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In this paper, we define q-analogues of Dirichlet's beta function at positive integers, which can be written as β q (s) = k≥1 d|k χ(k/d)d s-1 q k for s ∈ N * , where q is a complex number such that |q| < 1 and χ is the non trivial Dirichlet character modulo 4. For odd s, these expressions are connected with the automorphic world, in particular with Eisenstein series of level 4. From this, we derive through Nesterenko's work the transcendance of the numbers β q (2s + 1) for q algebraic such that 0 < |q| < 1. Our main result concerns the nature of the numbers β q (2s): we give a lower bound for the dimension of the vector space over Q spanned by 1, β q (2), β q (4), . . . , β q (A), where 1/q ∈ Z \ {-1; 1} and A is an even integer. As consequences, for 1/q ∈ Z \ {-1; 1}, on the one hand there is an infinity of irrational numbers among β q (2), β q (4), . . . , and on the other hand at least one of the numbers β q (2), β q (4), . . . , β q (20) is irrational.

Introduction

For any complex number s with Re(s) ≥ 1, Dirichlet's beta function at s is defined by:

β(s) = ∞ k=0
(-1) k (2k + 1) s • Recall Euler's identity:

β(2m + 1) = (-1) m E 2m 2 2m+2 (2m)! π 2m+1 , 1 
where m ∈ N and the rational numbers E 2m are Euler numbers defined by 1/ cosh(z) = k≥0 E k z k /k!. Thus, as for the values of Riemann's zeta function at odd positive integers, Lindemann's Theorem yields that for m ∈ N, β(2m + 1) is a transcendental number. However, nothing similar can be said concerning the values at even positive integers; the best known result in that direction is due to Rivoal and Zudilin [START_REF] Rivoal | Diophantine properties of numbers related to Catalan's constant[END_REF]: at least one of the numbers β(2), β(4), . . . , β [START_REF] Rivoal | Nombres d'Euler, approximants de Padé et constante de Catalan[END_REF] is irrational.

In this article, we define q-analogues of the values of β at positive integers. They can be written for s ∈ N * and for any complex number q with |q| < 1:

β q (s) := k≥1 k s-1 q k 1 + q 2k = k≥1 d|k χ(k/d)d s-1 q k , (1.1) 
where χ is the non trivial Dirichlet character modulo 4, defined by χ(2m+1) = (-1) m and χ(2m) = 0. One can justify the term of q-analogue by the following relation, valid for s ∈ N * (see the last section of this paper for a proof): lim q→1

(1 -q) s β q (s) = (s -1)!β(s).

Similarly to the q-analogues of Riemann's zeta function at even positive integers considered in [START_REF] Krattenthaler | Séries hypergéométriques basiques, q-analogues des valeurs de la fonction zêta et séries d'Eisenstein[END_REF][START_REF] Jouhet | Irrationalité aux entiers impairs positifs d'un q-analogue de la fonction zêta de Riemann[END_REF], our definition (1.1) is related to modular forms when s in an odd positive integer. Indeed, consider the case s = 1, for which the first expression of (1.1) can be written:

β q (1) = k≥1 m≥0
(-1) m q (2m+1)k = m≥0 (-1) m q 2m+1

1 -q 2m+1 • (1.2)

This yields immediately β q (1) = (π q -1)/4, where π q is a q-analogue of π.

The series π q is considered in [START_REF] Bundschuh | Rational approximation to a q-analogue of π and some other q-series[END_REF][START_REF] Bundschuh | Irrationality measures for certain qmathematical constants[END_REF], where an upper bound for its irrationality exponent is given. We also have (see [START_REF] Bundschuh | Rational approximation to a q-analogue of π and some other q-series[END_REF]):

β q (1) = k≥1 q k d|k χ(d) = θ 2 (q) -1 4 ,
where θ(q) := n∈Z q n 2 is the classical theta function. This shows that if we set q = e 2iπz , β q (1) is, up to a rational constant, the Fourier expansion of a weight 1 modular form on Γ 1 (4) [START_REF] Koblitz | Introduction to elliptic curves and modular forms[END_REF]p. 138,Proposition 30]. Moreover, as remarked in [START_REF] Bundschuh | Rational approximation to a q-analogue of π and some other q-series[END_REF], Nesterenko's algebraic independance Theorem from [START_REF] Nesterenko | Modular functions and transcendance questions[END_REF] shows that θ(q), and therefore β q (1), is a transcendental number when q is algebraic such that 0 < |q| < 1.

Concerning the other values at odd positive integers, one sees that for s ≥ 1 and q = e 2iπz , β q (2s + 1) is also the Fourier expansion, with algebraic coefficients, of a weight 2s+1 modular form on Γ 1 (4). More precisely, consider the level 4 Eisenstein series [7, p. 131]:

G (1,0) 2s+1 (z) := (m 1 ,m 2 )∈Z 2
(m 1 ,m 2 )≡(1,0) mod 4 1 (m 1 z + m 2 ) 2s+1 • Then we have the following Fourier expansion [7, proposition 22]:

G (1,0) 2s+1 (z) = i (2s)! π 2 2s+1 k≥1 d|k χ(k/d)d 2s q k/4 .

Hence

β q (2s + 1) = i(-1) s+1 E 2s 2β(2s + 1) G

(1,0) 2s+1 (4z), and it is not difficult to see that z → G

(1,0) 2s+1 (4z) is a weight 2s+1 modular form on Γ 1 (4). Set φ s (q) := β q (2s + 1)/θ 4s+2 (q), which is a modular function (with weight 0) on Γ 1 (4), having a Fourier expansion with algebraic coefficients. Thus φ s is algebraic on Q(J) (see [START_REF] Koblitz | Introduction to elliptic curves and modular forms[END_REF]p. 144,Problem 7]), where J is the modular invariant. Assume first that for s ≥ 1, φ s is not a constant. We can deduce that J(q) and φ s (q) are algebraically dependant. Assume from now on that q is algebraic such that 0 < |q| < 1. Nesterenko's algebraic independance Theorem from [START_REF] Nesterenko | Modular functions and transcendance questions[END_REF] shows that J(q) and θ(q) are algebraically independant. Therefore β q (2s + 1) and θ(q) are necessarily also algebraically independant, and in particular β q (2s+1) is a transcendental number. If now φ s is a constant (necessarily algebraic), then θ 4s+2 (q) is a transcendental number by [START_REF] Nesterenko | Modular functions and transcendance questions[END_REF], and so β q (2s + 1) is again a transcendental number. To summarize, we have the following result, which can be compared to the transcendence of the values of Dirichlet's beta function at odd positive integers, as well as the transcendence of the values of ζ q at even positive integers in [START_REF] Krattenthaler | Séries hypergéométriques basiques, q-analogues des valeurs de la fonction zêta et séries d'Eisenstein[END_REF]: for s ∈ N and q algebraic such that 0 < |q| < 1, β q (2s + 1) is a transcendental number.

