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Abstract

A general framework is proposed for gradi-
ent boosting in supervised learning problems
where the loss function is defined using a ker-
nel over the output space. It extends boost-
ing in a principled way to complex output
spaces (images, text, graphs etc.) and can
be applied to a general class of base learners
working in kernelized output spaces. Empiri-
cal results are provided on three problems: a
regression problem, an image completion task
and a graph prediction problem. In these ex-
periments, the framework is combined with
tree-based base learners, which have interest-
ing algorithmic properties. The results show
that gradient boosting significantly improves
these base learners and provides competitive
results with other tree-based ensemble meth-
ods based on randomization.

1. Introduction

Prediction in structured output spaces has recently
emerged as a key challenging problem in statistical
learning. The availability of structured data sets from
XML documents to biological structures, such as se-
quences or graphs, has prompted for the develop-
ment of new learning algorithms able to handle com-
plex structured output spaces. Among recent solu-
tions proposed in the literature, one can distinguish
classification and regression based solutions (Cortes
et al., 2005). Loosely speaking, classification based
approaches exploit a feature space defined on input-
output pairs and formulate the problem as that of
finding a linear function in this feature space that pro-
vides a high score to those input-output pairs appear-
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ing in the learning sample while maximizing a margin
(Tsochantaridis et al., 2005; Taskar et al., 2005). Re-
gression based approaches, on the other hand, embed
the output space into a kernel induced Hilbert space
and compute a mapping from inputs towards this lat-
ter space by exploiting the kernel trick in standard
regression methods (Weston et al., 2002; Cortes et al.,
2005; Szedmak et al., 2005). Predictions in the original
output space are then obtained by solving the so-called
pre-image problem. Notice that, while the exploita-
tion of a joint feature space is potentially an advantage
of classification based approaches for certain applica-
tions, they usually have a higher computational cost
than regression ones (see Memisevic, 2006 for an in-
troduction to both approaches and Cortes et al., 2005
for a comparison of them).

A recent example of regression based approaches can
be found in (Geurts et al., 2006b) where regression
trees are extended to kernelized output spaces. The
experiments described in that paper suggest that in
terms of accuracy this approach is specially effective
in the context of ensembles of randomized trees. In the
present paper, we investigate how boosting can be gen-
eralized to deal with structured output spaces. Boost-
ing, originally introduced by Freund and Schapire
(1997) in the context of classification, has been shown
to offer a general framework to enhance any weak
learner, in particular when considering its interpreta-
tion as a gradient descent in a functional space (Fried-
man, 2001; Mason et al., 2000). Its success in many
application areas makes it a natural candidate also for
learning in kernelized output spaces.

The rest of the paper is organized as follows. In Sec-
tion 2, we present a new boosting algorithm, called
OKBoost, which extends least squares gradient boost-
ing (Friedman, 2001) to kernelized output spaces. We
first derive a general form of the algorithm and then
specialize it for tree-based base learners which are spe-
cially attractive from the algorithmic point of view.
In Section 3, this combination is evaluated on three
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problems where it shows significant improvement with
respect to a single trees and provides competitive re-
sults with other tree based ensemble methods. Section
4 concludes and discusses future work.

2. Gradient Boosting for Prediction in

Kernelized Output Spaces

2.1. Least Squares Gradient Boosting

The general problem of supervised learning can
be formulated as follows: from a learning sample
{(xi, yi)}N

i=1 with xi ∈ X and yi ∈ Y, find a func-
tion F : X → Y that minimizes the expectation of
some loss function ℓ over the joint distribution of in-
put/output pairs, Ex,y{ℓ(F (x), y)}.
The idea of boosting is to approximate F by building
sequentially a linear combination of “weak” learners
in such a way that, at each step, more importance is
given to data that have been unsuccessfully learned at
the previous steps. We focus here on the regression
setting and consider the gradient boosting framework
proposed by Friedman (Friedman, 2001). Let us first
suppose that Y = IR and that we want to find an
approximation F (x) in the form:

