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ABSTRACT
Motivation: Statistical inference of biological networks such as gene
regulatory networks, signaling pathways and metabolic networks can
contribute to build a picture of complex interactions that take place
in the cell. However, biological systems considered as dynamical,
nonlinear and generally partially observed processes may be difficult
to estimate even if the structure of interactions is given.
Results: Using the same approach as Sitz et al. (2002) proposed
in another context, we derive nonlinear state-space models from
ODEs describing biological networks. In this framework, we
apply Unscented Kalman Filtering (UKF) to the estimation of both
parameters and hidden variables of nonlinear state-space models.
We instantiate the method on a transcriptional regulatory model
based on Hill kinetics and a signaling pathway model based on mass
action kinetics. We successfully use synthetic data and experimental
data to test our approach.
Conclusion: This approach covers a large set of biological networks
models and gives rise to simple and fast estimation algorithms.
Moreover, the Bayesian tool used here directly provides uncertainty
estimates on parameters and hidden states. Let us also emphasize
that it can be coupled with structure inference methods used in
Graphical Probabilistic Models.
Availability: Matlab code available on demand.
Supplementary information: Supplementary material are available
from http://amisbio.ibisc.fr/opencms/opencms/amis/en/Downloadable material.

Contact: florence.dalche@ibisc.fr

1 INTRODUCTION
Cellular networks?? implement complex mechanisms that enable
the cell to respond through time to input signals. Identifying the
structure and the parameters of these networks from experimental
data is undoubtedly one of the most important challenges in systems
biology. Recently, several directions have been simultaneously
but independently explored in reverse engineering of metabolic
networks, signaling pathways and transcriptional regulatory. This
diversity of approaches is essentially due to the kind of available
data.

In the case of metabolic pathways, various modeling frameworks
from Flux Balance Analysis (FBA) to Ordinary Differential
Equations (ODEs) have been developed. As modelers in this domain
often benefit from an important background knowledge, much of the
current work is focused on model refinement? using perturbation
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data. Only few works concern parameter estimation of ODEs with a
strong assumption about the network structure.

Regarding signaling pathways, most of the related work in the
modeling literature? also considers that the structure of signaling
pathways is known. In this case, the most important task becomes
the estimation of (generally) nonlinear models based on Hill or mass
action kinetics.

On the contrary, in modeling transcriptional regulatory networks,
the availability of mRNA concentrations has led researchers to
develop algorithms for the estimation of both parameters and
structure from prior knowledge and experimental data???.

While differences can be stressed between gene regulatory
networks, signaling pathways and metabolic networks?, we adopt
here a transversal point of view and propose to solve in a unique
framework the parameter estimation task when the structure of the
network is known. We notice that whichever biological network
is under study (metabolic, signaling or regulatory), some of its
variables may not be observed, increasing the difficulty of the
estimation task. We thus suggest the use of a general framework
based on state-space models that accounts not only for nonlinear
dynamics but also for partially observed systems. Similarly to
?’s work developed in a non biological context, we derive such
models from well-grounded Ordinary Differential Equations used
in systems biology. This broadens our ability to cover a large
variety of biological systems and establishes a bridge between
dynamical graphical models and ODEs used in Systems Biology.
In nonlinear systems, the statistical learning problem is no longer
solved in closed form as opposed to linear systems and this
raises computational difficulties. In this work, we have chosen to
use Unscented Kalman Filtering to tackle nonlinearities. Among
other Bayesian approaches, this one is fast and relatively easy
to implement. It can be considered as a first step towards more
sophisticated approaches such as particle filtering. We illustrate
the efficiency of this framework by estimating the parameters and
hidden variables of two different systems. The first system is
the Repressilator, a synthetic transcriptional regulatory network
proposed by? in order to exhibit how sustained oscillations can
be obtained through a simple system of three repressors. We use
Michaelis-Menten kinetics with Hill curves to describe it.

The second system under consideration is the JAK-STAT
signaling pathway?? which takes part in the regulation of cellular
responses to cytokines and growth factors. Following the setting
introduced by?, we study the parameter and hidden variables
estimation problem when using mass action dynamics.
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We show by our derivations that the same state-space model can
encompass these two kinds of modeling. Both on artificial and
experimental data, the estimation method performs successfully.