Consider now the values at even positive integers β q (2s), which do not seem to be directly related to Eisenstein series. We will prove the following Theorem, which is the main result of the present paper: Theorem 1.1. For 1/q ∈ Z \ {-1; 1} and any odd integer A ≥ 3, we have the following lower bound:

dim Q (Q + Qβ q (2) + • • • + Qβ q (A -1)) ≥ f (A), (1.3) 
where

f (A) = max r∈N 1≤r<A/2 f (r; A) and f (r; A) := 4rA + A -4r 2 48 π 2 + 2 A + 8r 2 -16 π 2 + 16r 3 • Moreover f (A) satisfies f (A) ∼ π 2 √ π 2 + 24 √ A when A → +∞.
The previous asymptotic estimate for f (A) gives immediately the following:

Corollary 1.2. For 1/q ∈ Z \ {-1; 1}, there are infinitely many irrational numbers among β q (2), β q (4), β q (6),. . . On the other hand, the estimate f (3; 21) ≥ 1, 02... gives the following quantitative version: Corollary 1.3. For 1/q ∈ Z\{-1; 1}, at least one of the numbers β q (2), β q (4), β q (6),. . . , β q (20) is irrational. Now we aim to sketch the proof of Theorem 1.1, which will be more detailed later on. We need the following Proposition, which is a special case of Nesterenko's linear independance criterion from [START_REF] Nesterenko | On the linear independance of numbers[END_REF]: Proposition 1.4. Let N ≥ 2 be an integer, and v 1 , . . . , v N be real numbers. Assume that there exist N integer sequences (p j,n ) n≥0 and two real numbers

α 1 et α 2 with α 2 > 0 such that: i) lim n→+∞ 1 n 2 log |p 1,n v 1 + • • • + p N,n v N | = -α 1 ,
ii) for all j ∈ {1, . . . , N }, we have lim sup

n→+∞ 1 n 2 log |p j,n | ≤ α 2 .
Then the dimension of the Q-vector space spanned by v 1 , . . . , v N satisfies:

dim Q (Qv 1 + • • • + Qv N ) ≥ 1 + α 1 α 2 •
In order to use Nesterenko's criterion in our context, we shall study the following hypergeometric series (see section 2 for the notations):

S n (q) := (q) A-2r n k≥1

(-1) k+1 q (k-1/2)((A-2r)n/2+A/2-1)

× (1 -q 2k+n-1 ) (q k-rn , q k+n ) rn (q k-1/2 ) A n+1 ,
where A is an integer, r ∈ N * and A -2r > 0. In a first step, we rewrite S n (q 2 ) as a linear combination of some β q (2m), m ∈ N * :

S n (q 2 ) = P0,n (q 2 ) + A-1 j=2 j even Pj,n (q 2 )β q (j),
where |q| < 1, A and n are odd positive integers and Pj,n (q 2 ) are a priori in Q(q), i.e. rational fractions in the variable q (thus in the variable 1/q) with coefficients in Q. In a second step, we look for a common denominator D n (q) to these rational fractions in the variable 1/q, satisfying:

D n (q) Pj,n (q 2 ) ∈ Z 1 q ∀j ∈ {0, 2, 4, . . . , A -1}.
Next, we shall prove the following asymptotic estimates which are true for all 0 < |q| < 1:

lim n→+∞ 1 n 2 log |S n (q)| = - 1 2 r(A -2r) log |1/q|, lim sup n→+∞ n odd 1 n 2 log | Pj,n (q)| ≤ 1 8 (A + 4r 2 ) log |1/q|, lim n→+∞ 1 n 2 log |D n (q)| = A 4 + r 2 + 12 π 2 (A -1) + 4r 3 + 8 π 2 log |1/q|.
Assume 1/q ∈ Z\{-1; 1}. Then we apply Proposition 1.4 to the N = (A+1)/2 integer sequences (D n (q) × Pj,n (q 2 )) n odd , which yields (1.3).

The estimate

f (A) ∼ π √ A/2 √ π 2 + 24 for A → +∞, is obtained by choosing r = u √ A and finding the maximal value of f (u √ A; A)/ √ A in the variable u.
Remark 1.5. Corollary 1.3 can be proved direcly without Nesterenko's criterion. Indeed, for 1/q ∈ Z \ {-1; 1}, it is enough to obtain an asymptotic estimate of the linear combination D n (q) × S n (q 2 ) in β q (2), β q (4), . . . , β q (20) with integer coefficients (by choosing A = 21 and r = 3). Therefore it is not necessary to find an upper bound for the height of the coefficients of the linear form, this is only useful for linear independance.

This article is organized as follows. In section 2 we recall a few notations on q-series, which will be useful later. The third section is concerned with the study of the series S n (q) mentioned before. In particular, the structure of this series (it is a very-well-poised basic hypergeometric series) yields interesting properties. In particular, when n is an odd integer, an appropriate expansion of S n (q 2 ) will give explicitely the already mentioned linear combination and its coefficients Pj,n (q 2 ). In the fourth section we find a common denominator D n (q) to the coefficients Pj,n (q 2 ), by using arithmetical techniques and cyclotomic polynomials. In section 5, we study the asymptotics of S n (q), Pj,n (q) through Cauchy's formula, and D n (q) by using the Möbius inversion. Finally, in the sixth and last section, we establish some links between β q and β, and we end by stating a q-denominators Conjecture.

Notations

We recall some standard definitions and notations for q-series, which can be found in [START_REF] Gasper | Basic Hypergeometric Series, 2nd Edition[END_REF].

Let q be a fixed complex parameter (the "base") with |q| = 1. We define for any real number a and any k ∈ N the q-shifted factorial by:

(a) k ≡ (a; q) k := 1 if k = 0 (1 -a) . . . (1 -aq k-1 ) if k > 0.
The base q can be omitted when there is no confusion (writing (a) k for (a; q) k , etc). For the sake of simplicity, write for k ∈ N:

(a 1 , . . . , a m ) k := (a 1 ) k × • • • × (a m ) k .
Recall the definition of the q-binomial coefficient:

n k q := (q) n (q) k (q) n-k ,
which is a polynomial in the variable q, with integer coefficients (see for example [START_REF] Stanley | Enumerative Combinatorics[END_REF]).

Further, recall the definition of the basic hypergeometric series s+1 φ s :

s+1 φ s a 0 , a 1 , . . . , a s b 1 , . . . , b s ; q, z := ∞ k=0 (a 0 , a 1 , . . . , a s ) k (q, b 1 , . . . , b s ) k z k ,
with a j ∈ C for 0 ≤ j ≤ s, and b j q k = 1 for all k ∈ N and 1 ≤ j ≤ s. The series converges for |q| < 1 and |z| < 1, or |q| > 1 and |z| < |b 1 . . . b s /a 1 . . . a s+1 |, and we say that s+1 φ s is:

• well-poised if qa 0 = a 1 b 1 = • • • = a s b s • very-well-poised if it is well-poised and a 1 = q √ a 0 = -a 2 .

