test set

In this section, we will show that for a family of positive conditional specifications
SP = (Σ, Ax), there is a reference exhaustive test set via Obs = {u = v | u, v ∈
TΣ}

2. We restrict ourselves to equations for several reasons. First, it simplifies
the activity of test submission and success/failure decision since in practice, it
simply amounts to execute two terms and to compare their results. Second, only

2 If the signature Σ = (S, F, V) has a subset Sobs ⊂ S to denote observable sorts, then
Obs = {u = v | ∃s ∈ Sobs, u, v ∈ TΣs}.

considering equations instead of positive conditional formula will facilitate the
definition of testing strategies. Let us introduce the following test set:

Definition 6 (Reference test set). Let SP = (Σ, Ax) be a specification where
Σ = (S, F, V) is a signature. Let us define the set T0(SP) as follows:

T0(SP) = {f(u1, . . . , un) = v | f ∈ F, u1, . . . , un, v ∈ TΣ, SP ⊢ f(u1, . . . , un) = v}

This set is a reference for the test activity because it reflects the practice of
testing: an operation under testing is both applied and compared to input data
and result that are naturally denoted by ground terms in TΣ. Moreover, this
test set is maximal with respect to the chosen set Obs. Indeed, it corresponds to
SP • ∩Obs.

Elements in T0(SP) are too numerous (often infinite) to be manageable. A
subset of T0(SP) with a manageable size has to be selected.
For many test methods (anyway all test methods used in practice), some strategy
schemata are proposed to guide test selection. The selection method that we
define in this section takes inspiration from classic methods that partition (more
generally that split into) the input domain of each function.
Let Σ = (S, F, V) be a signature and f be an operation of Σ. Succinctly, our
method reports under the following form:

1. splitting the input domain of f into many subdomains, called test sets for
f , and

2. choosing any input in each non-empty sub-domain.

First, let us define what input domain and test set for signature operations
are:

Definition 7 (Input domain of operations). Let SP = (Σ, Ax) be a speci-
fication. Let f : s1 × . . .× sn → s be an operation of Σ. The domain of f , noted
T0(SP)|f , is the set defines by:

T0(SP)|f = {f(u1, . . . , un) = v | f(u1, . . . , un) = v ∈ T0(SP)}

Definition 8 (Test set for operations). Let SP = (Σ, Ax) be a specification
where Σ = (S, F, V) is a signature. Let C be a set of Σ-equations called set of
Σ-constraints. Let f : s1 × . . .× sn → s be an operation of Σ.
A test set for f with respect to C, noted TC,f , is the set of ground equations
defined by:

TC,f = {f(σ(x1) . . . , σ(xn)) = σ(y) | σ : V → TΣ, ∀ε ∈ C SP |= σ(ε)}

4 The selection criteria based on axiom unfolding in

LOFT

In this section, we formalize the problem of test selection from algebraic speci-
fications such as implemented in the test selection tool LOFT [6, 22].

4.1 The unfolding procedure in LOFT

The unfolding procedure as implemented in the test selection tool LOFT assumes
that any conditional positive specification SP is actually presented under the
form of a conditional rewrite system R, that is any axiom is a conditional rewrite

rule of the form
∧

1≤i≤m

αi ⇒ g(v1, . . . , vn) → v or can be directly transformed into

a conditional rewrite rule (e.g. by imposing that specifications presents graceful
presentations [?]). Moreover, to ensure both soundeness and completeness of the
unfolding procedure with respect to the reference test set T0(SP), R is assumed
to be both confluent and equipped with a well-founded ordering satisfying for

all
∧

1≤i≤m

ti = t′i ⇒ t→ t′ in R and all substitutions σ:

– σ(t) > σ(t′) and

– σ(t) > σ(ti) and σ(t) > σ(t′i) for all 1 ≤ i ≤ m.

R is then reductive [15]. It is well-known that such rewrite systems ensure that

both join conditional rewriting is decidable [15] and: u
∗
↔R v ⇐⇒ SP ⊢ u = v.