F (x) = F0(x) +
M
∑

m=1

βmh(x; am),

where F0 is some initial approximation, {h(x; a)}a∈A

is a set of basis functions mapping inputs to IR, and
βm ∈ IR. In this context, boosting builds the model
F (x) in a greedy-stagewise way, by adding at each step
a new basis function to the approximation chosen so as
to reduce as much as possible the empirical loss. For
m = 1, 2, . . . ,M , this translates into:

(βm, am) = arg min
β∈IR,a∈A

N
∑

i=1

ℓ(yi, Fm−1(xi)+βh(xi; a)),

(1)
Fm(x) = Fm−1(x) + βmh(x; am). (2)

Since (1) may be difficult to compute, the idea de-
veloped in (Friedman, 2001) is to compute instead
the function h(x; am) that is the most parallel to the
steepest-descent direction in the N -dimensional data
space at Fm−1(x). With a square-error loss function,
this procedure reduces to the (least-squares) residual
fitting procedure given in Algorithm 1 (see Friedman,
2001), where we assume that the scaling parameter β
is incorporated in the base-learner1 and that F0 is the
sample average of the outputs.

1This is the case of regression trees (and subsequently
of output kernel trees) since leaf predictions are chosen to
minimize square error.

Algorithm 1 Gradient boosting with square loss

F0(x) = 1

N

∑N

i=1
yi

for m = 1 to M do
(a) ym

i = yi − Fm−1(xi), i = 1, . . . , N

(b) am = arg mina

∑N

i=1
(ym

i − h(xi; a))2

(c) Fm(x) = Fm−1(x) + h(x; am)
end for

Algorithm 2 Abstract gradient boosting with square
loss in output feature space

F
φ
0

(x) = 1

N

∑N

i=1
φ(yi)

for m = 1 to M do
(a) φm

i = φ(yi) − F
φ
m−1

(xi), i = 1, . . . , N

(b) am = arg mina

∑N

i=1
||φm

i − hφ(xi; a)||2

(c) F φ
m(x) = F

φ
m−1

(x) + hφ(x; am)
end for

Algorithm 2 can be easily extended to multiple outputs
(i.e., Y = IRn), by using the euclidean loss function
ℓ(y1, y2) = ||y1 − y2||2 and replacing step (b) by:

am = arg min
a

N
∑

i=1

||ym
i − h(xi; a)||2.

It can thus be applied to any base learner handling
multiple outputs with a euclidean loss function.

2.2. Output-Kernel Based Gradient Boosting

Let us suppose now that we have a kernelized output
space, i.e. an output space Y endowed with a kernel
k : Y × Y → IR, and let us denote by φ : Y → H the
feature map defined by k. Substituting outputs y in
Algorithm 1 by vectors φ(y) ∈ H, we get Algorithm
2 where hφ and Fφ now denote functions from X to
H and residuals φm

i belongs to H. Notice that this
algorithm minimizes the loss:

ℓ(y1, y2) = ||φ(y1) − φ(y2)||2

= k(y1, y1) + k(y2, y2) − 2k(y1, y2). (3)

which depends only on the output kernel. Thus, to ex-
ploit this idea in practice, assuming that the kernel val-
ues are given over the learning sample, we need to be
able to learn functions Fφ

0 (x) and hφ(x; am) from ker-
nel values and to define a way to compute pre-images
ŷ = φ−1(Fφ

M (x)) from the final model. We address
these two problems separately below.

2.2.1. Learning Stage (from Kernel Values)

We assume that the base learner can handle a kernel-
ized output space, i.e. that it takes only as input ker-
nel values between updated outputs km

i,j = 〈φm
i , φm

j 〉.
Hence, during the training stage, we need to compute
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Algorithm 3 Output kernel based boosting (learning stage)

input a learning sample {(xi, yi)}N
i=1 and an output Gram matrix K (with Ki,j = k(yi, yj)).

output an ensemble of weight functions
{

(wi(x; am))N
i=1

}M

m=0
.