A very-well-poised series

We consider the following basic hypergeometric series:

S n (q) := (q) A-2r n k≥1 (-1) k+1 q (k-1/2)((A-2r)n/2+A/2-1) × (1 -q 2k+n-1 ) (q k-rn , q k+n ) rn (q k-1/2 ) A n+1 , (3.1) 
for any odd integer A, r ∈ N * and A -2r > 0. Note that this series converges for all |q| = 1. The series S n (q) satisfies:

S n (1/q) = q n(r-1) S n (q), (3.2) 
which comes from the choice of the power of q inside the sum of (3.1). Thanks to (3.2), it will be possible to expand S n (q 2 ) as a linear combination over Q(q) of the values of β q at even positive integers only, although one would expect values at odd positive integers as well. Besides, notice that:

S n (q) = (-1) rn q (rn+1/2)((A-2r)n/2+A/2-1) × (1 -q (2r+1)n+1 )(q) A-2r n (q, q (r+1)n+1 ) rn (q rn+1/2 ) A n+1 × A+4 φ A+3
a, q √ a, -q √ a, q rn+1 , q rn+1/2 . . . , q rn+1/2 √ a, -√ a, q (r+1)n+1 , q (r+1)n+3/2 . . . , q (r+1)n+3/2 ; q, z , with a = q (2r+1)n+1 and z = -q (A-2r)n/2+A/2-1 . This shows that S n (q) is a very-well-poised basic hypergeometric series.

Some auxiliary functions

For all |q| = 1 and s ∈ N * , we consider the functions:

Y s (q) := k≥0 (-1) k q 2k+1 (1 -q 2k+1 ) s • (3.3)
We will need the signless Stirling numbers of the first kind (see [START_REF] Stanley | Enumerative Combinatorics[END_REF]), which are integers denoted by c(s, j) (where s and j are two integers such that 1 ≤ j ≤ s) and that are defined by:

(x) s := x(x + 1) . . . (x + s -1) = s j=1 c(s, j)x j .
The following result gives for s ≥ 2 the expansion of the functions Y s in terms of values of β q at positive integers:

Lemma 3.1. For all |q| < 1 and any integer s ≥ 2:

Y s (q) = 1 (s -1)! s j=2 c(s -1, j -1)β q (j). (3.4)
Proof. The definition (3.3) can be expanded as follows, for |q| < 1:

Y s (q) = 1 (s -1)! k≥0 l≥1 (-1) k (l) s-1 q (2k+1)l (3.5) = 1 (s -1)! k≥0 l≥1 (-1) k s j=2 c(s -1, j -1)l j-1 q (2k+1)l = 1 (s -1)! s j=2 c(s -1, j -1) l≥1 q l 1 + q 2l ,
and we conclude by using the definition (1.1).

The following Lemma gives for s ≥ 2 the expansion of the functions Y s in terms of values of β q at even positive integers only: Lemma 3.2. For all 0 < |q| < 1 and any integer s ≥ 2:

Y s (q) + Y s (1/q) = 2 (s -1)! s j=2 jeven c(s -1, j -1)β q (j). (3.6) 
Proof. Set 0 < |q| < 1. Starting from the definition (3.3), we get:

Y s (1/q) = (-1) s k≥0 (-1) k q (2k+1)(s-1) (1 -q 2k+1 ) s = (-1) s k≥0 l≥1 (-1) k q (2k+1)(s-2) (l) s-1 (s -1)! q (2k+1)l = (-1) s (s -1)! k≥0 l≥1 (-1) k (l -s + 2) s-1 q (2k+1)l . (3.7) 
Then we collect expressions (3.5) and (3.7), invert summations, and sum over k:

Y s (q) + Y s (1/q) = 1 (s -1)! l≥1 [(l) s-1 -(-l) s-1 ] q l 1 + q 2l = 1 (s -1)! s j=2 c(s -1, j -1)(1 + (-1) j ) l≥1 l j-1 q l 1 + q 2l •
This shows (3.6) via the definition (1.1) of β q .

3.2 Linear combination in the β q (2j), j ∈ N * Define:

R n (T ; q) := T (A-2r)n/2+A/2-2 q -A(n 2 -1)/2-((A-2r)n+A-2)/4

× (q) A-2r n (q -rn T, q n T ) rn (T -q 1/2 ) A (T -q 1/2-1 ) A . . . (T -q 1/2-n ) A • (3.8)
Then obviously we have:

S n (q) = k≥1 (-1) k+1 q k (1 -q 2k+n-1 )R n (q k ; q).
Notice that when n is odd, R n (T ; q) is a rational fraction in the variable T with degree -n(A -2r)/2 -A/2 -2, which is less or equal to -3, as A > 2r ≥ 2. Assume from now on that n is a fixed odd positive integer. The partial fraction expansion of R n (T ; q) can be written:

R n (T ; q) = A s=1 n j=0 c s,j,n (q) (T -q 1/2-j ) s = A s=1 n j=0 d s,j,n (q) (1 -T q j-1/2 ) s ,
where d s,j,n (q) := (-1) s q (j-1/2)s c s,j,n (q) (3.9) and c s,j,n (q

) := 1 (A -s)! d A-s dT A-s R n (T ; q)(T -q 1/2-j ) A T =q 1/2-j (3.10) = q (1/2-j)s (A -s)! d A-s du A-s R n (uq 1/2-j ; q)(u -1) A u=1 . (3.11) 
The definition (3.8) gives R n (T q n-1 ; 1/q) = -q n(r-2)+1 R n (T ; q), which yields for all j ∈ {0, . . . , n} and s ∈ {1, . . . , A}:

d s,n-j,n (1/q) = -q n(r-2)+1 d s,j,n (q), (3.12) 
or equivalently c s,n-j,n (1/q) = -q n(s+r-2)+1-s c s,j,n (q). (3.13)

We can now prove the following Lemma, which gives explicitely the expected linear combination in terms of the values of β q at even positive integers: Lemma 3.3. For all 0 < |q| < 1, any odd positive integers n and A, and r ∈ N * such that A > 2r:

S n (q 2 ) = P0,n (q 2 ) + A-1 j=2 j even
Pj,n (q 2 )β q (j), (3.14) where for j = 2, 4, . . . , A -1, P0,n (q) := P 0,n (1, q) + q -n(r-1) P 0,n (1, 1/q) -

1 2 P 1,n (1, q), (3.15) Pj,n (q) := A s=j 2c(s -1, j -1) (s -1)! P s,n (1, q), (3.16) 
and

P 0,n (z, q) := A s=1 n j=1 j k=1 (-1) j+k q k-j (1 -q k-1/2 ) s d s,j,n (q)z j-k , (3.17) P s,n (z, q) := n j=0
(-1) j q 1/2-j d s,j,n (q)z j .