The unfolding procedure developed here, has in input:

– an operation f ∈ F ,

– a conditional positive specification SP = (Σ, Ax) presented under the form
of a reductive and confluent rewrite system, and

– a set Γ of Σ-constraint sets.

The first set Γ0 = {{f(x1, . . . , xn) = y}} where xi, y ∈ V (1 ≤ i ≤ n).

The unfolding procedure is expressed by the two following inference rules:

Reduce

Γ ∪ {C ∪ {t = t}}

Γ ∪ {C}

Unfolding

Γ ∪ {C ∪ {t = r}}

Γ ∪
⋃

c∈Tr(u|ω ,t=r)

{C ∪ c}
ω a position in u and u ∈ {t, r}

where Tr(u|ω , t = r) for t = r a Σ-equation not of the form v = v, is the set of
Σ-constraint sets defined by:

Tr(u|ω , t = r) =

{u1 = v1, . . . , un = vn, t[v]ω = r, α1, . . . , αm}

u|ω = g(u1, . . . , un)
σ(u|ω) = σ(g(v1, . . . , vn)) (σ unifier),

∧

1≤i≤m

αi ⇒ g(v1, . . . , vn) → v ∈ Ax

As the definition of Tr(u|ω , t = r) is based on the subterm relation and
unification, this set is computable if the specification SP has a finite set of
axioms. Hence, given an equation t = r we have the selection criterion Cε that
maps any TC,f to {TC\{t=r}∪c}c∈Tr(u|ω ,t=r) if t = r ∈ C, TC,f otherwise.

We write Γ ⊢U Γ′ to indicate that Γ can be transformed to Γ′ by applying one
of the above inference rules.

Hence, an unfolding procedure is a program that accepts in input a positive
conditional specification SP = (Σ, Ax) and uses the above inference rules to
generate a (finite or infinite) sequence

Γ0 ⊢U Γ1 ⊢U Γ2 ⊢U Γ3 ⊢U . . .

where Γ0 = {{f(x1, . . . , xn) = y}} with xi, y (1 ≤ i ≤ n) are variables of Σ.

This unfolding procedure has been implemented in the test selection tool
LOFT [6, 22] which has been developed in PROLOG. This enables it to benefit
from a powerful resolution procedure of constraints. To illustrate this tool on an
example, let us specify the insert operation with respect to the List constructors.
This gives rise to the following specification written in the specification language
CASL:

spec Insert =
Nat

then
type List ::= [] | :: (Nat ; List)
op insert : Nat × List → List
∀ x, y: Nat ; L: List
• insert(x, []) = x :: [] %(insert empty)%

• x ≤ y ⇒ insert(x, y :: L) = x :: y :: L %(insert leq)%

• ¬ x ≤ y ⇒ insert(x, y :: L) = y :: insert(x, L) %(insert g)%

end

It is obvious to transform this specification into an equivalent rewrite system
by orienting each conclusion of axioms form the left to the right. With the
recursive path ordering >rpo resulting from the precedence ordering: insert >

:: > [], this rewrite system is reductive. Therefore, let us use LOFT to split
the domain of insert operation by unfolding its axioms. Hence, we obtain three
selection constraints corresponding to the three axioms of insert. The following

LOFT command expresses that the ≤ predicate must not be unfolded while the
insert operation must be unfolded once.

??- unfold_std([#(’__≤__:Nat,Nat->boolean’,0),#(’insert:nat,list->list’,1)],

insert(X,L1) = L2).

