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Estimating parameters and hidden variables in nonlinear
state-space models based on ODEs for biological

networks inference
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2 IBISC FRE CNRS 2873, University of Evry and Genopole

523, place des terrasses 91025 Evry, France

ABSTRACT

Motivation: Statistical inference of biological networks such as gene
regulatory networks, signaling pathways and metabolic networks can
contribute to build a picture of complex interactions that take place
in the cell. However, biological systems considered as dynamical,
nonlinear and generally partially observed processes may be difficult
to estimate even if the structure of interactions is given.

Results: Using the same approach as Sitz et al. (2002) proposed
in another context, we derive nonlinear state-space models from
ODEs describing biological networks. In this framework, we
apply Unscented Kalman Filtering (UKF) to the estimation of both
parameters and hidden variables of nonlinear state-space models.
We instantiate the method on a transcriptional regulatory model
based on Hill kinetics and a signaling pathway model based on mass
action kinetics. We successfully use synthetic data and experimental
data to test our approach.

Conclusion: This approach covers a large set of biological networks
models and gives rise to simple and fast estimation algorithms.
Moreover, the Bayesian tool used here directly provides uncertainty
estimates on parameters and hidden states. Let us also emphasize
that it can be coupled with structure inference methods used in
Graphical Probabilistic Models.

Availability: Matlab code available on demand.

Supplementary information: Supplementary material are available
from http://amisbio.ibisc.fr/opencms/opencms/amis/en/Downloadable_material.
Contact: florence.dalche@ibisc.fr

1 INTRODUCTION

data. Only few works concern parameter estimation of ODEs with a
strong assumption about the network structure.

Regarding signaling pathways, most of the related work in the
modeling literature? also considers that the structure of signaling
pathways is known. In this case, the most important task becomes
the estimation of (generally) nonlinear models based on Hill or mass
action kinetics.

On the contrary, in modeling transcriptional regulatory networks,
the availability of mRNA concentrations has led researchers to
develop algorithms for the estimation of both parameters and
structure from prior knowledge and experimental dz&

While differences can be stressed between gene regulatory
networks, signaling pathways and metabolic netwarkae adopt
here a transversal point of view and propose to solve in a unique
framework the parameter estimation task when the structure of the
network is known. We notice that whichever biological network
is under study (metabolic, signaling or regulatory), some of its
variables may not be observed, increasing the difficulty of the
estimation task. We thus suggest the use of a general framework
based on state-space models that accounts not only for nonlinear
dynamics but also for partially observed systems. Similarly to
?'s work developed in a non biological context, we derive such
models from well-grounded Ordinary Differential Equations used
in systems biology. This broadens our ability to cover a large
variety of biological systems and establishes a bridge between
dynamical graphical models and ODEs used in Systems Biology.
In nonlinear systems, the statistical learning problem is no longer
solved in closed form as opposed to linear systems and this
raises computational difficulties. In this work, we have chosen to

Cellular networks?? implement complex mechanisms that enable e i Ve
the cell to respond through time to input signals. Identifying theUS€ Unscented Kalman Filtering to tackle nonlinearities. Among

structure and the parameters of these networks from experiment@fher Bayesian approaches, this one is fast and relatively easy
data is undoubtedly one of the most important challenges in systenf§ implément. It can be considered as a first step towards more
biology. Recently, several directions have been simultaneouslyOPhisticated approaches such as particle filtering. We illustrate
but independently explored in reverse engineering of metaboli¢h® efficiency of this framework by estimating the parameters and
networks, signaling pathways and transcriptional regulatory. Thidlidden variables of two different systems. The first system is
diversity of approaches is essentially due to the kind of availabldne Repressilator, a synthetic transcriptional regulatory network
data. proposed by? in order to exhibit how sustained oscillations can

In the case of metabolic pathways, various modeling framework®€ obtained through a simple system of three repressors. We use
from Flux Balance Analysis (FBA) to Ordinary Differential Michaelis-Menten kinetics with Hill curves to describe it.
Equations (ODEs) have been developed. As modelers in this domain The second system under consideration is the JAK-STAT

often benefit from an important background knowledge, much of the¥'gnaling pathway?? which takes part in the regulation of cellular
current work is focused on model refineméntising perturbation ~ '€Sponses to cytokines and growth factors. Following the setting
introduced by?, we study the parameter and hidden variables

estimation problem when using mass action dynamics.
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We show by our derivations that the same state-space model caguation (2) withO,, (-, 0) = o(-) being a function independentof
encompass these two kinds of modeling. Both on artificial andandé. In the following, we show that this framework encompasses
experimental data, the estimation method performs successfully. both models of transcriptional regulatory networks and models of

signaling pathways.
2 MODELING BIOLOGICAL NETWORKS WITH
NONLINEAR STATE-SPACE MODELS