(3.18)

Proof. We fix an odd positive integer n and a complex number q such that 0 < |q| < 1. Define for complex z S n (z; q) := k≥1 (-1) k+1 q k R n (q k ; q)z -k .

It is not difficult to see that S n (z; q) converges if |z| > |q| (A-2r)n/2+A/2-1 and S n (1/z; 1/q) converges if |z| < |q| -(A-2r)n/2-A/2 . Thus both series S n (z; q) and S n (1/z; 1/q) converge if |q| < |z| ≤ 1. A direct calculation shows that:

S n (1; q) + q -n(r-1) S n (1; 1/q) = S n (q). (3.19)
On the other hand, by using the partial fraction expansion of R n (T ; q), we get:

S n (z; q) = P 0,n (z, q) + A s=1 P s,n (z, q)L s (z; q), (3.20) 
where P 0,n (z, q) and P s,n (z, q) are polynomials in the variable z defined by (3.17) and (3.18), and

L s (z; q) := k≥1 (-1) k+1 q k-1/2 (1 -q k-1/2 ) s z -k . (3.21)
Coming back to the definition (3.18), we see that (3.12) implies that for s ≥ 1, P s,n (1/z, 1/q) = z -n q n(r-1) P s,n (z, q). This gives us the idea to study the series: Sn (z; q) := S n (z; q) + z n q -n(r-1) S n (1/z; 1/q), (

with the convergence condition |q| < |z| < 1. The expansion (3.20), and the previous relation between P s,n (1/z, 1/q) and P s,n (z, q), give for |q| < |z| < 1:

Sn (z; q) = P 0,n (z, q) + q -n(r-1) z n P 0,n (1/z, 1/q) + A s=1 P s,n (z, q)(L s (z; q) + L s (1/z; 1/q)). (3.23)

Note that we can deduce directly from the definition (3.21):

L 1 (1/z; 1/q) = - k≥1 l≥0 (-1) k+1 q (k-1/2)l z k , which yields L 1 (1/z; 1/q) = -L 1 (1/z; q) -z/(1 + z)
, and therefore:

lim z→1 P 1,n (z, q)(L 1 (z; q) + L 1 (1/z; 1/q)) = - 1 2 P 1,n (1, q). (3.24) 
It remains to let z tend to 1 in (3.23) to get the Lemma, via the definition (3.22), the relations (3.19), (3.6) and (3.24), together with the fact that L s (1; q 2 ) = Y s (q) for s ≥ 2.

Arithmetical investigations

In this section, we find for any odd positive integer n a common denominator D n (q) to the coefficients Pj,n (q 2 ) ∈ Q(q). Let d n (x) ∈ Z[x] be the unitary polynomial, with lowest degree, and common multiple of 1 -x, 1 -x 2 , . . . , 1x n . Recall some standard properties on cyclotomic polynomials. For t ∈ N, the t-th cyclotomic polynomial is defined by φ t (x) := k∧t=1,k≤t (x -e 2ikπ/t ), and satisfies

φ t (x) ∈ Z[x].
Then one can prove:

x n -1 = d|n φ d (x), (4.1) 
which yields:

d n (x) = n t=1 φ t (x). (4.2)
We will also need the following polynomials:

∆ n (x) := 2n-1 t=1 t odd φ t (x), (4.3) 
and

ϕ n (x) := φ 2 (x) n φ 4 (x) ⌊n/2⌋ . . . φ 2n (x), (4.4) 
where ⌊x⌋ is the integer part of the real number x. In what follows, we denote by ord φt(x) (Q(x)) the greatest power of φ t (x) dividing the polynomial Q(x).

We have the following useful arithmetical Lemma:

Lemma 4.1. Let e be an odd positive integer and

w n (x) := n i=1 1-x e+2i 1-x 2i . Then ϕ n (x) w n (x) ∈ Z [x] .
Remark 4.2. We can see that ϕ n (x) always divides n i=1 (1 + x i ) 2 , so we could use this alternative polynomial later, instead of ϕ n (x). This would give simpler manipulations, but we would have less good asymptotic properties (see Lemma 5.4).

Proof of Lemma 4.1. From (4.1), w n (x) is a quotient of products of cyclotomic polynomials φ t (x). It is enough to prove that ord φt(x) (ϕ n (x) w n (x)) ≥ 0 for all t. Assume first that t is even. As e is odd, φ t (x) can only be a factor in the denominator of w n (x). Then we see directly that ord φt(x) (w n (x)) = -2n t = -ord φt(x) (ϕ n (x)), thus ord φt(x) (ϕ n (x) w n (x)) = 0. Now if t is odd, we have:

ord φt(x) (ϕ n (x) w n (x)) = ord φt(x) (w n (x)) = ⌊ n t ⌋-1 j=0 ord φt(x)   (j+1)t i=jt+1 1 -x e+2i 1 -x 2i   +ord φt(x)    n i=t⌊ n t ⌋+1 1 -x e+2i 1 -x 2i    .
But the orders of divisibility in the sum over j are all equal to 1 -1 = 0. Moreover we have:

ord φt(x)    n i=t⌊ n t ⌋+1 1 -x e+2i 1 -x 2i    = ord φt(x)    n i=t⌊ n t ⌋+1 (1 -x e+2i )    ∈ {0; 1},
which proves the Lemma.

Throughout this section, we assume n and A to be odd positive integers, and r to be a positive integer such that A -2r > 0.

Lemma 4.3. For all s ∈ {1, . . . , A} and j ∈ {0, . . . , n}, we have: ϕ n (1/q) 2r d n 1/q 2 A-s c s,j,n (q 2 ) ∈ Z q; 1 q .