FINAL BINDING:

L1:list = empty

L2:list = __::__(X:nat,empty)

SOLUTION #1, CPUTIME = 0

FINAL BINDING:

L1:nlist = __::__(_v0:nat,_v1:list)

L2:nlist = __::__(X:nat,__::__(_v0,_v1))

REMAINING CONSTRAINTS = { __≤__(X,_v0) = true }
SOLUTION #2, CPUTIME = 0

FINAL BINDING:

L1:nlist = __::__(_v0:nat,_v1:nlist)

L2:nlist = __::__(_v0,_v2:nlist)

REMAINING CONSTRAINTS = { __≤__(X:nat,_v0) = false, insert(X,_v1) = _v2 }
SOLUTION #3, CPUTIME = 0

GLOBAL TIME ELAPSED = 0

NUMBER OF SOLUTIONS = 3

yes

Note that LOFT uses a purely equational logic. Consequently, predicates are
translated as boolean operations. Now, if we unfold twice the insert operation,
only the subdomain #3 is split, because only the third constraint contains an
equation with an occurrence of insert. We do not give the LOFT outputs here,
but only the test cases produced to cover the last subdomain.

SOLVED CONSTRAINTS:

BINDING:

L1:nlist = cons(_v0:nat,cons(_v1:nat,_v2:nlist))

L2:nlist = cons(_v0,cons(_v1,_v3:nlist))

CONSTRAINTS = { __≤__(X:nat,_v0) = false, __≤__(X,_v1) = false,

insert(X,_v2) = _v3 }

FINAL BINDING:

X:nat = 6

L1:nlist = __::__(1,__::__(0,__::__(2,__::__(0,__::__(9,empty)))))

L2:nlist = __::__(1,__::__(0,__::__(2,__::__(0,__::__(6,__::__(9,empty))))))

SOLUTION #5, CPUTIME = 9

4.2 Soundness and completeness

Test sets for operations are naturally extended to set of constraint sets as follows:
Let Γ be a set of Σ-constraint sets and f be an operation of the signature Σ

TΓ,f =
⋃

C∈Γ

TC,f

The completeness result needs to assume that for any Γ resulting of the unfolding
procedure, any C ∈ Γ, any ε ∈ C and any ϕ ∈ Ax, V ar(ε) ∩ V ar(ϕ) = ∅. This
can be easily obtained at each iteration of the unfolding procedure by renaming
variables by fresh ones.

Therefore, for any specification SP presented under the form of a reduc-
tive and confluent rewrite system R, both soundness and completeness of the
unfolding procedure hold. Indeed, we have:

Theorem9. If Γ ⊢U Γ′ then TΓ,f = TΓ′,f .

Proof. The case of the inference rule Reduce is obvious. The case of the infer-
ence rule Unfolding is proven as follows:

– (Soundness) TΓ′,f ⊆ TΓ,f . By the definition of the inference rule, this amounts
to show

∀c ∈ Tr(u|ω , t = r), Tc,f 6= ∅ =⇒ Tc,f ⊆ T{t=r},f

for any C ∈ Γ and any t = r ∈ C. Therefore, let c ∈ Tr(u
ω
, t = r) such that

Tc,f 6= ∅. Without loss of generality, let us suppose that

c = {u1 = v1, . . . , un = vn, t[v]ω = r, α1, . . . , αm}

with t|ω = g(v1, . . . , vn), and
∧

1≤i≤m

αi ⇒ g(v1, . . . , vn) → v ∈ Ax. More-

over, let σ : V → TΣ be a ground substitution such that SP ⊢ σ(ui) =
σ(vi), SP ⊢ σ(t[v]ω) = σ(r) and for all 1 ≤ i ≤ m, SP ⊢ σ(αi). As
SP presents a reductive and confluent rewrite system, we directly have
σ(t[g(v1, . . . , vn)]ω) → σ(t[v]ω). Moreover, by the confluence property, we

have σ(t[v]ω)
∗
↔ σ(r), and then σ(t[g(v1, . . . , vn)]ω

∗
↔ σ(r). Finally, we also

have σ(ui)
∗
↔ σ(vi) and then σ(g(u1, . . . , un))

∗
↔ σ(g(v1, . . . , vn)) whence

σ(t)
∗
↔ σ(t[g(v1, . . . , vn]ω]). We then conclude σ(t)

∗
↔ σ(r) and then SP ⊢

t = r.