Let us consider a biological network composedpqf variables
evolving with time, denote& = (z1,...,zp,). The vectorx(t)
is supposed to represent the state of the network att#iwlach is
observed atV + 1 timesty = 0 < ¢t; < --- < tn. The graph
structure of the network is known. Thus the functional nature of
interactions is contained in a paramefieand the state evolves in
the following way forn > 0

2.2 Modeling transcriptional regulatory networks with
Hill equations

In transcriptional regulatory networks, variables of interest are
MRNA and protein concentrations, denoted respectively;snd
pi,i = 1,...,d. Let us make the assumption here that one gene can
only produce one protein. We consider transcription and translation
as dynamical processes, in which the production of mRNAs
depends on the concentrations of protein transcription factors (TFs)
and the production of proteins depends on the concentrations of
X1 = Fo (%3 0). (1)  MRNAs. Hence, we havg(tl = (r(t)T,p(t)T)TT with r(t) =
(ri(t),...,ra(t))" andp(t) = (p1(t),...,pa(t)) " . Equation (3)
The function F,, has to be chosen according to the kind of can be splitinto the following equations:

network considered (metabolic, signaling or regulatory pathways). Fi(t) = gi(p) — k9 )
We assume that, for biological or experimental reasons, the states .Z ' E
x5, May not be accessible and we can only observe the varigbtes pi(t) = kiri —kpi. (6)

(41, -- -, yp, ) through the observation functio,, n =0, ..., N wherek{ and k! are respectively the degradation rates of mRNA

Vo = On(xn:0) + € @) ¢ and proteini. The functiong; describes how TFs regulate the
" A " transcription of gene and equation (6) describes the production

€2 is a measurement noise chosen as a centered Gaussian noise wiftfl the degradation of proteiras linear functions wher; is the
covarianceR,,. The model defined by equations (1) and (2) is atranslational constant for gene.

state-space model, frequently encountered in engineering science.Various forms have been proposed to moglép), ranging from

In general state-space modelscan have a stochastic evolution, linear ? to nonlinear approachex??? Experimental evidence has

so equation (1) may be replaced by the more generakong = suggested that the response of mMRNA to TFs concentrations has a
F,.(xn, €;0), with (€2),,>0 being a white noise. This assumption Hill curve form ??. The regulation.function of transcription factor
also has a biological motivation; for instance, McAdams and Arkin?; On its target gené can be described by" (pj; 07", kij,m) =

? have shown the intrinsic randomness of gene regulatory networkm;’”zk,f'%jm for the activation case ang™ (p;; vi**%, kij,n) =
where x represents gene expression levels and concentrations of =~ 12; ’ o s )

transcription factors in the cell. Our goal is to provide a general’i  #7+p7 fOF the inhibition case."*" is the maximum rate
learning framework in which parameters and hidden variables canf transcription of gené, k;; is the concentration of proteip; at

be estimated from a time serigs.n = (yo,.-.,yn~)- which genei reaches half of its maximum transcription rate and

2.1 Deriving nonlinear state-space models from ODEs E?haes;z::;ﬁ:; a;an(f;erquzlsjcrkugun]? fzgjga%i ?;{m?ﬁ .r.?zponses'
Quantitative models of biological networks are usually based oris the set of kinetic constants to be estimated. Note that if a gene
Ordinary Differential Equations (ODE), which means that the statehas several regulators, the regulatory part of the equation (5) can be

of the networks is supposed to satisfy the following ODE extended into a product of functiogs andg~ that expresses the
) combined effect of regulators. However we consider here examples
x(t) = £(x(t),u(t); 0) (3)  where the genes have only one regulator.