Proof. Rewrite (3.10) as:

c s,j,n (q) = 1 (A -s)! d A-s dT A-s V n (T ; q) T =q 1/2-j , (4.5) 
with

V n (T ; q) := R n (T ; q)(T -q 1/2-j ) A = (q) A-2r n T (A-2r)n/2+A/2-2 q -A(n 2 -1)/2-((A-2r)n+A-2)/4 × (q -rn T, q n T ) rn (T -q 1/2-j ) A (T -q 1/2 ) A (T -q 1/2-1 ) A . . . (T -q 1/2-n ) A • (4.6)
We collect the terms of V n (T ; q) as follows:

V n (T ; q) = q an 2 +bn+c T A/2-2-n/2 F (T ) A/2-r+1/2 G(T ) A/2-r-1/2 r l=1 H l (T )I l (T ),
where a, b and c are integers (or half-integers) depending only on A and r, and the functions F , G, H l and I l satisfy:

F (T ) := q -n(n+1)/2 (q) n T n (T -q 1/2-j ) (T -q 1/2 )(T -q 1/2-1 ) . . . (T -q 1/2-n ) = (-1) n (1/q; 1/q) n + n i=0 i =j (-1) n-i+1 q -i(i+1)/2 n i 1/q q 1/2-j -q 1/2-i T -q 1/2-i , (4.7) G(T ) := q -n(n+1)/2 (q) n (T -q 1/2-j ) (T -q 1/2 )(T -q 1/2-1 ) . . . (T -q 1/2-n ) = n i=0 i =j (-1) n-i+1 q (i-1/2)n-i(i+1)/2 n i 1/q q 1/2-j -q 1/2-i T -q 1/2-i , (4.8) H l (T ) := q -n(n+1)/2 (q -ln T ) n (T -q 1/2-j ) (T -q 1/2 )(T -q 1/2-1 ) . . . (T -q 1/2-n ) = (-1) n q -ln 2 -n + n i=0 i =j (-1) i+1 q -(n-i) 2 /2-(2n+i)/2 n i 1/q
× (q -(l-1)n-i-1/2 ; q -1 ) n (q -1 ; q -1 ) n q 1/2-j -q 1/2-i T -q 1/2-i , (4.9)

I l (T ) := q -n(n+1)/2 (q ln T ) n (T -q 1/2-j ) (T -q 1/2 )(T -q 1/2-1 ) . . . (T -q 1/2-n ) = (-1) n q ln 2 -n + n i=0 i =j (-1) n+i+1 q ln 2 -n-i(i+1)/2 n i 1/q × (q -(l+1)n-i-1/2 ; q -1 ) n (q -1 ; q -1 ) n q 1/2-j -q 1/2-i T -q 1/2-i • (4.10)
We see that if q is replaced by q 2 and if U denotes any of the functions F , G, or T → T A/2-2-n/2 , then by using the partial fraction expansions (4.7) and (4.8):

d n 1/q 2 µ µ! d µ dT µ U (T ) T =q 1-2j ∈ Z q; 1 q ∀µ ∈ N.
Now if q is replaced by q 2 and if U denotes any of the functions H l or I l , then by using the partial fraction expansions (4.9), (4.10), and Lemma 4.1, we get for all µ ∈ N:

ϕ n (1/q) d n 1/q 2 µ µ! d µ dT µ U (T ) T =q 1-2j ∈ Z q; 1 q .
We can easily conclude by using (4.5) and by applying Leibniz's formula for the (µ = A -s)-th differentiation of a product of functions.

Lemma 4.4. Set α = -A/4 -r 2 . Then there exist real numbers β ′ and γ ′ depending only on A and r such that for all (s, j) ∈ {1, . . . , A} × {0, . . . , n}:

lim q→+∞ q αn 2 +β ′ n+γ ′ c s,j,n (q 2 ) < ∞.
Proof. Recall the expression (4.5) from the previous proof, and let v n (T ; q) := d dT V n (T ; q)/V n (T ; q) be the logarithmic derivative of V n (T ; q), in the variable T . As in [START_REF] Krattenthaler | Séries hypergéométriques basiques, q-analogues des valeurs de la fonction zêta et séries d'Eisenstein[END_REF] and [START_REF] Jouhet | Irrationalité aux entiers impairs positifs d'un q-analogue de la fonction zêta de Riemann[END_REF], we use Faà di Bruno's differentiation formula, which gives for all µ ∈ N:

1 µ! d µ dT µ V n (T ; q) = k 1 +•••+µkµ=µ V n (T ; q) k 1 ! . . . k µ ! µ l=1 1 l! d l-1 dT l-1 v n (T ; q) k l . (4.11)
By (4.6) we get:

v n (T ; q) = d dT (log V n (T ; q)) = (A -2r)n/2 + A/2 -2 T + rn i=1 1 T -q i + rn+n-1 i=n 1 T -q -i -A n i=0 i =j 1 T -q 1/2-i , thus for all l ∈ N * : (-1) l-1 (l -1)! d l-1 dT l-1 v n (T ; q) = (A -2r)n/2 + A/2 -2 T l + rn i=1 1 (T -q i ) l + rn+n-1 i=n 1 (T -q -i ) l -A n i=0 i =j 1 (T -q 1/2-i ) l •
We can rewrite this as follows:

(-1) l-1 (l -1)! d l-1 dT l-1 v n (T ; q) = (A -2r)n/2 + A/2 -2 T l + rn i=1 q -i T q -i -1 l + rn+n-1 i=n 1 (T -q -i ) l -A j-1 i=0 q i T q i -1 l -A n i=j+1 1 (T -q -i ) l • Therefore ∀j ∈ {0, . . . , n}, lim q→+∞ q (1/2-j)l d l-1 dT l-1 v n (T ; q) T =q 1/2-j < ∞. We deduce that for k 1 + • • • + µk µ = µ: lim q→+∞ q (1/2-j)µ µ l=1 1 l! d l-1 dT l-1 v n (T ; q) k l T =q 1/2-j < ∞. (4.12)
Besides, V n (q 1/2-j ; q) defined by (4.6) satisfies: lim q→+∞ V n (q 1/2-j ; q) × q -j(An-A+3)/2+j 2 A/2-rn(rn-2)/2-A/2 = 1.

It remains to choose µ = A -s in (4.11). With the help of (4.5) and (4.12) we then get: lim q→+∞ q (1/2-j)(A-s)-(j(An-A+3)/2-j 2 A/2+rn(rn-2)/2+A/2) c s,j,n (q) < ∞ .

Replacing q by q 2 , we can easily conclude, for we have: ∀(s, j) ∈ {1, . . . , A} × {0, . . . , n},

(1 -2j)(A -s) -j(An -A + 3) -j 2 A + rn(rn -2) + A ≥ αn 2 + β ′ n + γ ′ , where α = -A/4 -r 2 , β ′ = 2r -(A + 1)/2, γ ′ = -1/2 -1/(2A) (this lower
bound is obtained for s = 1 and j = (n + 1)/2 + 1/(2A)).