1: wi(x; a0) ≡ 1/N , W 0
i,j = 1/N,∀i, j = 1, . . . , N , K0 = K.

2: for m = 1 to M do

3: Km = (I − Wm−1)T Km−1(I − Wm−1)
4: Apply the base learner to the output Gram matrix Km to get a model (wi(x; am))N

i=1.
5: Compute Wm

i,j = wi(xj ; am), i, j = 1, . . . , N from the resulting model.
6: end for

these Gram matrices for m = 1, . . . ,M from the knowl-
edge of kernel values between learning sample outputs
and the model obtained at the previous step.

One situation where this is achievable is when predic-
tions in the output feature space given by the base
learner can be written as linear combinations of out-
put feature space vectors corresponding to instances
from the learning sample. Indeed, let us assume that
the predictions given by any basis function hφ(x; am)
from the sequence may be written as:

hφ(x; am) =
N

∑

i=1

wi(x; am)φm
i , (4)

where the weights wi of the combination are
(parametrized) functions from the input space X to
IR. In this case, the kernel values km

i,j can be com-
puted by (by application of Eqn (2)):

km
i,j

△
= 〈φm

i , φm
j 〉

= 〈φm−1

i − hφ(xi; am−1), φ
m−1

j − hφ(xj ; am−1)〉

Taking Eqn (4) into account and replacing
〈φm−1

i , φm−1

j 〉 by km−1

i,j this yields:

km
i,j = km−1

i,j −
N

∑

l=1

wl(xj ; am)km−1

i,l −
N

∑

l=1

wl(xi; am)km−1

l,j

+

N
∑

k,l=1

wk(xi; am)wl(xj ; am)km−1

k,l ,

which uses only kernel values between outputs from
the previous iteration. Putting all these ideas together
yields (in matrix notation2) Algorithm 3, which starts
from the original output Gram matrix K0 = K and
iterates the application of the base learner to updated
Gram matrices to yield the weight functions wi(x, am)
and the Gram matrix for the next step. Note that,
given the initial approximation Fφ

0 , the computation
of K1 amounts at centering the data in the output
feature space.

2where the superscript T denotes matrix transposition.

2.2.2. Prediction Stage

Algorithm 3 computes a sequence of weight functions
wi(x; am) represented by their parameters am. The
final model is computed by (2) combined with (4). As
it is a linear combination of basis functions, themselves
linear combinations of output feature vectors, it may
be written as:

Fφ
M (x) =

N
∑

i=1

wF
i (x)φ(yi). (5)

Indeed, denoting by pm(x) the (line) vector
(w1(x; am), . . . , wN (x; am)) of weights obtained by
training the m-th model (cf Eqn 4) and posing p0(x) =
(1/N, . . . , 1/N), it is straightforward to show that in
Eqn (5) the vector wF (x) = (wF

1 (x), . . . , wF
N (x)) for

some input x is obtained by

wF (x) =

M
∑

m=0

pm(x)Om, (6)

where the N × N matrices Om are computed recur-
sively by:

O0 = I;Om = Om−1 − Wm−1Om−1,∀m = 1, . . . ,M

in which I denotes the identity matrix and Wm−1 the
matrices already defined in Algorithm 3.

From the model (5), we can make two kinds of in-
ferences: predictions in the original output space Y
and kernel values over Y × Y. The prediction of ker-
nel values given inputs may be obtained by using only
the original output Gram matrix K over the learning
sample:

k̂(x, x′) = 〈Fφ
M (x), Fφ

M (x′)〉 = wF (x)K(wF (x′))T . (7)

The prediction of outputs in Y, given the kernel k, may
be derived by solving the following pre-image problem
(from Eqn 5):

FY
M (x) = arg min

y′∈Y
||φ(y′) − Fφ

M (x)||2 (8)

= arg min
y′∈Y

{

k(y′, y′) − 2

N
∑

i=1

wF
i (x)k(yi, y

′)