– (Completeness) To show the completeness, let us suppose that Γ has been
transformed into Γ′ from a constraint t = r in Γ and a position ω in t.
As the conditional rewrite system that represents SP is confluent, we have:
SP ⊢ σ(t) = σ(r) ⇐⇒ σ(t)

∗
↔ σ(r). Necessarily, for t|ω = g(u1, . . . , un) there

is an axiom
∧

1≤i≤m

ti = t′i ⇒ g(v1, . . . , vn) → v in SP and a ground substitution

ρ : V → TΣ such that σ(t|ω) = ρ(g(v1, . . . , vn)), and then, by the confluence

of SP , σ(t) →R σ(t[ρ(g(v1, . . . , vn))]ω)
∗
↔R σ(r) and for all 1 ≤ i ≤ m,

ρ(ti)
∗
↔R ρ(t′i), hold. As V ar(t = r)∩V ar(

∧

1≤i≤m

αi ⇒ g(v1, . . . , vn) = v) = ∅,

there is a unique ground substitution σ′ such that σ′(t) = σ(t), σ′(r) = σ(r),
σ′(g(v1, . . . , vn)) = ρ(g(v1, . . . , vn)), σ′(v) = ρ(v) and for all i, σ′(ti = t′i) =
ρ(ti = t′i). Hence, σ′(t) = σ′(t[g(v1, . . . , vn)]ω), and then σ′ is an unifier of

t|ω and g(v1, . . . , vn). Therefore for all 1 ≤ i ≤ m, we have σ′(ui)
∗
↔R σ′(vi).

From Theorem 9, we have the expected result as a corollary:

Corollary 10 (Soundness and completeness). If Γ0 ⊢U Γ1 ⊢U Γ2 ⊢U . . .

then for all i < ω, TΓi,f = T0(SP)|f .

By Theorem 9, the LOFT selection procedure is then sound and complete.
Moreover, this selection procedure is iterative (see definition 4). However, the
selection procedure provided by LOFT is not partitioning because specification
axioms are not necessarily disjoint. More precisely, if two rewriting rules (ob-
tained from two different axioms) can be applied simultaneously (at the same
position of the same term of the same constraint), then the two resulting sub-
domains then have some common tests.

Recently, the LOFT selection procedure has been re-used in the GATeL tool
[23, 24] that allows to produce test cases from LUSTRE specifications. LUSTRE
is a synchronous language widely used in industry to build reactive systems.
Hence, the GATeL tool unfolds LUSTRE equations to obtain test subdomains
also defined by constraints. Therefore, these constraints are solved such that a
test case is randomly built for each subdomain (if not empty).

5 Our selection criteria based on axiom unfolding

In this section, we refine the previous procedure by removing all the constraints
such as presenting specifications by reductive and confluent rewrite systems.
Here, the only required constraint is that specifications are conditional positive
and that’s all.

5.1 Unfolding procedure

As in the previous section, the unfolding procedure developed here, has in input:

– an operation f ∈ F ,

– a conditional positive specification SP = (Σ, Ax) (without any other con-
straints), and

– a set Γ of Σ-constraint sets.

The first set Γ0 = {{f(x1, . . . , xn) = y}} where xi, y ∈ V (1 ≤ i ≤ n).

The unfolding procedure is expressed by the two following inference rules:
Reduce

Γ ∪ {C ∪ {t = t}}

Γ ∪ {C}

Unfolding

Γ ∪ {C ∪ {ε}}

Γ ∪
⋃

c∈Tr(ε)

{C ∪ c}

where Tr(ε) for ε = (t = r) a Σ-equation not of the form u = u, is the set of
Σ-constraint sets defined by:

Tr(t = r) =

{u1 = v1, . . . , un = vn, t[v]ω = r, α1, . . . , αm}

t|ω = g(u1, . . . , un)
σ(t|ω) = σ(g(v1, . . . , vn)) (σ unifier),

(
∧

1≤i≤m

αi ⇒ g(v1, . . . , vn) = v ∈ Ax

or
∧

1≤i≤m

αi ⇒ v = g(v1, . . . , vn) ∈ Ax)