Now we can prove the following Lemma, which gives an expression for D n (q), a common denominator to Pj,n (q 2 ), for j ∈ {0, 2, 4, . . . , A -1}: Lemma 4.5. Let n and A be odd positive integers, and r ∈ N * such that A -2r > 0. For α = -A/4 -r 2 , there exist β and γ real numbers depending only on A and r such that for all j ∈ {2, 4, . . . , A -1}:

(A -1)! q ⌊αn 2 +βn+γ⌋ ϕ n (1/q) 2r d n (1/q 2 ) A-j Pj,n (q 2 ) ∈ Z 1 q (4.13)
and

q ⌊αn 2 +βn+γ⌋ ϕ n (1/q) 2r d 2n (1/q) A-1 ∆ n (1/q) P0,n (q 2 ) ∈ Z 1 q . (4.14)
Thus, by setting D n (q) := (A -1)! q ⌊αn 2 +βn+γ⌋ ϕ n (1/q) 2r d 2n (1/q) A-1 ∆ n (1/q), (4.15)

we get:

D n (q) Pj,n (q 2 ) ∈ Z 1 q ∀j ∈ {0, 2, 4, . . . , A -1}.
Proof. As lim q→+∞ d n (1/q 2 ) = d n (0) = ±1 and lim q→+∞ φ t (1/q) = φ t (0) = ±1, the previous Lemma implies that for all (s, j) ∈ {1, . . . , A} × {0, . . . , n} we have:

lim q→+∞ q αn 2 +β ′ n+γ ′ ϕ n (1/q) 2r d n (1/q 2 ) A-s c s,j,n (q 2 ) < ∞.
By using Lemma 4.3 we then obtain that for α = -A/4 -r 2 there exist real numbers β ′ and γ ′ depending only on A and r, such that for all (s, j) ∈ {1, . . . , A} × {0, . . . , n}:

q ⌊αn 2 +β ′ n+γ ′ ⌋ ϕ n (1/q) 2r d n 1/q 2 A-s c s,j,n (q 2 ) ∈ Z 1 q . (4.16)
From the expressions (3.9), (3.16) and (3.18), we deduce (4.13) (some easy computations show that the values β = β ′ -A + 1 and γ = γ ′ + A -2 are convenient).

Besides, the definition (4.3) shows that ∆ n (x) is nothing else but the lowest common multiple (lcm) of 1 -x, 1 -x 3 ,. . . ,1 -x 2n-1 . Recall that d n (x) is the lcm of 1 -x, 1 -x 2 ,. . . ,1 -x n . From the definition of lcm and equation (4.1), we deduce first

d n (x 2 ) = n t=1 φ t (x) × 2n t=n+1 t even φ t (x),
and then that d 2n (x) A-1 ∆ n (x) is the lcm of the polynomials ∆ n (x) s d n (x 2 ) A-s when s runs along {1, . . . , A}. This yields (4.14), with the help of (4.16), expressions (3.15), (3.17) and (3.18), and equation (3.13).

Asymptotic estimates

We now evaluate the asymptotics for S n (q), the coefficients Pj,n (q) from (3.14), and finally D n (q). Throughout this section, we fix an odd integer A and r ∈ N * such that A -2r > 0.

Asymptotic evaluation of S n (q)

Lemma 5.1. For all 0 < |q| < 1, we have:

lim n→+∞ 1 n 2 log |S n (q)| = - 1 2 r(A -2r) log |1/q|.
Proof. Set ρ k (q) := q k (1-q 2k+n-1 )R n (q k ; q), so that S n (q) = k≥1 ρ k (q). By the definition (3.8) of R n (T ; q), it is clear that ρ k (q) = 0 ⇔ k ∈ {0, . . . , rn}. Moreover we have for k ≥ rn + 1:

ρ k+1 (q) ρ k (q) = q (A-2r)n/2+A/2-1 1 -q 2k+n+1 1 -q 2k+n-1 1 -q k 1 -q k-rn × 1 -q k+n+rn 1 -q k+n 1 -q k-1/2 1 -q k+n-1/2 A+1 .
Then, as A -2r > 0, 0 < |q| < 1 and k ≥ rn + 1, we have for a sufficiently large n the following upper bound, uniformly in k:

ρ k+1 (q) ρ k (q) ≤ |q| (A-2r)n/2 1 + |q| 1 -|q| A+3 < 1 3 ,
which yields, as in [START_REF] Krattenthaler | Séries hypergéométriques basiques, q-analogues des valeurs de la fonction zêta et séries d'Eisenstein[END_REF] and [START_REF] Jouhet | Irrationalité aux entiers impairs positifs d'un q-analogue de la fonction zêta de Riemann[END_REF], the following inequalities:

1 2 |ρ rn+1 (q)| ≤ |S n (q)| ≤ 3 2 |ρ rn+1 (q)|.
Besides, ρ rn+1 (q) = (-1) rn+2 q (rn+1/2)((A-2r)n/2+A/2-1)

× (1 -q 2rn+n+1 )(q) A-2r n (q, q (r+1)n+1 ) rn (q rn+1/2 ) A n+1 , therefore we get:

lim n→+∞ 1 n 2 log |S n (q)| = lim n→+∞ 1 n 2 log |ρ rn+1 (q)| = - 1 2 r(A -2r) log |1/q|.
5.2 Asymptotic evaluation of the coefficients Pj,n (q) of (3.14)

Lemma 5.2. For all j ∈ {0, 2, 4, . . . , A -1} and 0 < |q| < 1, we have:

lim sup n→+∞ n odd 1 n 2 log | Pj,n (q)| ≤ 1 8 (A + 4r 2 ) log |1/q|.
Proof. We assume from now on that n is an odd positive integer. First note that for any complex numbers a i,n (0

≤ i ≤ n): ∀i ∈ {0, . . . , n}, lim sup n→+∞ 1 n 2 log |a i,n | ≤ c ⇒ lim sup n→+∞ 1 n 2 log n i=0 a i,n ≤ c.
This shows, via the definition of the coefficients Pj,n (q) given by (3.15)-(3.18), that it is enough to prove the inequality of the Lemma for the coefficients d s,j,n (q) = (-1) s q (j-1/2)s c s,j,n (q), uniformly in j and s. We fix the integer j ∈ {0, . . . , n} and η = (1 -|q|)/2 > 0. Cauchy's formula applied to (3.10) gives:

d s,j,n (q) = - 1 2iπ C R n (T q 1/2-j ; q)(1 -T ) s-1 dT,
where C is the circle of center 1 and radius η. Back to the expression (3.8), we get:

R n (T q 1/2-j ; q)(1 -T ) s-1 = q -j((A-2r)n/2+A/2-2)-An-1/2 T (A-2r)n/2+A/2-2 × (q) A-2r n (1 -T ) s-1 (q -rn-j+1/2 T, q n-j+1/2 T ) rn (T q -j ) A n+1 •
After some elementary manipulations, we can deduce:

R n (T q 1/2-j ; q)(1-T ) s-1 = q Aj 2 /2-Anj/2+2j-(rn) 2 /2-An-1/2 T A(n-2j)/2+A/2-2 × (-1) Aj+rn (q) A-2r n

(1 -T ) s-A-1 (q j+1/2 /T, q n-j+1/2 T ) rn (q/T ) A j (qT ) A n-j

•

In order to find an upper bound to this expression for T ∈ C, we use the following inequalities from [START_REF] Krattenthaler | Séries hypergéométriques basiques, q-analogues des valeurs de la fonction zêta et séries d'Eisenstein[END_REF], valid for (a, b)