}

.
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Algorithm 4 Computing output and kernel predictions

input a test sample of Q input vectors, {x′
1, . . . , x

′
Q}.

output a prediction FY
M (x′

i) ∈ Y for each input x′
i, i = 1, . . . , Q and an output kernel matrix prediction K̂ with

K̂i,j = 〈Fφ
M (x′

i), F
φ
M (x′

j)〉, i, j = 1, . . . , Q

1: O0 = I, W 0
i,j = 1/N,∀i, j = 1, . . . , N , WF

i,j = 1

N
,∀i = 1, . . . , Q, j = 1, . . . , N

2: for m = 1 to M do

3: Om = Om−1 − (Wm−1)T Om−1

4: Compute the Q × N matrix Pm with Pm
i,j = wj(x

′
i; am), ∀i = 1, . . . , Q, ∀j = 1, . . . , N

5: Set WF to WF + PmOm

6: Compute Wm
i,j = wi(xj ; am),∀i, j = 1, . . . , N from the mth model

7: end for

8: Compute S = 1Q×1diag(K)′ − 2WF K.
9: FY

M (x′
i) = yk with k = arg minj=1,...,N Si,j , ∀i = 1, . . . , Q // Pre-image computation

10: K̂ = WF K(WF )T // Kernel predictions

If k is unknown (except over the learning sample), or
for computational reasons, the arg min over Y in Eqn
(8) may be replaced by an arg min over the outputs of
the learning sample (Weston et al., 2002).

In Eqn (8) (resp. (7)) the main point is the compu-
tation of the weight vector wF (x) (resp. wF (x) and
wF (x′)). Since matrices Om,m = 1, . . . ,M are of di-
mension N2, it is usually not practical to precompute
and store them. They then need to be recomputed
each time predictions are needed, but if we know in
advance a set of inputs for which we want to make
predictions, we can compute them only once and make
predictions simultaneously for all instances. This is the
purpose of Algorithm 4. Note that in line 8-9 of this
algorithm the arg min of Eqn (8) is approximated by
computing it only over outputs of the learning sam-
ple. Although generic and simple, this approximation
is also restrictive and could certainly affect generaliza-
tion. However, our algorithm can in principle exploit
other techniques for computing pre-images, in partic-
ular efficient exact solutions tailored to a particular
output-space/kernel combination (e.g., the algorithm
for string kernels of Cortes et al., 2005). Since Al-
gorithm 3 does not require pre-image computations,
other pre-image solvers can be exploited by merely
plugging them in replacement of line 8-9 in Algorithm
4. Finally, note also that no pre-image computations
is required to make kernel predictions (line 10).

2.3. Regularization

To avoid overfitting, the number of terms M of the
model could be adapted to the problem at hand, e.g.
by cross-validation. Alternatively one can use shrink-
age, as advocated in Friedman (2001). Shrinkage re-
places the update rule (c) in Algorithm 1 by:

Fm(x) = Fm−1(x) + νh(x; am), 0 < ν ≤ 1 (9)

where ν is a learning rate kind of parameter. The
introduction of this parameter in the kernelized algo-
rithms of Algorithms 3 and 4 is straightforward.

Another approach to avoid overfitting is to introduce
some randomization into the procedure, e.g. by learn-
ing the base learner from a random subsample of the
training data (Friedman, 2002). In our experiments
with tree-based methods, we will exploit a specific ran-
domization technique (see Section 2.4.2).

2.4. Tree-Based Base Learner

While boosting algorithms can be used with any base
learner, they have been mainly used in conjunction
with decision or regression trees and in particular with
stumps (i.e. trees reducing to one split). In the context
of our kernelized boosting algorithm, the base learner
should be able to optimize square error in a kernelized
output space and provide predictions in the form (4).
In a recent paper, Geurts et al. (2006b) proposed a
kernelization of the output of regression tree based al-
gorithms, called OK3 (for output kernel trees), that
satisfies these two conditions. We briefly describe this
method before going through specific details related to
its use in the context of gradient boosting.