. . . ? introduced the Repressilator, a synthetic network based on
There exist se_veral_vyays _to link state-space models W'th ODES’ fotrhree transcriptional repressors in order to implement the desired
Instance _by dlscretl_zmg.nm@. Contra!ry fo Fhe use of integration dynamical behavior (sustained oscillations) as illustrated in Figure
f[hough time, this |mp|_|es se\{er_al "m'ta“F’”s for ,the sampling ; "¢ system was also built experimentally by genetic engineering
|nterva_l of the observations. slmllarly to S't,z _et Ql.s appro&eh it mutated E. coli strains. Despite the simplicity of the
we notice that when the state is observed at finite tithef << transcriptional regulation model, the negative feedback loop leads

its evolution can be cast into (1) with functioBs, andx(t.) = x» to oscillating concentrations confirmed by experiments. The kinetics

forn >0 of the system can be described by six coupled ODEs which exactly
g1 fit the framework previously described and can be translated into a
Fo(xn;0) =xn +/ f (x(7),u(r);0)dr. (4)  discrete-time state-space model of form (1). The hidden variables

t

" are the protein concentrations with evolution as in equation (6), and
In general, the transition fromx,, to x..: is time-dependent; the observations are the (noisily) observed mRNA concentrations
first, because of uneven sampling times (even if the ODE (3):% = 1, ..., 3 which satisfies:
is autonomous) and second, because of the presence of a time-
dependent input variable. Finally, the network can be partially
observed and the observation process is usually described hyhere[i + 1] equals: + 1 modulo3.

7i(t) = g; (P vi " Kifipag, ) — kiri(t)
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wherely,>,, denotes the indicator function, equal@dor ¢t < 7

and equal ta otherwise. The concentrations and constants =

1, 3,4 in (7) stand for normalized quantiti®sg = (a1, a3, a4) " is

the parameter to be estimated. As pointed out by Swamiegle the
individual STAT5 population is difficult to access experimentally,
and only the following variables could be measurgd:= (z2 +
2x3), the concentration of phosphorylated STATS5 in the cytoplasm
andy, = (z1 + x2 + 2x3), the total amount of STAT5 in the
cytoplasm. Thus, the model and data obtained fit the framework of
the state space model described in section 2.1.

Fig. 1. Left Repressilator. The first repressor protein, Lacl inhilbits

transcription of the second repressor gene TetR whoseppr@duct in turn 3 ESTIMATION WITH UNSCENTED KALMAN
inhibits the expression of a third gene cl. Finally, Cl inksbacl expression, FILTERING

completing the cycleRight JAK-STAT signaling pathway. JAK protein
binds to the Erythropoietin Receptor (EpoR) and causestthspghorylation 3.1 Bayesian Estimation

of STATS5 protein. Phosphorylated STAT5 protein then formsraed and . .
. . In a Bayesian framework, parameters as well as hidden states are
moves into the nucleus. In the nucleus, phosphorylated SThmEr is

dephosphorylated and forms a STATS monomer, which finally gaek b re_md_om_variables. The goal of infg_rence is to compute th_e posterior
to the cytoplasm. distribution of parameters and initial stajgf, xo|yo:~ ), given a
prior distribution7 (0, z¢). It is then possible to estimate variances
for parameters. Moreover, we benefit from the large family of
algorithms developed for this framework: the state-space form given
2.3 Modeling signaling pathways: the JAK-STAT by equations (1) and (2) is exploited for deriving a sequential
example estimation procedure based on filtering. We then use an extension

Signaling pathways usually involve numerous and VariousofKalmanfilteringthatcomputesan approximation of the posterior

intermediate products in a complex sequence of transformation@rObabiIity and which alsq gives an approximation of the Minimuml
hence it is quite difficult to describe them in a general way.€an Squared Error estimator (MMSE). Thus method makes it

Depending on the types of signals and intermediary component?,_OSSible to deal with hidden variables and to estimate them quite

and the localization of the pathways, there exist several relevartimPlY-

types of ODEs. Consequently, it seems rather difficult to give the/Ve first recall the general principle of filtering and describe the

same wide picture as for transcriptional regulatory networks, butadapt_atlon of Fhe Kalman filter to the case of r_10n||near evolution
most of the time we can say that the ODEs system involves nonlinedfduations, using the Unscented Transformation (UT). We then

reaction rates derived from mass action law and Michaelis-der“’e the estimation method for unknown parameters and partially

Menten (or Hill) kinetics. We focus here on the JAK-STAT pbserved s_tates ant_j describe it for the biological models considered
signaling pathway involved in the cellular response to cytokines the Prévious section.

and growth factors, which involves Janus kinases (JAKs) and; o Filtering

Signal Transducers and Activators of Transcription (STATS), see . . . .