∈ N * × N, T ∈ C and η = (1 -|q|)/2: 0 < (|q|(1 + η); |q|) ∞ ≤ |(q a T ) b | ≤ (-(1 + η); |q|) ∞ , 0 < (|q|/(1 -η); |q|) ∞ ≤ |(q a /T ) b | ≤ (-1/(1 -η); |q|) ∞ , |T A(n-2j)/2+A/2-2 | ≤ (max(1 + η; 1/(1 -η)) An/2 (1 + η) A/2-2 , |(q) n | ≤ (-|q|; |q|) ∞ and |1 -T | s-A-1 ≤ 1/η A+1 .
It remains to find a lower bound for the power of q in the previous expression of R n (T q 1/2-j ; q)(1 -T ) s-1 . This can be done by noting that the function j → Aj 2 /2 -Anj/2 + 2j -(rn) 2 /2 -An -1/2 is minimal at j = n/2 -2/A, and this minimal value is equal to -An 2 /8 -r 2 n 2 /2 + λn + µ, where λ and µ are real numbers depending only on A and r. All this yields to the following:

|d s,j,n (q)| ≤ c 0 × |q| -(A+4r 2 )n 2 /8
, where c 0 does not depend on j neither s, and satisfies lim n→+∞ c 1/n 2 0

= 1, and we can conclude.

5.3 Asymptotic evaluation of D n (q) defined by (4.15) We first prove a preliminary result:

Lemma 5.3. For any positive integer n, we have:

1≤d≤n d odd µ(d) d 2 = 8 π 2 + O(1/n), (5.1) 
1≤d≤n d even µ(d) d 2 = - 2 π 2 + O(1/n), (5.2) 
where µ is the Möbius function.

π 2 = d≥1 µ(d) d 2 = d≥1 µ(2d) 4d 2 + d≥1 d odd µ(d) d 2 .
Besides µ(2d) = -µ(d) if d is odd and µ(2d) = 0 if d is even, so we get:

d≥1 d odd µ(d) d 2 = 8 π 2 , (5.3) 
and this implies

d≥1 d even µ(d) d 2 = - 2 π 2 • (5.4)
Then we immediately deduce (5.1) (resp. (5.2)) from (5.3) (resp. (5.4)).

Now we can prove the following Lemma:

Lemma 5.4. For all 0 < |q| < 1 we have: which yields (5.5), by setting x = 1/q and using (5.1).

lim n→+∞ 1 n 2 log |∆ n (1/q)| = 8 π 2 log |1/q|, (5.5) 
To prove (5.6), recall the definition (4.4):

ϕ n (x) = φ 2 (x) n φ 4 (x) ⌊n/2⌋ . . . φ 2n (x).
We use again (5. (5.8)

Assuming |x| > 1 we can write:

u n (x) = log |x| n l=1 l n l + n l=1 n l log |1 -x -l | = log |x| n l=1 l 1≤k≤n/l 1 + l,k≥1 lk≤n log |1 -x -l | = log |x| 2 n k=1 n k n k + 1 + O    l,k≥1 lk≤n 1    = log |x| 2 n k=1 n 2 k 2 + O (n log n) = n 2 log |x| × π 2 12 + O (n log n) .
Therefore, by using (5.8), (5.2) and (5.1), we deduce:

log |ϕ n (x)| = 1≤d≤2n d even µ(d) 4 n 2 d 2 log |x| × π 2 12 + O 2n d log 2n d + 1≤d≤2n d odd µ(d) 2 n 2 d 2 log |x| × π 2 12 + O n d log n d = n 2 log |x| × π 2 3 × -2 π 2 + n 2 log |x| × π 2 6 × 8 π 2 + O n log 2 n = 2 3 n 2 log |x| + O n log 2 n ,
which, by setting x = 1/q, shows (5.6) as desired.

Now we are able to prove the following result:

Lemma 5.5. For all 0 < |q| < 1 we have:

lim n→+∞ 1 n 2 log |D n (q)| = A 4 + r 2 + 12 π 2 (A -1) + 4r 3 + 8 π 2 log |1/q|.
Proof. For 0 < |q| < 1 recall the estimate (see [START_REF] Bundschuh | Arithmetical investigations of a certain infinite product[END_REF] and [START_REF] Van Assche | Little q-Legendre polynomials and irrationality of certain Lambert series[END_REF]):

lim n→+∞ 1 n 2 log |d n (1/q)| = 3 π 2 log |1/q|.
(5.9)

Thus, with the help of the expressions of D n (q) and α = -A/4 -r 2 given by (4.15), and by using the previous Lemma, we can easily conclude.

6 Concluding remarks 6.1 Link with Dirichlet's beta function

As mentioned in the introduction, we now justify the term q-analogues of the values of Dirichlet's beta function at positive integers. To this aim, recall the Stirling numbers of the second kind (see [START_REF] Stanley | Enumerative Combinatorics[END_REF]), which are integers denoted by S(s, j) (where s and j are integers such that 1 ≤ j ≤ s) and defined by:

x s = s j=1
S(s, j)x(x -1) . . . (x -j + 1).

By expanding the summand in the first expression of (1.1), we can write for all s ≥ 2 and |q| < 1:

β q (s) = k≥1 k s-1 m≥0 (-1) m q (2m+1)k = k,m≥0 (k + 1) s-1 (-1) m q (2m+1)(k+1) = k,m≥0 s-1 j=1 q (2m+1)(k+1) (-1) m+s-1-j S(s -1, j)j! k + j j = s-1 j=1 (-1) s-1-j S(s -1, j)j! m≥0 (-1) m q 2m+1 (1 -q 2m+1 ) j+1 = s-1 j=1
(-1) s-1-j S(s -1, j)j! Y j+1 (q). (6.1)

Note in passing that (6.1) is the inverse expansion of (3.4). Notice that our auxiliary functions Y s (q) are clearly q-analogues of the function β at positive integers, since for s ≥ 1:

lim q→1 (1 -q) s Y s (q) = β(s).
This shows, by using (6.1) and (1.2), that for all s ≥ 1: lim q→1

(1 -q) s β q (s) = (s -1)!β(s). (6.2)

6.2 Special emphazis on β q (1) and β q (2)

For s = 1, we have in fact:

β q (1) = Y 1 (q),
which, as mentioned in the introduction, is, up to constants, equal to π q whose irrationality exponent was studied in [START_REF] Bundschuh | Rational approximation to a q-analogue of π and some other q-series[END_REF][START_REF] Bundschuh | Irrationality measures for certain qmathematical constants[END_REF]. Now we inspect more carefully the link with Catalan's constant, which is defined by G := k≥0 (-1) k /(2k + 1) 2 = β(2). The q-analogue of G proposed at the end of [START_REF] Bundschuh | Irrationality measures for certain qmathematical constants[END_REF] corresponds to Y 2 (q). Although this is not really obvious from the definition of β q (2), we have in fact via (6.1) the following identity, which can also be deduced from (3.4):