2.4.1. Output Kernel Trees (OK3)

Standard regression trees recursively partition the
learning sample by selecting a split based on an in-
put variable reducing as much as possible the variance
of the output in the left and right subsamples of learn-
ing cases. OK3 proceeds in the same way while using
a score computed in the feature space H induced from
the kernel k by:

Score(T, S) = var{φ|S}−Nl

N
var{φ|Sl}−

Nr

N
var{φ|Sr},
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where T is the split to evaluate, S is the local learning
sample of size N at the node to split, Sl and Sr are its
left and right successors of size Nl and Nr respectively,
and var{φ|S} denotes the variance of output feature
vectors in the subset S defined by:

var{φ|S} =
1

N

N
∑

i=1

||φi −
1

N

N
∑

j=1

φj ||2. (10)

OK3 exploits the fact that this variance may be ex-
pressed only in terms of output-kernel values:

var{φ|S} =
1

N

N
∑

i=1

ki,i −
1

N2

N
∑

i,j=1

ki,j . (11)

Once a tree is grown, the prediction made by OK3 in
the output feature space H corresponding to a leaf L
is in principle the center of mass in the leaf:

φ̂L =
1

NL

NL
∑

i=1

φi, (12)

where {φ1, . . . , φNL
} are the outputs (in H) reaching

the leaf. To obtain a prediction in Y from (12), Geurts
et al. (2006b) propose to restrict the search of the pre-
image to the outputs that appear in the leaf.

2.4.2. Gradient Boosting with OK3

The use of output kernel trees in Algorithm 3 is
straightforward. The OK3 algorithm is fed with the
current output kernel matrix Km and returns a tree
which is then used to compute the weight matrix Wm.
The prediction of a tree at some point x is given by
expression (4) with wi(x; am) = 1/NL if x and xi reach
the same leaf of size NL, 0 otherwise. With this defi-
nition of the weights, the matrices Wm are thus sym-
metric and positive definite. Indeed, each element Wm

i,j

corresponds to a dot-product in a feature space defined
on X such that φ(x) is an N -dimensional vector whose
i-th component is equal to 1/

√
NL when x reaches the

leaf of size NL that contains xi, 0 otherwise. During
the prediction stage, matrices Pm are simply obtained
by propagating the Q test inputs through the m trees
taking Pm

i,j equal to 1/NL if x′
i reaches the leaf L that

contains xj , 0 otherwise.

For this OK3 based boosting algorithm to work well,
we need to constrain the complexity of the trees. Fol-
lowing Friedman (2001), we propose to use trees with
at most J splits (or J + 1 terminal nodes). In or-
der to grow such trees, we use an approximate best
first strategy, which consists, at each step of the in-
duction, in splitting the node of highest total variance
N × var{φ(y)|S}. J is thus a meta-parameter of the

algorithm which optimal value should reflect the inter-
action order of the input variables in the (unknown)
target function (Friedman, 2001).

In addition to standard OK3, we will also use as base
learner randomized output kernel trees. The moti-
vation for this is that randomizing the base learner
should slow down convergence and reduce the risk of
overfitting by decreasing learning variance. We hope
that in combination with the bias reduction of boost-
ing, this will lead to better results than using stan-
dard OK3. We use the randomization of Geurts et al.
(2006a): an extremely randomized tree (Extra-tree)
is grown from the full learning sample by selecting at
each tree node the split of maximum score among K
splits obtained by drawing an input variable and a
cut-point (or a subset of values, in the symbolic case)
at random. In our experiments, we will use the de-
fault value of the parameter K of this algorithm, cor-
responding to the square root of the dimension of the
input space. We will denote by OK3-et an output ker-
nel tree obtained with this randomization.