2 MODELING BIOLOGICAL NETWORKS WITH
NONLINEAR STATE-SPACE MODELS

Let us consider a biological network composed ofpx variables
evolving with time, denotedx = (x1, . . . , xpx). The vectorx(t)
is supposed to represent the state of the network at timet which is
observed atN + 1 times t0 = 0 < t1 < · · · < tN . The graph
structure of the network is known. Thus the functional nature of
interactions is contained in a parameterθ and the state evolves in
the following way forn ≥ 0

xn+1 = Fn(xn; θ). (1)

The function Fn has to be chosen according to the kind of
network considered (metabolic, signaling or regulatory pathways).
We assume that, for biological or experimental reasons, the states
xn may not be accessible and we can only observe the variablesy =
(y1, . . . , ypy ) through the observation functionsOn, n = 0, . . . , N

yn = On(xn; θ) + ǫo
n. (2)

ǫo
n is a measurement noise chosen as a centered Gaussian noise with

covarianceRn. The model defined by equations (1) and (2) is a
state-space model, frequently encountered in engineering science.
In general state-space models,x can have a stochastic evolution,
so equation (1) may be replaced by the more general onexn+1 =
Fn(xn, ǫxn; θ), with (ǫxn)n≥0 being a white noise. This assumption
also has a biological motivation; for instance, McAdams and Arkin
? have shown the intrinsic randomness of gene regulatory networks,
wherex represents gene expression levels and concentrations of
transcription factors in the cell. Our goal is to provide a general
learning framework in which parameters and hidden variables can
be estimated from a time seriesy0:N = (y0, . . . ,yN ).

2.1 Deriving nonlinear state-space models from ODEs
Quantitative models of biological networks are usually based on
Ordinary Differential Equations (ODE), which means that the state
of the networks is supposed to satisfy the following ODE

ẋ(t) = f(x(t), u(t); θ) (3)

There exist several ways to link state-space models with ODEs, for
instance by discretizing time?. Contrary to the use of integration
though time, this implies several limitations for the sampling
interval of the observations. Similarly to Sitz et al.’s approach?,
we notice that when the state is observed at finite times(tn)0≤n≤N ,
its evolution can be cast into (1) with functionsFn andx(tn) = xn

for n ≥ 0

Fn(xn; θ) = xn +

Z tn+1

tn

f (x(τ), u(τ); θ)dτ. (4)

In general, the transition fromxn to xn+1 is time-dependent:
first, because of uneven sampling times (even if the ODE (3)
is autonomous) and second, because of the presence of a time-
dependent input variable. Finally, the network can be partially
observed and the observation process is usually described by

equation (2) withOn(·, θ) = o(·) being a function independent ofn
andθ. In the following, we show that this framework encompasses
both models of transcriptional regulatory networks and models of
signaling pathways.

2.2 Modeling transcriptional regulatory networks with
Hill equations

In transcriptional regulatory networks, variables of interest are
mRNA and protein concentrations, denoted respectively byri and
pi, i = 1, . . . , d. Let us make the assumption here that one gene can
only produce one protein. We consider transcription and translation
as dynamical processes, in which the production of mRNAs
depends on the concentrations of protein transcription factors (TFs)
and the production of proteins depends on the concentrations of
mRNAs. Hence, we havex(t) = (r(t)⊤,p(t)⊤)⊤ with r(t) =
(r1(t), ..., rd(t))⊤ and p(t) = (p1(t), ..., pd(t))⊤. Equation (3)
can be split into the following equations:

ṙi(t) = gi(p) − kg
i ri, (5)

ṗi(t) = kiri − kp
i pi. (6)

wherekg
i andkp

i are respectively the degradation rates of mRNA
i and proteini. The functiongi describes how TFs regulate the
transcription of genei and equation (6) describes the production
and the degradation of proteini as linear functions whereki is the
translational constant for genei ?.