⋃

{u1 = v1, . . . , un = vn)]ω, t = r[v]ω , α1, . . . , αm}

r|ω = g(u1, . . . , un)
σ(r|ω) = σ(g(v1, . . . , vn)), (σ unifier)

(
∧

1≤i≤m

αi ⇒ g(v1, . . . , vn) = v ∈ Ax

or
∧

1≤i≤m

αi ⇒ v = g(v1, . . . , vn) ∈ Ax)

As the definition of Tr(t = r) is based on the subterm relation and unifica-
tion, this set is computable if the specification SP has a finite set of axioms.
Hence, given an equation ε we have the selection criterion Cε that maps any
TC,f to {TC\{ε}∪c}c∈Tr(ε) if ε ∈ C, TC,f otherwise.

We can observe that the above unfolding procedure is strongly combina-
tory. This is the result of a complete unfolding on all subterms of both terms
t and r. This ensures the completeness of the procedure with respect to the
test set T0(SP) (see the next section). As we saw in section 4, this combinatory
can be managed when dealing with very low-level specifications (i.e. executable
ones) [6, 22]. The interest here is that the unfolding procedure can be applied
to any positive conditional specification with a finite set of axioms. No other

requirement is imposed to ensure both completeness and soundness of the un-
folding process. Hence, this procedure enables us to start functional testing at a
more abstract level of specifications than executable ones.

5.2 Soundness and completeness

We recall that test sets for operations are naturally extended to set of constraint
sets as follows: Let Γ be a set of Σ-constraint sets and f be an operation of the
signature Σ

TΓ,f =
⋃

C∈Γ

TC,f

As previously, the completeness result needs to assume that for any Γ re-
sulting of the unfolding procedure, any C ∈ Γ, any ε ∈ C and any ϕ ∈ Ax,
V ar(ε) ∩ V ar(ϕ) = ∅.

Theorem11. If Γ ⊢U Γ′ then TΓ,f = TΓ′,f .

Proof. The case of the inference rule Reduce is obvious. The case of the infer-
ence rule Unfolding is proven as follows:

– (Soundness) TΓ′,f ⊆ TΓ,f . By the definition of the inference rule, this amounts
to show

∀c ∈ Tr(t = r), Tc,f 6= ∅ =⇒ Tc,f ⊆ T{t=r},f

for any C ∈ Γ and any t = r ∈ C. Therefore, let c ∈ Tr(t = r) such that
Tc,f 6= ∅. Without loss of generality, let us suppose that

c = {u1 = v1, . . . , un = vn, t[v]ω = r, α1, . . . , αm}

with t|ω = g(v1, . . . , vn), and
∧

1≤i≤m

αi ⇒ g(v1, . . . , vn) = v ∈ Ax. Moreover,

let σ : V → TΣ be a ground substitution such that SP ⊢ σ(ui) = σ(vi),
SP ⊢ σ(t[v]ω) = σ(r) and for all 1 ≤ i ≤ m, SP ⊢ σ(αi). We have then the
following proof tree:

σ(u1)=σ(v1)...σ(un)=σ(vn)

...
σ(t)=σ(t[g(v1,...,vn)]ω

α1∧...∧αn⇒g(v1,...,vn)=v

...
α1∧...∧αm⇒t[g(v1,...,vn)]ω=t[v]ω

σ(α1)∧...∧σ(αm)⇒σ(t[g(v1,...,vn)]ω)=σ(t[v]ω)

...
σ(α1)

σ(α2)∧...∧σ(αm)⇒σ(t[g(v1,...,vn)]ω)=σ(t[v]ω)

...
σ(α2)

σ(α3)∧...∧σ(αm)⇒σ(t[g(v1,...,vn)]ω)=σ(t[v]ω)

...
σ(αm)⇒σ(t[g(v1,...,vn)]ω)=σ(t[v]ω)

...
σ(αm)

σ(t[g(v1,...,vn)]ω)=σ(t[v]ω)

σ(t)=σ(t[v]ω)

...
σ(t[v]ω=σ(r)

σ(t) = σ(r)

This then means that SP ⊢ σ(t) = σ(r).