2.4.3. Convergence when m → ∞
Let us show that with tree-based base learners, the
empirical error of gradient boosting is non increasing
and hence guaranteed to converge (since it is bounded
from below by 0). Indeed, assuming no shrinkage (ν =
1), the error at the mth step is given by:

N
∑

i=1

||φ(yi) − Fm(xi)||2 =

N
∑

i=1

||φm
i − hφ(xi; am)||2

=
J+1
∑

l=1

Nl
∑

j=1

||φm
il
j

− 1

Nl

Nl
∑

k=1

φm
il
k

||2 (13)

where the outer sum is over tree leaves and the inner
sum over the Nl examples that reach leaf l indexed
by ilj . Since the center of mass is the constant that
minimizes the mean squared error in a sample, we have
for each leaf l:

Nl
∑

i=1

||φm
il
i

− 1

Nl

Nl
∑

i=1

φm
il
i

||2 ≤
Nl
∑

i=1

||φm
il
i

||2,

which, from (13), leads to:

N
∑

i=1

||φ(yi) − Fm(xi)||2 ≤
N

∑

i=1

||φm
i ||2

=

N
∑

i=1

||φ(yi) − Fm−1(xi)||2.

Convergence actually also holds for ν ∈ [0; 2].
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2.5. Implementation Issues

In general, the complexities of the update rules in Al-
gorithms 3 and 4 are cubic in the size of the learning
sample, as they involve a product of N × N matri-
ces. In the case where the base learner is OK3 how-
ever, the particular nature of matrices Wm makes the
complexity of these products only quadratic3 in N .
Besides, the development of one node in OK3 is also
quadratic in the size of the learning sample, and hence,
at fixed tree complexity, this makes gradient boosting
with OK3 overall quadratic in the size of the learn-
ing sample (and linear in the number of input vari-
ables), both for the learning and the prediction stages.
This complexity is equivalent to the complexity of sin-
gle and randomized ensembles of output kernel trees
(Geurts et al., 2006b); in practice, we observed higher
computing times with boosting, both for learning and
for testing. This comes from the fact that boosting can
produce very unbalanced trees that require more op-
erations than balanced ones. Boosting also produces
much less sparse solutions than single trees or ensem-
bles of randomized trees. In the context of gradient
boosting, computing times can thus not be signifi-
cantly reduced at the prediction stage by reducing the
search for the pre-image to the outputs in the support
of wF (x) as suggested in (Geurts et al., 2006b).

3. Experiments

In this section, we apply OKBoost to three problems:
Friedman1 (Friedman, 1991): As a sanity check, we
first consider a standard regression problem. This
problem is an artificial problem with 10 inputs uni-
formly drawn between [0;1]. The regression function
is a non linear function of 5 of these inputs (plus Gaus-
sian noise), while the 5 remaining variables are irrel-
evant. We use a linear output kernel. In this case,
output kernel trees are thus strictly equivalent to stan-
dard regression trees and OKBoost reduces to Fried-
man (2001)’s least-squares gradient boosting.
Image reconstruction (Weston et al., 2002): The
goal of this problem is to complete the bottom part of
an image representing a handwritten digit from the top
part of the image. The dataset contains 1000 16×16
images from the USPS dataset. Inputs are the 128 pix-
els describing the top half of the image and the output
kernel is a gaussian kernel defined on the 128 bottom
pixels (with σ = 7.0711 as in Geurts et al., 2006b).
Network completion (Yamanishi et al., 2005).

3This follows directly from the fact that the ith row
(or column) of matrices W m contains only Nl non zero
elements, where Nl is the sample size of the leaf reached

by the ith object.

Given a known graph over some vertices described each
by some input feature vector, the goal is to predict the
graph over some new vertices from their inputs only.
This problem is turned into a kernelized output prob-
lem by defining a kernel over nodes in the graph such
that high kernel values correspond to highly connected
vertices. A graph prediction is then computed by
thresholding kernel predictions (7) between the inputs
of two new vertices. Following (Geurts et al., 2006b),
we use the enzyme network of (Yamanishi et al., 2005)
that contains 668 vertices described each by 325 (bi-
nary and numerical) features and connected by 2782
edges. As an output kernel, we use a diffusion kernel
with a diffusion coefficient of 1.