Various forms have been proposed to modelgi(p), ranging from
linear ? to nonlinear approaches????. Experimental evidence has
suggested that the response of mRNA to TFs concentrations has a
Hill curve form ??. The regulation function of transcription factor
pj on its target genei can be described byg+(pj ; v

max
i , kij , n) =

vmax
i

pn
j

kn
ij

+pn
j

for the activation case andg−(pj ; v
max
i , kij , n) =

vmax
i

kn
ij

kn
ij

+pn
j

for the inhibition case.vmax
i is the maximum rate

of transcription of genei, kij is the concentration of proteinpj at
which genei reaches half of its maximum transcription rate andn
is a steepness parameter describing the shape of sigmoid responses.
The parameterθ = (vmax

i , kij , k
g
i , ki, k

g
i , n) for i, j = 1, ..., d

is the set of kinetic constants to be estimated. Note that if a gene
has several regulators, the regulatory part of the equation (5) can be
extended into a product of functionsg+ andg− that expresses the
combined effect of regulators. However we consider here examples
where the genes have only one regulator.
? introduced the Repressilator, a synthetic network based on
three transcriptional repressors in order to implement the desired
dynamical behavior (sustained oscillations) as illustrated in Figure
1. The system was also built experimentally by genetic engineering
with mutated E. coli strains. Despite the simplicity of the
transcriptional regulation model, the negative feedback loop leads
to oscillating concentrations confirmed by experiments. The kinetics
of the system can be described by six coupled ODEs which exactly
fit the framework previously described and can be translated into a
discrete-time state-space model of form (1). The hidden variables
are the protein concentrations with evolution as in equation (6), and
the observations are the (noisily) observed mRNA concentrations
ri, i = 1, ..., 3 which satisfies:

ṙi(t) = g−
i (p[i+1]; v

max
i , ki[i+1], n) − kg

i ri(t)

where[i + 1] equalsi + 1 modulo3.

2



Nonlinear state-space models of biological networks

Fig. 1. Left: Repressilator. The first repressor protein, LacI inhibitsthe
transcription of the second repressor gene TetR whose protein product in turn
inhibits the expression of a third gene cI. Finally, CI inhibits lacI expression,
completing the cycle.Right: JAK-STAT signaling pathway. JAK protein
binds to the Erythropoietin Receptor (EpoR) and causes the phosphorylation
of STAT5 protein. Phosphorylated STAT5 protein then forms a dimer and
moves into the nucleus. In the nucleus, phosphorylated STAT5dimer is
dephosphorylated and forms a STAT5 monomer, which finally goes back
to the cytoplasm.

2.3 Modeling signaling pathways: the JAK-STAT
example

Signaling pathways usually involve numerous and various
intermediate products in a complex sequence of transformations
hence it is quite difficult to describe them in a general way.
Depending on the types of signals and intermediary components,
and the localization of the pathways, there exist several relevant
types of ODEs. Consequently, it seems rather difficult to give the
same wide picture as for transcriptional regulatory networks, but
most of the time we can say that the ODEs system involves nonlinear
reaction rates derived from mass action law and Michaelis-
Menten (or Hill) kinetics. We focus here on the JAK-STAT
signaling pathway involved in the cellular response to cytokines
and growth factors, which involves Janus kinases (JAKs) and
Signal Transducers and Activators of Transcription (STATs), see
the graph on the right of Figure 1. This pathway transduces the
signal carried by these extracellular polypeptides to the cell nucleus,
where activated STAT proteins modify gene expression. In both
cases, there may be some difficulties to observe the variables of the
pathway, and this gives rise to different observation functionso from
gene regulatory networks. This is particularly emphasized in the
JAK-STAT pathway ,for which it is difficult to discriminate between
several intermediates in the pathway.? have suggested an ODE
linking the Erythropoietin receptor (EpoR) to the various forms of
the STAT5 protein: dephosphorylated STAT5 monomer (x1) and
phosphorylated STAT5 dimer (x2) in the cytoplasm, phosphorylated
STAT5 dimer (x3) and STAT5 monomer (x4) in the nucleus. In?,
the concentration of EpoR is considered as an exogenous variable
of the system. The evolution of this network can be described by
the following system of coupled differential equations with an input
variableu(·) (EpoR), which is an adaptation of the system proposed
in ? by Zi and Klipp?:8>><>>: ẋ1(t) = −a1x1(t)u(t) + 2a4x4(t)1{t≥τ}