– (Completeness) TΓ,f ⊆ TΓ′,f . By the definition of the inference rule, this
amounts to show

T{t=r},f ⊆
⋃

c∈Tr(t=r)

Tc,f

This is equivalent to show that for any ground substitution σ : V → TΣ

such that SP ⊢ σ(t) = σ(r), there exists c ∈ Tr(t = r) such that for all
ε ∈ c, SP ⊢ σ(ε).

Note that the unfolding procedure defines a strategy that bounds the search
space for proof trees to a given class of trees having a specific structure.
Hence, the unfolding procedure defines a proof search strategy which selects
proof trees where:

• no instance of transitivity occurs both over instances of symmetry, sub-
stitution, and context, and over modus-ponens only when transitivity
occurs on the left premise of modus-ponens.

• no instance of modus-ponens occurs over instances of symmetry, substi-
tution, and context.

• no instance of symmetry and context occurs over substitution.

The above inclusion, is proven by showing that there is a proof tree satisfying
the above specific structure associated to the statement SP ⊢ σ(t) = σ(r).
Actually, we are going to show a stronger result which consists of defining
basic proof tree transformations to transform elementary combinations of
inference rules, and showing that the global proof tree transformation is
terminating. Here, we only give some of these basic transformations of proof
trees. The others follow similar transformations.

The case of transitivity over substitution

...
∧

i≤m

αi ⇒ t = u

...
∧

i≤m

αi ⇒ u = v

∧

i≤m

αi ⇒ t = v

∧

i≤m

ρ(αi) ⇒ ρ(t) = ρ(v)

...
∧

i≤m

αi ⇒ t = u

∧

i≤m

ρ(αi) ⇒ ρ(t) = ρ(u)

...
∧

i≤m

αi ⇒ u = v

∧

i≤m

ρ(αi) ⇒ ρ(u) = ρ(v)

∧

i≤m

ρ(αi) ⇒ ρ(t) = ρ(v)

The case of modus-ponens over substitution

...
∧

1≤i≤m

αi ⇒ t = u

...
α1

∧

2≤i≤m

αi ⇒ t = u

∧

2≤i≤m

ρ(αi) ⇒ ρ(t) = ρ(v)

...
∧

1≤i≤m

αi ⇒ t = u

∧

1≤i≤m

ρ(αi) ⇒ ρ(t) = ρ(u)

...
α1
ρ(α1)

∧

2≤i≤m

ρ(αi) ⇒ ρ(t) = ρ(v)

The case of transitivity over modus-ponens

...
∧

1≤i≤m

αi ⇒ t = u

...
∧

1≤i≤m

αi ⇒ u = v

∧

1≤i≤m

αi ⇒ t = v

...
α1

∧

2≤i≤m

αi ⇒ t = v

...
∧

1≤i≤m

αi ⇒ t = u

...
α1

∧

2≤i≤m

αi ⇒ t = u

...
∧

1≤i≤m

αi ⇒ u = v

...
α1

∧

2≤i≤m

αi ⇒ u = v

∧

2≤i≤m

αi ⇒ t = v

Note that basic proof tree transformations are recognized as “distribution”
of substitutions instances over other rules, symmetry and context over tran-
sitivity and modus-ponens, and modus-ponens over transitivity. Therefore,
by using proof terms for proofs, with a recursive path ordering >rpo to order
proofs defined from the precedence:

substitution > symmetry ∼ context > modus− ponens > transitivity

we show that
∗
 ⊆>rpo and then is terminating 3. 4

Hence, for any statement SP ⊢ σ(t) = σ(r), because t = r is not a tau-

tology (i.e. of the form u = u), there is necessarily an axiom
∧

1≤i≤m

αi ⇒

g(v1, . . . , vn) = v, a position ω in σ(t) or σ(r) and a ground substitution ρ

such that either σ(t)|ω = ρ(g(v1, . . . , vn)) or σ(r)|ω = ρ(g(v1, . . . , vn)). As