Influence of the parameters. Figure 1 shows the
evolution of errors with the number of terms M for dif-
ferent values of ν and J , top on the image reconstruc-
tion problem, bottom on the network problem. Sim-
ilar trends are observed on the Friedman1 problem.
These curves were obtained from a learning set/test
set split of 200/800 for the first dataset and 334/334
for the second one. In both cases, we measured the
average square loss in the output feature space, ie.
Ex,y{||φ(y)−Fφ

M (x)||2} on the learning and test sam-
ple (resp. Errφ(LS) and Errφ(TS)). These latter
errors can be computed from kernel values by using
Eqn (3) and exploiting the special form of predictions
in Eqn (5). For the image reconstruction problem,
we also measured the average loss of the pre-images
obtained with (8), both on the learning and test sam-
ple (resp. ErrY (LS) and ErrY (TS)). For the net-
work completion problem, we estimated the AUC of
the ROC curves obtained when varying the threshold
for the prediction of all edges in the learning sample
(AUC(LS)) and of all edges that involve at least one
vertex from the test sample (AUC(TS)).

Figure 1 shows similar behavior on the two problems.
As expected, Errφ(LS) decreases as iterations pro-
ceed, while the speed of convergence increases with
the tree size J and the value of ν. The figure high-
lights the importance of shrinkage: with a too large ν
(leftmost graphs), the training error rapidly decreases
but the testing error starts increasing after a few iter-
ations because of overfitting. When ν decreases, the
optimum of the test error appears for a larger M and
corresponds to a lower value. On both problems, we
observed that smaller values of ν lead to better results
and help to avoid overfitting as M increases. The be-
havior of the pre-image error ErrY and of the AUC are
similar to the behavior of kernel errors, even if the al-
gorithm does not try explicitly to optimize them. The
optimal values of M according to these criteria indeed
match those of the kernel errors.
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Figure 1. Evolution of different errors with M , top on the image reconstruction problem, bottom on the network completion
problem (ν: shrinkage; J : tree complexity)

Table 1. Comparison of OKBoost with other OK3 variants (ν = 0.01; M = 500)
Friedman1 Image Network

Method Errφ(TS) ErrY(TS) Errφ(TS) ErrY(TS) Errφ(TS) AUC(TS)
OK3 (single trees) 11.203 ± 0.619 11.203 ± 0.619 1.0434 ± 0.0152 1.0399 ± 0.0150 1.6928 ± 0.0472 0.6001 ± 0.0149
OK3+Bagging 5.089 ± 0.394 5.154 ± 0.378 0.5442 ± 0.0019 0.8643 ± 0.0096 0.8824 ± 0.0258 0.7100 ± 0.0205
OK3+ET 5.990 ± 0.561 6.162 ± 0.582 0.5170 ± 0.0024 0.8169 ± 0.0109 0.7955 ± 0.0425 0.7846 ± 0.0172
OK3+OKBoost 3.589 ± 0.277 3.589 ± 0.271 0.5241 ± 0.0021 0.8318 ± 0.0067 0.8730 ± 0.0283 0.7033 ± 0.0203
OK3-et+OKBoost 3.349 ± 0.355 3.365 ± 0.349 0.5093 ± 0.0033 0.8071 ± 0.0114 0.8169 ± 0.0334 0.7811 ± 0.0112

Comparison with other ensemble methods.