ẋ2(t) = a1x1(t)u(t) − 2a4x
2
2(t)

ẋ3(t) = −a3x3(t) + x2
2(t)

ẋ4(t) = a3x3(t) − a4x4(t)1{t≥τ}

(7)

where1{t≥τ} denotes the indicator function, equal to0 for t ≤ τ
and equal to1 otherwise. The concentrations and constantsai, i =
1, 3, 4 in (7) stand for normalized quantities?. θ = (a1, a3, a4)

⊤ is
the parameter to be estimated. As pointed out by Swameyeet al., the
individual STAT5 population is difficult to access experimentally,
and only the following variables could be measured:y1 = (x2 +
2x3), the concentration of phosphorylated STAT5 in the cytoplasm
and y2 = (x1 + x2 + 2x3), the total amount of STAT5 in the
cytoplasm. Thus, the model and data obtained fit the framework of
the state space model described in section 2.1.

3 ESTIMATION WITH UNSCENTED KALMAN
FILTERING

3.1 Bayesian Estimation
In a Bayesian framework, parameters as well as hidden states are
random variables. The goal of inference is to compute the posterior
distribution of parameters and initial state,p(θ,x0|y0:N ), given a
prior distributionπ(θ, x0). It is then possible to estimate variances
for parameters. Moreover, we benefit from the large family of
algorithms developed for this framework: the state-space form given
by equations (1) and (2) is exploited for deriving a sequential
estimation procedure based on filtering. We then use an extension
of Kalman filtering that computes an approximation of the posterior
probability and which also gives an approximation of the Minimum
Mean Squared Error estimator (MMSE). Thus method makes it
possible to deal with hidden variables and to estimate them quite
simply.
We first recall the general principle of filtering and describe the
adaptation of the Kalman filter to the case of nonlinear evolution
equations, using the Unscented Transformation (UT). We then
derive the estimation method for unknown parameters and partially
observed states and describe it for the biological models considered
in the previous section.

3.2 Filtering
In this section, we remove for sake of clarity parameterθ in
equations (1) and (2), and we describe only the estimation of hidden
states. Filtering is the sequential computation of theposterior (or
filtering) probabilityαn(x) = p(xn|y0:n) for n = 0, . . . , N ?.
Without loss of generality, the complete processX = (xn)0≤n≤N

may be a Markov (nondeterministic) chain, with values inX
(hereX ⊂ R

px ). The computation of the filtering probability
consists of the alternate and sequential computation of the prediction
probabilityp(xn|y0:n−1), n ≥ 0, the so-calledprediction step:

p(xn|y0:n−1) =

Z
X

p(xn|xn−1)αn−1(xn−1)dxn−1 (8)

and its ”correction” intoαn(·) (the so-calledcorrection step) by:

αn(xn) =
p(yn|xn)p(xn|y0:n−1)R

X
p(yn|xn)p(xn|y0:n−1)dxn

(9)

We can then derive the sequence of most likely current states
characterized bŷxn = arg maxx∈X αn(x), n = 0, . . . , N .
Note that atn = 0, the prediction step is replaced by setting
p(x0|y0:−1) , π(x0), whereπ(x0) is our prior distribution on
the initial state.
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3.3 Approximate filtering
When X is a Gaussian and linear Markov process (F and o