β q (2) = Y 2 (q) = k≥0 (-1) k q 2k+1 (1 -q 2k+1 ) 2 •
There are many similarities between the diophantine behaviour of the values of Riemann's zeta function at even positive integers and the values of Dirichlet's beta function at odd positive integers. However, no analogy to Apery's famous result [START_REF] Apéry | Irrationalité de ζ(2) et ζ(3)[END_REF] ζ(3) / ∈ Q has been found for G yet. Indeed, the linear forms built in [START_REF] Rivoal | Diophantine properties of numbers related to Catalan's constant[END_REF] do not show that G is irrational. Moreover, even the denominators Conjecture formulated in [START_REF] Rivoal | Diophantine properties of numbers related to Catalan's constant[END_REF] do not give the arithmetic nature of G. We point out that this denominators Conjecture was proved in [START_REF] Rivoal | Nombres d'Euler, approximants de Padé et constante de Catalan[END_REF] through Padé approximants, and then in a simpler way by using transformation formulae for hypergeometric series in [START_REF] Krattenthaler | On a linear form for Catalan's constant[END_REF]. Now recall the linear combination for G studied in [START_REF] Krattenthaler | On a linear form for Catalan's constant[END_REF]:

n! k≥1 (-1) k k + n -1 2 (k -n) n (k + n) n (k -1/2) 3 n+1 = a n G -b n , (6.3) 
where the coefficients a n and b n are explicitely given in [START_REF] Krattenthaler | On a linear form for Catalan's constant[END_REF], and we recall (x) n := x(x + 1) . . . (x + n -1). We want to point out that our linear combination (3.14) gives a q-analogue of (6.3). Indeed, for any odd positive integer n, A = 3 and r = 1, (3.14) is:

(q) n k≥1 (-1) k+1 q (2k-1)(n+1)/4 (1 -q k+(n-1)/2 ) (q k-n , q k+n ) n (q k-1/2 ) 3 n+1 = A n (q)β √ q (2) + B n (q), (6.4) with A n (q) := n j=0 (-1) j q 1/2-j (2d 2,j,n (q) + d 3,j,n (q)) and B n (q) := (-1) j+k q k-j d s,j,n (q) (1 -q k-1/2 ) s + q -k+j d s,j,n (1/q) (1 -q -k+1/2 ) s -1 2 n j=0 (-1) j q 1/2-j d 1,j,n (q). Multiplying (6.4) by (1 -q 1/2 ) 2 , then letting q tend to 1, we get by using (6.2):

- 1 2 n! k≥1 (-1) k k + n -1 2 (k -n) n (k + n) n (k -1/2) 3 n+1 = α n G + β n , (6.5) 
where α n := lim q→1 A n (q) and β n := lim q→1 (1 -q 1/2 ) 2 B n (q). If the hypergeometric series on the left-hand side of (6.5) is multiplied by -2, we obtain the left-hand side of (6.3). Moreover, by using the definition (3.8) of R n , the identity (3.9), and (3.11), a direct calculation gives:

α n = -2 n j=0 (n -2j) n j 3 n + j -1 2 n 2n -j -1 2 n × 1 n -2j + 3H j + H j-1 2 -H n+j-1 2 ,
where for any positive integer m, H m := m j=1 1 j is the m-th harmonic number, whose definition is extended to half-integers by H m := ⌊m⌋+1 j=1 1 m-j+1 • This shows that for any odd positive integer n, α n = -a n /2 (see [START_REF] Krattenthaler | On a linear form for Catalan's constant[END_REF]). Thus our linear combination (6.4) is indeed a q-analogue of the one in [START_REF] Krattenthaler | On a linear form for Catalan's constant[END_REF], as we necessarily have β n = b n /2.

A q-denominators Conjecture

As in [START_REF] Jouhet | Irrationalité aux entiers impairs positifs d'un q-analogue de la fonction zêta de Riemann[END_REF], it seems possible to refine Lemma 4.5, by considering another common denominator to the Pj,n (q 2 ), having the form Dn (q) = D n (q)/∆ n (1/q). We formulate in this direction the following q-denominators Conjecture: Conjecture 6.1. Let n and A be odd positive integers, and set r ∈ N * such that A -2r > 0. For α = -A/4 -r 2 , there exist real numbers β and γ only depending on A and r such that if we set: Dn (q) := (A -1)! q ⌊αn 2 +βn+γ⌋ ϕ n (1/q) 2r d 2n (1/q) A-1 , then we get: Dn (q) Pj,n (q 2 ) ∈ Z 1 q ∀j ∈ {0, 2, 4, . . . , A -1}.

In our opinion, this Conjecture should be solved by using transformation formulae for basic hypergeometric series, together with arithmetical techniques similar to those used in [START_REF] Jouhet | Irrationalité aux entiers impairs positifs d'un q-analogue de la fonction zêta de Riemann[END_REF]. Proving this conjecture would imply for 1/q ∈ Z \ {-1; 1} and any odd integer A ≥ 3: 

dim Q (Q + Qβ q (2) + • • • + Qβ q (A -1)) ≥ g(A),

lim n→+∞ 1 n 2 log |ϕ n ( 1

 1 Möbius inversion formula applied to (4.1) yields for k ∈ N * : log |φ k (x)| = d|k µ(d) log |x k/dusing (5.7), we can write for |x| > 1: log |∆ n (x)| = 2n k=1 k odd d|k µ(d) log |x k/d -|x| + log |1 -x -l |) n log n), we get: log |∆ n (x)| = n 2 log |x| 1≤d≤2n d odd µ(d) d 2 + O(n log n),

  7), assuming |x| > 1: log |ϕ n (x)| = |x l -1|. Hence, by setting u n (x) := n l=1 n l log |x l -1|, we have: log |ϕ n (x)| = 1≤d≤2n d even µ(d)u 2n/d (x) + 1≤d≤2n d odd µ(d)u n/d (x 2 ).

  where g(A) = max r∈N 1≤r<A/2 g(r; A) and g(r; A) := 4rA + A -4r 2 48 π 2 + 2 A + 8r

•

  2 -48 π 2 + 16r 3 Unfortunately, and unlike the case of ζ q in[START_REF] Jouhet | Irrationalité aux entiers impairs positifs d'un q-analogue de la fonction zêta de Riemann[END_REF], solving this conjecture would not give a refinement of the quantitative version in Corollary 1.3. Indeed,

although g(A) > f (A) for all A, we have 1 > g(19) ≃ 0.988 > f (19) ≃ 0.973 and g(21) ≃ 1.042 > f (21) ≃ 1.028 > 1.