V ar(t = r)∩V ar(
∧

1≤i≤m

αi ⇒ g(v1, . . . , vn) = v) = ∅, there is a unique ground

substitution σ′ such that σ′(t) = σ(t), σ′(r) = σ(r), σ′(g(v1, . . . , vn)) =
ρ(g(v1, . . . , vn)), σ′(v) = ρ(v) and for all i, σ′(αi) = ρ(αi). Hence, σ′(t) =
σ′(t[g(v1, . . . , vn)]ω) or σ′(r) = σ′(t[g(v1, . . . , vn)]ω), and then σ′ is an unifier

3 ∗
 is the transitive and reflexive closure of .

4 We refer the interested reader to [1] for a complete proof of
∗
 ⊆>rpo.

of t|ω or r|ω and g(v1, . . . , vn). Therefore, by our global proof tree transfor-
mation, there necessarily exists a proof tree associated to the statement
SP ⊢ σ(t) = σ(r) with the following form:

α1∧...∧αn⇒g(v1,...,vn)=v

σ′(α1)∧...∧σ′(αm)⇒σ′(g(v1,...,vn))=σ′(v)

...
σ′(α1)

σ′(α2)∧...∧σ′(αm)⇒σ′(g(v1,...,vn))=σ′(v)

...
σ′(α2)

...
σ′(αm)⇒σ′(g(v1,...,vn))=σ′(v)

...
σ′(αm)

σ′(g(v1,...,vn))=σ′(v)

...
σ′(t)=σ′(t[v]ω)

...
σ′(t[v]ω)=σ′(r)

σ(t) = σ(r)

Therefore, we have c = {u1 = v1, . . . , un = vn, t[v]ω = r, α1, . . . , αm}.

6 Conclusion

Our present work is based on a well-established framework for specification-
based testing from algebraic specification [6, 14, 17]. Test case submission is
interpreted as the satisfaction by the program of an observable formula. Under
some minimal hypotheses, a program can then be considered as correct with
respect to the specification if its behaviour matches with at least a model of
the specification. The correctness can be ensured by the successful submission
of an exhaustive test set, when it exists. In this article, we have been interested
in test set selection methods. We have focused on selection criteria for parti-
tion testing strategies. It consists in dividing the input domain into subdomains
and then in selecting test cases from each of these subdomains. Some relevant
properties (soundness, completeness, partition, iterative family) on these selec-
tion criteria have been presented. Then we have introduced a general selection
procedure based on axioms unfolding and we have shown that for all positive
conditional specifications with constructors, this selection procedure is sound
and complete. Finally, we have established that this general selection procedure
can be restricted when dealing with a subclass of specifications. This restriction
remains sound and complete and has been implemented by the LOFT tool [22].
Using this restricted procedure, less subdomains are generated at each unfolding
step so the size of test sets becomes easier to manage.

We still have ongoing researches concerning the definition of selection crite-
ria for a larger class of specification including structuration primivites and this
work takes inspiration from [20, 21]. Our goal is to be able to propose a frame-
work of functional testing including selection criteria which would be devoted
to specification coverage and usable at all steps of the software life cycle, and
particularly, at the requirement step.

References

1. M. Aiguier, D. Bahrami, and C. Dubois. On a generalised logicality theorem. In
AISC’2002, volume 2385 of L.N.A.I., pages 51–64. Springer Verlag, 2002. available
at ftp://ftp.lami.univ-evry.fr/ aiguier/.

2. A. Arnould and P. Le Gall. Test de conformité: une approche algébrique. Technique
et Science Informatiques, Test de logiciel, vol. 21, n◦9, pages 1219–1242, 2002.

3. A. Arnould, P. Le Gall, and B. Marre. Dynamic testing from bounded data type
specifications. In Dependable Computing - EDCC-2, Second European Dependable
Computing Conference, volume 1150 of LNCS, pages 285–302, Taormina, Italy,
Octobre 1996. Springer Verlag.