are linear), the prediction-correction algorithm is the well-known
Kalman filter which consists of a recursive computation of the
mean and covariance of the (Gaussian) distributionαn(·). This
algorithm is no longer valid when the processX is not Gaussian,
nor when the functionF is nonlinear, but several extensions have
been proposed to tackle nonlinearity or nongaussianity: Extended
Kalman Filtering (EKF,?), Kernel Kalman Filtering (KKF,?),
Unscented Kalman Filtering (UKF,??) and Particle Filtering (PF,
?). Among the previously published methods, we have focused
on UKF which is an approximation of the posterior distributions
αn(·) by Gaussian distributions with meanmn(x) and covariance
Σn(x). The UKF has the same computational complexity as EKF
but offers a better approximation of the true covarianceΣn(x) and
does not require the derivatives ofF to be computed. Compared
to the other filtering methods, KKF requires us to define a kernel
function that may be difficult to choose if one wants to stick to
classical equations of kinetics. PF involves several hyperparameters
and, unlike UKF, is based on clouds of randomly generated points
of important size which induces numerous ODE integrations in
prediction-correction steps and leads to a higher computational cost.
UKF relies on small deterministic sets of appropriately chosen
points used in order to mimic the nonlinear evolution of the state
variable: the so-called sigma pointsξ0,n, . . . , ξ2px,n (px is the
dimension ofx). The key idea in UKF lies in theprediction step,
where the ”unscented transformation” allows one to compute an
approximation of the meanmn+1|n(x) and covarianceΣn+1|n(x)
of the prediction probability. The mean and covariance of the
transformed variableF(xn) (whenxn has the posterior distribution
αn) can indeed be approximated simply by using the first empirical
moments of transformed sigma points chosen asξ0,n = mn(x),
ξi,n = mn(x) + Qi,n andξi+px,n = mn(x)−Qi,n, whereQn is
a square root matrix of(2px+1/2)Σn(x). Other interesting choices
of sigma points are given in?.
Then, thecorrection step is carried out in a way similar to Kalman
filtering using the classical Kalman gain matrixKn+1 and the
(approximate) covarianceΣn+1|n(y) of the pdfp(yn+1|y0:n) (see
section 1 in theSupplementary Materialfor a complete description
of the algorithm). The sequence of estimates (filtered process) x̂n of
the hidden variables is the sequence of meansmn(x).

3.4 Bayesian estimation of parameters
We adapt here the previous general setting to the joint estimation of
hidden states and parameters. This can be accomplished using the
augmented state vector approach, which consists in rewriting the
dynamical system (1), (2):

θn+1 = θn (10)

xn+1 = F(xn; θn) (11)

yn = o(xn; θn) + ǫ
o
n (12)

i.e. the parameter is considered as a hidden state without any
temporal evolution. We can use the previous UKF in order to
compute the approximation ofp(θn,xn|y0:n) and we can derive
a sequence of (improving) estimates(θ̂n, x̂n).
The minimizer of the squared error is approximated bymn(θ).
Nevertheless, in practicemn(θ) can be a spurious minimizer, and it

is recommended to perform several sweeps of the algorithm on the
data, i.e. the parameters estimated in the previous sweep are chosen
as the initial value for the next sweep.

As described for hidden states, atn = 0, the prediction step is
replaced by settingp(θ0,x0|y0:−1) = π(θ,x0). We propose using
the rather noninformative hierarchical priorπ(θ,x0) = π(θ)π(x0),
whereπ

�
(xi)i

�
=
Q

i
N (µxi

, σ2
xi

), with µxi
∼ U([0, λi]), i.e. all

of the components of the vector are independent and Gaussian, with
a mean drawn according to a uniform distribution whose support is
determined by an hyperparameterλi computed from the data, and
the varianceσ2

xi
is a fixed value (depending on the data). However,

if a certain constraint concerning the initial value is made available,
more informative prior could be used.
The estimation procedure for the Repressilator and the JAK-STAT
model is done by considering the stacked state-variablex̃n =
(θ⊤

n ,x⊤
n )⊤. The state components of the pointsξi,n are computed

using by Fn(·, θn), i.e. by integration of the ODE described in
section 2.1. For the repressilator, theχi,n are vectors of dimension
3 corresponding to the gene expression levels. For the JAK-STAT
model, theχi,n are vectors of dimension 2 computed fromξi,n by
the linear combinationsx2 + 2x3 andx1 + x2 + 2x3.