Table 1 compares OKBoost with the three OK3 vari-
ants explored in (Geurts et al., 2006b), i.e. OK3 as sin-
gle trees, bagging of OK3, and ensemble of OK3 grown
with the randomization of the Extra-trees method
(Geurts et al., 2006a). We compare two base learn-
ers in OKBoost: standard OK3 and OK3-et (ie. OK3
grown with the randomization of extra-trees). Errors
on Friedman1 are estimated from a fixed test sample
of size 1000 and are averages over 10 random learning
samples of size 300. On the other two problems, er-
rors and AUCs were obtained by 5-fold cross-validation
(with learning and test folds of size resp. 200 and 800
on the image problem and standard 5-fold CV on a
subset of 334 nodes on the network problem). For
both boosting variants, following advices in (Fried-
man, 2001), we choose a very small value of ν = 0.01
(corresponding to a slow learning rate) and a large
number of trees M = 500. Better results could be ob-
tained by optimizing these two parameters. The num-
ber of splits J was selected in [1; 40] by another round
of 5-fold CV internal to the learning folds. We use
ensembles of 100 trees for the other ensemble methods
(increasing this number does not improve the results)
and the default setting for the extra-trees method
(Geurts et al., 2006a). Results are reported in Table

1, with the best result in each column underlined.

For each problem, we report the kernel error
Errφ(TS). On the Network problem, we computed
the AUC(TS), and, on the other problems, the pre-
image error ErrY(TS). This approximation is not re-
quired on Friedman1 which exploits a linear kernel but
it is reported for comparison purpose. On the first two
problems, Errφ and ErrY follow very similar trends,
i.e., better predictions in H translates into better pre-
images. The difference between Errφ and ErrY is
much more important on the image problem than on
Friedman1. This is not surprising as on the image
problem, the output space Y (all possible bottom im-
ages corresponding to a digit) only very sparsely pop-
ulates the space H induced by the Gaussian kernel,
while on the Friedman1 problem, both spaces coincide.

On all problems, OKBoost with standard OK3 signif-
icantly outperforms single trees. It also outperforms
bagging on the friedman1 and image problems, but is
slightly less good on the network problem. It outper-
forms Extra-trees significantly on Friedman1, but is
less good on the image and network problems. In all
cases, the introduction of the extra-trees randomiza-
tion further improves the results of OKBoost, the most
important improvement being observed on the net-
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work problem. Globally, OK3-et+OKBoost is the best
approach. It is only slightly worse than Extra-trees
on the network problem, slightly better on the Im-
age problem, and significantly better on Friedman14.
The rather disappointing results of OK3+OKBoost on
the network problem suggest that on this problem re-
ducing variance (the main goal of Extra-trees) is more
productive than reducing bias (the main goal of boost-
ing). We believe that this is a consequence of the fact
that this dataset is very noisy, the prediction of in-
teractions from the inputs being a very difficult task.
Results on Friedman1 show nevertheless than reducing
bias could be more effective on other problems.

For a comparison of OKBoost with other methods, one
may refer to (Geurts et al., 2006b) where results are
provided on the image and network problems, respec-
tively with KDE and other network completion algo-
rithms. It turns out that OKBoost is slightly inferior
to KDE and competitive with existing graph comple-
tion techniques.

4. Conclusion

An extension of gradient boosting to kernelized output
spaces has been presented. This framework applies to
any base learner making predictions in the form of
(input-dependent) weighted averages of sample out-
put values, such as nearest neighbor regression, (local
or global) linear regression, or kernel-based regression,
provided that it is first reformulated to operate in ker-
nelized output spaces. In particular, in this paper we
have applied this approach to output kernelized tree-
based regression. The sparse nature of these averagers
leads to a significant reduction of computational com-
plexity with respect to the general case. A potential
drawback of them is that they are currently not able
to exploit kernels defined over the input space.

Experiments on three diverse problems showed that
OKBoost substantially improves a single OK3 learner
and that its combination with randomization pro-
vides competitive results with other tree-based ensem-
ble methods. This behavior is coherent with what
has been observed with boosting algorithms in stan-
dard regression tasks (Friedman, 2001; Rätsch et al.,
2002). The rather important improvement that we
have observed when using randomized trees instead of
standard ones as base learners, suggests that further
progress could be made by focusing on regularization
schemes in the context of kernelized output spaces.

4The difference is statistically significant in all cases,
except on the Network problem with the AUC (according
to a paired two-sided t-tests with a confidence level of 95%).
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