4. G. Bernot. Testing against formal specifications: a theoretical view. In Springer-
Verlag LNCS 494, editor, Proc. TAPSOFT CCPSD, pages 99–119, July 1990.
Brighton.

5. G. Bernot, M.-C. Gaudel, and B. Marre. Software testing based on formal speci-
fications: a theory and a tool. Software Engineering Journal, 6(6):387–405, 1991.

6. Gilles Bernot, Laurent Bouaziz, and Pascale Le Gall. A theory of probabilistic
functional testing. In ICSE ’97: Proceedings of the 19th international conference
on Software engineering, pages 216–226. ACM Press, 1997.

7. M. Bidoit, R. Hennicker, and M. Wirsing. Behavioural and abstractor specifica-
tions. Science of Computer Programming, 25(2-3):149–186, 1995.

8. Achim D. Brucker and Burkhart Wolff. Symbolic test case generation for primitive
recursive functions. In Formal Approaches to Testing of Software. 2004. to appear.

9. Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random testing
of haskell programs. In International Conference on Functional Programming,
pages 268–279, 2000.

10. J. Dick and A. Faivre. Automating the generation and sequencing of test cases
from model-based specifications. In FME’93: Industial-Strenth Formal Methods,
First International Symposium of Formal Methods Europe, volume 670 of LNCS,
pages 268–284, Odense, Denmark, April 1993. Springer Verlag.

11. M. Doche and V. Wiels. Extended institutions for testing. In AMAST’2000,
number 1816 in Lecture Notes in Computer Science, pages 514–528, 2000.

12. M.C. Gaudel. Testing can be formal, too. In TAPSOFT’95, International Joint
Conference, Theory And Practice of Software Development, volume 915 of LNCS,
pages 82–96, Aarhus, Denmark, 1995. Springer Verlag.

13. J.-P. Jouannaud and B. Waldmann. Reductive conditional term rewriting systems.
In M. Wirsing, editor, 3rd IFIP Conference on Formal Description of Programming
Concepts. Elsevier Science Publishers, 1985.

14. P. Le Gall and A. Arnould. Formal specification and test: correctness and oracle.
In Recent Trends in Data Type Specification, volume 1130 of LNCS, pages 342–358.
Springer Verlag, 1996. 11th Workshop on Specification of Abstract Data Types
joint with the 9th general COMPASS workshop. Oslo, Norway, September 1995,
Selected papers.

15. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines
- A survey. In Proceedings of the IEEE, volume 84, pages 1090–1126, 1996.

16. Bruno Legeard, Fabien Peureux, and Mark Utting. Controlling test case explosion
in test generation from b formal models. Softw. Test., Verif. Reliab., 14(2):81–103,
2004.

17. P. Machado. Testing from structured algebraic specifications. In AMAST2000,
volume 1816 of LNCS, pages 529–544, 2000.

18. Patŕıcia D. L. Machado and Donald Sannella. Unit testing for casl architectural
specifications. In Mathematical Foundations of Computer Science, LNCS, pages
506–518. Springer-Verlag, 2002.

19. B. Marre. Toward an automatic test data set selection using algebraic specifications
and logic programming. In K. Furukawa, editor, Eight International Conference
on Logic Programming (ICLP’91), pages 25–28. MIT Press, 1991.

20. B. Marre and A. Arnould. Test sequences generation from LUSTRE descriptions:
GATEL. In Proceedings of ASE-00: The 15th IEEE Conference on Automated
Software Engineering, pages 229–237, Grenoble, September 2000. IEEE CS Press.

21. B. Marre and B. Blanc. Test selection strategies for lustre descriptions
in gatel. In Proceedings of the Workshop on Model Based Testing (MBT
2004) joint to ETAPS’2004, volume 111 of ENTCS, pages 93–111, 2004.
http://www.sciencedirect.com/science/journal/15710661.

This article was processed using the LATEX macro package with LLNCS style