4 RESULTS
We first illustrate our approach on artificial data generated from the
Repressilator model and second, on experimental data of the JAK-
STAT pathway. Simulation studies are useful in providing insights
into the strengths and weaknesses of learning algorithms, such
as robustness against numerous choices of settings, including the
quantity of observed data, the sampling interval for observing the
data, the number of time points in the observed time series.
The size of the systems used in the experiments are quite
representative of the size of the models that the proposed method
(based on UKF) can efficiently handle, i.e. around ten variables and
parameters. In higher dimensions, the recursive optimization using
the UKF approximation can lead to spurious minimizers, but such a
limitation can be partly overcome by using a better approximation,
such as the Particle Filter. The main limitation of the approach
depends on the respective sizes of the observed and hidden parts
of the system.

4.1 Parameter estimation of the Repressilator
4.1.1 Simulated data We start from the equations given in (2.2)
and fix the following values of the parameters according to the
stability study presented in?: kp

1 = 1, kp
2 = 2, kp

3 = 3,
kg
1 = kg

2 = kg
3 = 1, vmax

1 = 50, vmax
2 = 80, vmax

3 = 100, k12 =
50, k23 = 30, k31 = 40 and n = 3. The components of the
initial state are drawn independently from a uniform distribution
on [0, 100] (arbitrary units). Simulations are performed using the
MATLAB numerical integratorode45over the time interval[0, T ],
with T = 20. The observation noisesǫo

n are added to three observed
variables to mimic gene expression data and the standard deviation
of ǫo

n shown in the experiments is chosen to be equal to20% of the
standard deviation of the states. The robustness of the method has
been tested with respect to a higher noise level (30%, 40%), and
similar results for the estimation for the states and parameters have
been obtained. The estimated predicted variance and the variance
of the estimators increase, although no systematic divergence of the
method has been detected.
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Fig. 2. Left: The evolution of the true (dashed) and estimated (solid) protein concentrations.Right: Recursive estimation of the maximal rate of Michaelis-
Menten kinetics through time for the sampling interval∆t = 0.2 (corresponds to 100 data points). Dash lines: true parameters. Solid lines: Estimated
parameters. For each parameter, the bold solid line shows the mean of the filtering distribution and the thin curves show the confidence interval with one
standard deviation.

During the simulation, measurements are sampled at a fixed
interval ∆t, so that for each experiment a time series containing
T/∆t time points is collected. We assume that the learning
problem consists in identifying the following 6 parameters:
vmax
1 , vmax

2 , v3, k12, k23, k31 while the degradation rates for
proteins and mRNAs are known. In order to learn the true
parameters, we use a multi-start approach by samplingI = 50
different initial states and parameters from our priorπ(θ,x0), so
that we compute 50 filters in parallel. Our final state and parameter
estimates are simply the mean of the prediction of the 50 different
filters (an alternative way to combine the different filters would be
to select the filter with the lowest prediction error). The Gaussian
priors for the parameter are such thatλi = 2 × θ∗

i and σθi
=

0.2 × θ∗
i , and for the unobserved variablesλi = 2 × xi

0 andσ
x

i
0

is
set to20% of the standard deviation of the statexi. For the observed
variables, the prior is also Gaussian with meanµ

x
i
0

= yi
0 and the

same formula as for the unobserved variables is used for the standard
deviation.

4.1.2 Evaluation of parameter estimationThe filtered protein
concentrations and parameters using UKF are shown in Figure 2
for ∆t = 0.2, (see also Figure 1 inSupplementary Materialfor
the case of one experiment: one time series corresponding to one
initial condition). The filtered concentrations of proteins quickly
adjust to the true protein trajectories. The standard deviations of
the estimators are estimated using the square-root of the diagonal of
the matrixΣn(x). Parameter estimates start far from the true value
with high standard deviations, but they gradually converge to the
true parameters. The small values of the final standard deviations
of the estimates point out the convergence of the learning algorithm.
Finally, since a single sweep of UKF on a time series containing100
observations takes less5 seconds, our multi-start approach gives an
estimation within about250 seconds.