the graph on the right of Figure 1. This pathway transduces thén th|§ section, we remove for sgke of clarity param eﬂem.
signal carried by these extracellular polypeptides to the cell nucleus?quat'c’@ (1)_ anql (2), and we d(_ascrlbe only Fhe est|mat|o_n of hidden
where activated STAT proteins modify gene expression. In botl .tate_s. F|Iter|ng.|_s the sequential computation of gsterior (or
cases, there may be some difficulties to observe the variables of t gt_enng) prObab'“tyo‘”(.X) = P(Xnlyom) forn =0,...,N 2.
pathway, and this gives rise to different observation functiofiem Without loss of generality, the complete procéss= (xn)o<n<y

gene regulatory networks. This is particularly emphasized in thd"ay be a Maprkov (nondetermln_lstlc) cham,_ Wl.th vaIuesA_h_
JAK-STAT pathway ,for which it is difficult to discriminate between (here_X C RP). The computatlon_ of the fllte_rlng probablllt_y_
several intermediates in the pathwa.have suggested an ODE conS|st_s_ofthe alternate and sequential computat_lop of the prediction
linking the Erythropoietin receptor (EpoR) to the various forms of PrOPaPIlityp(xn[yo:n—1),n = 0, the so-calleprediction step:

the STAT5 protein: dephosphorylated STAT5 monomey) (and

phosphorylated STAT5 dime#§) in the cytoplasm, phosphorylated p(Xn|yon—1) = / P(Xn|Xn—1)n-1(Xn-1)dxn-1 (8)
STATS5 dimer (¢3) and STAT5 monomera(s) in the nucleus. Ir?, X

the concentration of EpoR is considered as an exogenous variable . N . .
of the system. The evolution of this network can be described b)?nd its "correction” intaxn(+) (the so-calledorrection step) by:
the following system of coupled differential equations with an input

variableu(-) (EpoR), which is an adaptation of the system proposed om(Xn) = PYn%n)p(Xn|yon—1) )
in ? by Zi and Klipp?: S P(Ynlxn)p(Xn[yoin—1)dxn
We can then derive the sequence of most likely current states
1(t) = —arz1(t)u(t) + 2a4za(t) 1> characterized byk, = argmaxzex an(x),n = 0,...,N.
ia2(t) = arxi(H)u(t) — 2a423(t) Note that atn = 0, the prediction step is replaced by setting
@3(t) = —asws(t) + 23(t) ™ p(xo0|yo:—1) £ 7(x0), wherer(xo) is our prior distribution on
a(t) = asx3(t) — aawa(t)lye>ry the initial state.
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3.3 Approximate filtering is recommended to perform several sweeps of the algorithm on the
When X is a Gaussian and linear Markov proceds énd o data, i.e. the parameters estimated in the previous sweep are chosen

are linear), the prediction-correction algorithm is the well-known @S the initial value for the next sweep. o .
Kalman filter which consists of a recursive computation of the AS described for hidden states, rat= 0, the prediction step is
mean and covariance of the (Gaussian) distributior(-). This  eplaced by setting(fo, xo|yo:-1) = 7(0,x0). We propose using
algorithm is no longer valid when the proceXsis not Gaussian, the rather noninformative hierarchical prief¢, xo) = (6)(xo),

nor when the functiorF is nonlinear, but several extensions have wherer ((z:):) = [1; N (pa;, 0%,), W_'th pay ~ ([0, A]), i.e. ?‘" _
been proposed to tackle nonlinearity or nongaussianity: Extendefif the components of the vector are independent and Gaussian, with
Kalman Filtering (EKF,?), Kernel Kalman Filtering (KKF,?), amean drawn according to a uniform distribution whose support is
Unscented Kalman Filtering (UKR?) and Particle Filtering (PF, determined by an hyperparametercomputed from the data, and
2). Among the previously published methods, we have focusedh® variancer:, is a fixed value (depending on the data). However,
on UKF which is an approximation of the posterior distributions if @ certain constraint concerning the initial value is made available,
an(+) by Gaussian distributions with mean,, (x) and covariance ~ More informative prior could be used. _