4.1.3 Dependency between the prediction error of the hidden
states and the sampling intervalIn order to analyze the
dependency between the prediction error and the sampling interval,
we used different sampling intervals (resp.)∆t = 0.2, 0.4, 0.8,
1 and 2, corresponding to (resp.) 100, 50, 25, 20 and 10 time
points. The estimates for all parameters are reported in Table 1
of the Supplementary Material. We plot the estimation results for
parametervmax

1 in Figure 3. Obviously, the estimates are closer to
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Fig. 3. Estimation of parametervmax
1 versus the length of observed time

series. The dash line shows the true parameter. The bars show means and
standard deviations of estimated parameter.

the true values with smaller standard deviations when there are more
time points available. In order to compare errors for the different
cases, we introduce the normalized Mean Squared Error between
the true and estimated trajectories:

MSE =
1

N + 1

NX
n=0

(x̂n − x
true
n )⊤diag(Σ−1

n )(x̂n − x
true
n )

whereΣn is the covariance matrix of the UKF estimate at timen
anddiag(A) is the diagonal matrix equal to the diagonal of a square
matrix A. The errors for each component of the state variable are
rescaled in order for them to be comparable (though the covariance
between the components is not taken into account). The MSE is
plotted in Figure 2 of theSupplementary Materialand increases
when there are less time points. However, a relevant result is still
obtained for only 10 observed time points. As we can see in the
final column of Table 1 of theSupplementary Material, the true
parameters stands within±σ confidence interval of the estimated
parameters.

4.1.4 Dependency between the prediction error of the parameters
and the number of repeated experimentsWe show here that the
influence of the number of different experiments (i.e. time series
corresponding to the observation of the same system but with
different initial conditions). The learning algorithm can be adapted
to this setting in a straightforward manner, and we show that it is
possible to deal with more difficult situations. As an illustration,
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Fig. 4. Prediction of phosphorylated STAT5 and total amount of STAT5.

we assume that the parametersk1,k2,k3 are also unknown, so
that we have to estimate 9 parameters from several time series
(with 50 observations each). The MSE’s obtained for a number
of experiments varying from1 to 6 are reported in Figure 4
of the Supplementary material. The MSE decreases when more
experiments are available. One notes that 3 different experiments
provides the same mean level of MSE as 6 experiments but with
higher variance. This may help in designing experiments and gives
some hints for obtaining accurate estimates of the parameters from
only a few experiments. We also plot the estimation of parameter
vmax
1 versus the number of repeated experiments in Figure 3 of

the Supplementary Material. The estimated parameter tends to the
true value with smaller standard deviations when the number of
experiment increases.

4.2 Parameter estimation for the JAK-STAT pathway
model using experimental data

Experimental data of JAK-STAT pathways from? was used. Time
series of two observed variablesy1 (the total concentration of
phosphorylated STAT5) andy2 (the total concentration of STAT5
in the cytoplasm) are measurable. Each time series contains 16 time
points sampled att = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 40, 50, 60]
minutes. Data for the input EPoR phosphorylation is also available.
Here we use a linear interpolation in order to obtain a continuous
time input. We initialize the parametersa1, a3, a4 and the initial
conditionx1 independently with a uniform distribution on[0, 5]. We
plot the normalized MSE between the predicted time series and the
data in Figure 4 of theSupplementary Material. The convergence of
this curve shows the stability of the learning algorithm, and ensures
that we have reached a local minima. Eventually, the parameter
estimates (with standard deviations) areâ1 = 0.0515 ± 0.0055,
â3 = 3.39 ± 0.45 and â4 = 0.35 ± 0.047, and the prediction
for the observed variablesy1 andy2 are shown in Figure 4, which
shows a good fit of the learned model. We also check the coherence
of the estimation by simulating the JAK-STAT pathway with these
estimates.A new time seriesx⋆ is simulated from (7) with initial
conditionsx1 = 0.2, x2 = x3 = x4 = 0 and the estimated
parameters. The result in Figure 5 showed that the learned model
is able to predict well the four unobserved components ofx⋆, so we
may have a higher confidence in the prediction of the unobserved
variables.
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Fig. 5. The evolution of the simulated (dashed) and estimated (solid)
concentrations of the four unobserved variables.