3,(x). The UKF has the same computational complexity as EkgThe est_lmatlon procedur_e fo_r the Repressilator and tthJAK-STAT
but offers a better approximation of the true covarialisgx) and ~ Model is done by considering the stacked state-variahle =
does not require the derivatives Bfto be computed. Compared (0n>Xn) . The state components of the poigts, are computed

to the other filtering methods, KKF requires us to define a kernetSINg by Fn (-, 0n), i.e. by integration of the ODE de_scr'bed in
function that may be difficult to choose if one wants to stick to Section 2.1. For the repressilator, thg,, are vectors of dimension
classical equations of kinetics. PF involves several hyperparametefscorresponding to the gene expression levels. For the JAK-STAT
and, unlike UKF, is based on clouds of randomly generated point&ndel, thex:.» are vectors of dimension 2 computed frgm,. by

of important size which induces numerous ODE integrations inth€ lineéar combinations; + 2x5 and: + 2 + 23,
prediction-correction steps and leads to a higher computational cost.

UKF relies on small deterministic sets of appropriately choseng RESULTS

points used in order to mimic the nonlinear evolution of the stateW first illustrat h tificial dat ted from th
variable: the so-called Sigma poiNgs...,. .., zp. » (ps is the e first illustrate our approach on artificial data generated from the

dimension ofx). The key idea in UKF lies in thprediction step, Repressilator mo_del an_d secon_d, on experim(_ental d"?‘t‘?‘ °f.th?‘ JAK-
where the "unscented transformation” allows one to compute ar§TAT pathway. Simulation studies are useful in providing insights
approximation of the meam (x) and covarianc& (x) into the strengths and weaknesses of learning algorithms, such
of the prediction probabilit?fl"l'nhe mean and covarrile:nl‘c% of the?S rot_austness against numerous chqices of settings, inclu_ding the
transformed variabl®(x,,) (whenx,, has the posterior distribution quantity of observed data, the sampling interval for observing the

ay) can indeed be approximated simply by using the first empiricalflj_?ta’ the nurfntiﬁr of tmle points |ndthe og]served tlme S?”es' it
moments of transformed sigma points chosert@s = mu(x), oo e of tha size of the models that the proposed method
Ein = My (X) + Qi n ANAEisp, n = My (X) — Qi,n, WhereQ,, is P prop

a square root matrix dp, +1,/2) %, (x). Other interesting choices (based on UKF) can efficiently handle, i.e. around ten variables and
of sigma points are given i parameters. In higher dimensions, the recursive optimization using

Then, thecorrection stepis carried out in a way similar to Kalman t_he_ Ul_(F approximation can lead to spur_ious minimizers, bqt sugh a
filtering using the classical Kalman gain matri, ., and the limitation can be partly overcome by using a better approximation,
(approximate) covariancs, , 1, (y) of the pafp(ys+1[yo..) (see such as the Particle FiIFer. The main limitation of the qpproach
section 1 in theSupplementary Materidbr a complete description dfefhends ?n the respective sizes of the observed and hidden parts
of the algorithm). The sequence of estimafétefed procesgx,, of otthe system.

the hidden variables is the sequence of Maangx). 4.1 Parameter estimation of the Repressilator

3.4 Bayesian estimation of parameters 4.1.1 Simulated dataWe start from the equations given in (2.2)
We adapt here the previous general setting to the joint estimation ¢ind fix the following values of the parameters according to the
hidden states and parameters. This can be accomplished using tBi@bility study presented if: k{ = 1, ki = 2, kf = 3,
augmented state vector approach, which consists in rewriting thé} = k3 = k§ = 1,v1"" = 50, 03" = 80, v5""" = 100, k12 =
dynamical system (1), (2): 50, ka3 = 30,ks1 = 40 andn = 3. The components of the
initial state are drawn independently from a uniform distribution
0,1 = 0, (10) on [0, 100] (arbitrary units). Simulations are performed using the
MATLAB numerical integratorode45over the time intervalo, 77,
Xnt1 = F(xn;65) (11)

with T' = 20. The observation noise§ are added to three observed
0(xn;0,) + €, (12) variables to mimic gene expression data and the standard deviation
of €7 shown in the experiments is chosen to be equabt of the
i.e. the parameter is considered as a hidden state without arstandard deviation of the states. The robustness of the method has
temporal evolution. We can use the previous UKF in order tobeen tested with respect to a higher noise leg8ébq, 40%), and
compute the approximation ¢f(6,,x.|yo.») and we can derive similar results for the estimation for the states and parameters have
a sequence of (improving) estima(@a,fcn). been obtained. The estimated predicted variance and the variance
The minimizer of the squared error is approximatedrhy; (). of the estimators increase, although no systematic divergence of the
Nevertheless, in practia,, () can be a spurious minimizer, and it method has been detected.

Yn
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Fig. 2. Left The evolution of the true (dashed) and estimated (solidfepraoncentrationsRight Recursive estimation of the maximal rate of Michaelis-
Menten kinetics through time for the sampling interv®) = 0.2 (corresponds to 100 data points). Dash lines: true paramesalid lines: Estimated
parameters. For each parameter, the bold solid line shows the ofehe filtering distribution and the thin curves show teefdence interval with one
standard deviation.

During the simulation, measurements are sampled at a fixed 1607
interval A, so that for each experiment a time series containing

T/A; time points is collected. We assume that the learning 155} ]
150F p===

max
1

problem consists in identifying the following 6 parameters:
v vyt ws, k1o, kos, k31 while the degradation rates for
proteins and mRNAs are known. In order to learn the true
parameters, we use a multi-start approach by sampling 50
different initial states and parameters from our prdp, xo), SO
that we compute 50 filters in parallel. Our final state and parameter M0 0" 20 30 40 50 60 70 8 90 100

estimates are simply the mean of the prediction of the 50 different Length of observed time series

filters (an alternative way to combine the different filters would be

to select the filter with the lowest prediction error). The GaussiarFig. 3. Estimation of parametey]*“* versus the length of observed time
priors for the parameter are such that = 2 x 0] andoy, = series. The dash line shows the true parameter. The bars shamsraad
0.2 x 67, and for the unobserved variables= 2 x x}, ando,; is standard deviations of estimated parameter.

set t020% of the standard deviation of the state For the observed

variables, the prior is also Gaussian with mggn = y; and the . i
. =0 the true values with smaller standard deviations when there are more
same formula as for the unobserved variables is used for the standay: . : .
. ime points available. In order to compare errors for the different
deviation. . -
cases, we introduce the normalized Mean Squared Error between

the true and estimated trajectories:

Estimated v

1451

4.1.2 Evaluation of parameter estimatioThe filtered protein

concentrations and parameters using UKF are shown in Figure 2 1 N
for A, = 0.2, (see also Figure 1 iSupplementary Materigior MSE = 5~ D &n —x7) Ndiag(S, 1) (Rn — x17)
the case of one experiment: one time series corresponding to one 1=

initial condition). The filtered concentrations of proteins quickly . . . . .
. . ) . o hereX:,, is the covariance matrix of the UKF estimate at time
adjust to the true protein trajectories. The standard deviations o . . . . ;
. . : ) apddiag(A) is the diagonal matrix equal to the diagonal of a square
the estimators are estimated using the square-root of the diagonal of _, . -
. . matrix A. The errors for each component of the state variable are
the matrixX,, (x). Parameter estimates start far from the true value - .
rescaled in order for them to be comparable (though the covariance

Setween the components is not taken into account). The MSE is

true parameters. The small values of the final standard deviation - : .
of the estimates point out the convergence of the learning aIgorithrrPﬁOtted in Figure 2 of theSupplementary Materigand increases

. . ! ; . . Wwhen there are less time points. However, a relevant result is still
Finally, since a single sweep of UKF on a time series contaihiig P

. . . obtained for only 10 observed time points. As we can see in the
observations takes le§sseconds, our multi-start approach gives an . )
L L final column of Table 1 of the&Supplementary Materialthe true
estimation within abou250 seconds.

parameters stands withifio confidence interval of the estimated

4.1.3 Dependency between the prediction error of the hiddenoarameters.

states and the sampling intervaln order to analyze the 4.1.4 Dependency between the prediction error of the parameters
dependency between the prediction error and the sampling intervadnd the number of repeated experimen®e show here that the
we used different sampling intervals (resg)y = 0.2, 0.4, 0.8, influence of the number of different experiments (i.e. time series
1 and 2, corresponding to (resp.) 100, 50, 25, 20 and 10 timeorresponding to the observation of the same system but with
points. The estimates for all parameters are reported in Table different initial conditions). The learning algorithm can be adapted
of the Supplementary MateriaM/e plot the estimation results for to this setting in a straightforward manner, and we show that it is
parametew** in Figure 3. Obviously, the estimates are closer to possible to deal with more difficult situations. As an illustration,
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Fig. 4. Prediction of phosphorylated STAT5 and total amount of STAT5 Fig. 5. The evolution of the simulated (dashed) and estimated (solid)
concentrations of the four unobserved variables.