5 DISCUSSION
The approach we derived for nonlinear biological systems has
already been proposed in another context by Sitz?. However the
present work is a novel application of this approach in Systems
Biology, which opens new perspectives in estimating nonlinear
biological systems. So far, linear state-space models have been
mainly used for transcriptional regulatory networks.? proposed
IDBN (Inertial Dynamic Bayesian Network), a second order linear
ODE model that accounts for inertia and allows us to represent
damped oscillations: in this model hidden variables are the true
mRNA concentrations and their derivative. Parameters and hidden
variables have been estimated in this context by linear Kalman
filtering and smoothing?. ? introduced also a linear dynamical
probabilistic model for which the biological interpretation is less
explicit but this work has been interestingly followed by a study
on hidden variable estimation in?. However, a higher level of
detail is often required in order to improve the biological relevance
of the models. This is why? suggested a nonlinear state-space
model based on Michaelis-Menten equations but only to cope with
transcription factors. In their model as well as in?, the equation
taking into account protein production and degradation is not used.
Our model in the case of regulatory networks can thus be seen as an
extension to a full modeling of protein and mRNA concentrations
through time.
Another interest in the state-space interpretation of ODE model
lies in the access to new estimation methods, which could be
faster than classical ones and could also be able to incorporate
priors on the system. Indeed, most of the methods proposed
so far for signaling pathway consist of the minimization of a
least squares criterion?? without any regularization term. Even
when the model is slightly complex (around ten variables), the
minimization step requires special care in order to reach the true
maxima, because classical local optimization methods (gradient-
based or Newton-like) are doomed to reach local minima. In the
end, global optimization techniques have been proposed in order
to solve these problems such as simulated annealing, evolutionary
algorithms,. . .???. These techniques are batch methods that do no
use the recursive structure induced by the ODE model. In constrast
to the former, the alternate regression? or the system perturbation
method? exploit the particular structure of the learning problem
in order to derive relatively simple algorithms. Our method takes
advantage of the dynamical nature of the model by implementing
a recursive optimization. Though the UKF is only able to reach a
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local minimum of the posterior probability, it delivers a sequence
of estimated stateŝxn and parameterŝθn which are likely for
all the intermediate estimation problems with observationsy0:n.
This sequence of estimates remains plausible, at least when the
initial conditions are correctly chosen (which can be done in
some case with the literature). We have used in our experiments
simple priors (flat or Gaussian priors), but Bayesian estimation
may benefit from more elaborated prior distributions in order
to favour meaningful regions of the parameter and state spaces.
Moreover, the most striking property of this estimator is its ease of
implementation and above all its speed which is an advantage over
global optimization methods. One should also note that the variance
of the estimator(x̂N , θ̂) is simultaneously computed, whereas it
is not straightforward to compute it in batch methods since the
model can be too complex to be done analytically or approximately.
Moreover, our estimation method can be still be enhanced by the use
of smoothing probabilities and the promising results of UKF calls
for more sophisticated filtering approaches such as particle filtering.

6 CONCLUSION AND PERSPECTIVES
We have presented nonlinear state-space models for describing
biological networks and nonlinear filtering approaches to estimate
both parameters and hidden variables. As the models are built
up from ODEs, they benefit from all the existing background in
biological modeling with ODEs and thus are ensured to exhibit
high biological relevance. This point was illustrated on two different
kinds of networks models: a transcriptional regulatory model based
on Hill kinetics and a signaling pathway model based on mass
action kinetics. Let us notice that, given the type of equations we
already dealt with, there is no reason not to apply this approach
to model metabolic networks and to estimate their parameters as
soon as experimental data are available. Moreover this work raises
several issues that encourage further works. First, our estimation
algorithm like others in literature requires time series of sufficient
length to be efficient. In this case, we need to reduce the complexity
of the parameter space by introducing relevant biological priors.
The Bayesian framework we use is appropriate for this. Second,
large networks with large number of parameters may not be
identifiable. In order to overcome this limitation, we suggest
applying the decompositional scheme developed in? in order to
work only on subnetworks. Third, it should be emphasized that
our parameter estimation method can be coupled with any of the
classical structure learning schemes used in graphical probabilistic
models (MCMC, evolutionary approaches) in order to fully reverse-
engineer biological networks. Finally, it should also be stressed
that this framework could account for joint modeling of metabolic,
signaling and regulatory networks if one can deal with the various
time scales and has access to appropriately observed time series.
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