5 DISCUSSION
we assume that the parametérsks,ks are also unknown, so

that we have to estimate 9 parameters from several time serieg!® @Pproach we derived for nonlinear biological systems has
(with 50 observations each). The MSE's obtained for a numbefréady been proposed in another context by Sittlowever the

of experiments varying froml to 6 are reported in Figure 4 Present work is a novel application of this approach in Systems
of the Supplementary materialThe MSE decreases when more B.lolog.y, which opens new perspectlves in estimating nonlinear
experiments are available. One notes that 3 different experimenfdiological systems. So far, linear state-space models have been
provides the same mean level of MSE as 6 experiments but witfainly useq for trans_cnphona.\l regulatory net\NorI&.proposgd
higher variance. This may help in designing experiments and give!2BN (Inértial Dynamic Bayesian Network), a second order linear
some hints for obtaining accurate estimates of the parameters frofdCE Model that accounts for inertia and allows us to represent
only a few experiments. We also plot the estimation of parametepamped oscillations: in this model hidden variables are the true
»9% versus the number of repeated experiments in Figure 3 offRNA concentrations and their derivative. Parameters and hidden
the Supplementary MaterialThe estimated parameter tends to the variables have been estimated in this context by linear Kalman

true value with smaller standard deviations when the number of!t€ring and smoothing?. ? introduced also a linear dynamical
experiment increases probabilistic model for which the biological interpretation is less

explicit but this work has been interestingly followed by a study
on hidden variable estimation iA. However, a higher level of
. . detail is often required in order to improve the biological relevance
4.2 Paramet(_ar estlmat_lon for the JAK-STAT pathway of the models. This is why? suggested a nonlinear state-space
model using experimental data model based on Michaelis-Menten equations but only to cope with
Experimental data of JAK-STAT pathways froPrwas used. Time  transcription factors. In their model as well asInthe equation
series of two observed variableg (the total concentration of taking into account protein production and degradation is not used.
phosphorylated STATS5) angh (the total concentration of STATS Our model in the case of regulatory networks can thus be seen as an
in the cytoplasm) are measurable. Each time series contains 16 tinextension to a full modeling of protein and mRNA concentrations
points sampled d@t= [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 40, 50, GAfough time.
minutes. Data for the input EPoOR phosphorylation is also availableAnother interest in the state-space interpretation of ODE model
Here we use a linear interpolation in order to obtain a continuoudies in the access to new estimation methods, which could be
time input. We initialize the parameteds, as, a4 and the initial ~ faster than classical ones and could also be able to incorporate
conditionz; independently with a uniform distribution d@, 5]. We priors on the system. Indeed, most of the methods proposed
plot the normalized MSE between the predicted time series and theo far for signaling pathway consist of the minimization of a
data in Figure 4 of th8upplementary Materiallhe convergence of least squares criterioR? without any regularization term. Even
this curve shows the stability of the learning algorithm, and ensuresvhen the model is slightly complex (around ten variables), the
that we have reached a local minima. Eventually, the parameteminimization step requires special care in order to reach the true
estimates (with standard deviations) @re = 0.0515 + 0.0055, maxima, because classical local optimization methods (gradient-
as = 3.39 + 0.45 andas = 0.35 4+ 0.047, and the prediction based or Newton-like) are doomed to reach local minima. In the
for the observed variableg andy. are shown in Figure 4, which end, global optimization techniques have been proposed in order
shows a good fit of the learned model. We also check the coherende solve these problems such as simulated annealing, evolutionary
of the estimation by simulating the JAK-STAT pathway with these algorithms,..??? These techniques are batch methods that do no
estimates.A new time series® is simulated from (7) with initial  use the recursive structure induced by the ODE model. In constrast
conditionsz; = 0.2, xz2 = z3 = x4 = 0 and the estimated to the former, the alternate regressi®or the system perturbation
parameters. The result in Figure 5 showed that the learned modehtethod? exploit the particular structure of the learning problem
is able to predict well the four unobserved components’oso we  in order to derive relatively simple algorithms. Our method takes
may have a higher confidence in the prediction of the unobserveddvantage of the dynamical nature of the model by implementing
variables. a recursive optimization. Though the UKF is only able to reach a
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