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RANDOM WALKS IN RANDOM DIRICHLET ENVIRONMENT
ARE TRANSIENT IN DIMENSION d ≥ 3

CHRISTOPHE SABOT

Abstract: We consider random walks in random Dirichlet environment (RWDE)
which is a special type of random walks in random environment where the exit prob-
abilities at each site are i.i.d. Dirichlet random variables. On Zd, RWDE are parame-
terized by a 2d-uplet of positive reals. We prove that for all values of the parameters,
RWDE are transient in dimension d ≥ 3. We also prove that the Green function has
some finite moments and we characterize the finite moments. Our result is more gen-
eral and applies for example to finitely generated symmetric transient Cayley graphs.
In terms of reinforced random walks it implies that directed edge reinforced random
walks are transient for d ≥ 3.

1. Introduction

Random Walks in Random Environment (RWRE) have received a considerable
attention in the last years. A lot is known for one-dimensional RWRE, but the
situation is far from being so clear in dimension 2 and larger. Progress has been made
for multidimensional RWRE (in particular, since the work of Sznitman and Zerner, cf
[38]) essentially in two directions: for ballistic RWRE (cf [38], [36], [29] and reference
therein) and more recently for small perturbations of the simple random walk in
dimension d ≥ 3. Nevertheless, many important questions as the characterization
of recurrence, of ballistic behavior, invariance principle remain open. Recently, for
RWRE which are small isotropic perturbations of the simple random walk on Zd, d ≥
3, Bolthausen and Zeitouni ([3]) made some progress in the direction of the invariance
principle and proved transience using renormalization techniques (invariance principle
for the corresponding continuous model has previously been obtained by Sznitman and
Zeitouni, [37]). In the case of ballistic RWRE, Rassoul-Agha and Seppäläinen obtained
a quenched functional cental limit theorem ([31]). On very special cases as symmetric
environments ([21]), or environments admitting a bounded cycle representation ([10])
an invariance principal has been obtained. On the ballistic case, some important
progress has been made on the description of large deviations ([41, 43, 44, 32]). We
refer to [45] or [34] for surveys.

Among random walks in random environment, random walks in random Dirich-
let environment (RWDE) play a special role. It corresponds to the case where the
transition probabilities at each site are chosen as i.i.d. Dirichlet random variables.
RWDE have the remarkable property that the annealed law is the law of a directed
edge reinforced random walk. This is a simple consequence of the representation of
Polya’s urns as a Dirichlet mixtures of i.i.d. sampling ([26], [13]). In [12], N. Enriquez
and the author have obtained a criterion for ballistic behavior on Zd, later improved
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2 C. SABOT

by L. Tournier ([40]). Besides, in the one-dimensional case, it appeared in [14] that
limit theorems in the sub-ballistic regime are fully explicit in the case of Dirichlet
environment, highlighting the special role of Dirichlet environment among random
environments. Finally, in [30] we have described a precise relation between RWDE
and hypergeometric integrals associated with certain arrangement of hyperplanes.

As already mentioned, random Dirichlet environment is very natural from the point
of view of reinforced random walks. Reinforced random walks have been introduced by
Diaconis (cf [8] and Pemantle’s thesis [26]). There are three natural models of linearly
reinforced random walks, namely vertex reinforced random walks, (undirected) edge
reinforced random walks, and directed edge reinforced random walks. None of these
models is completely understood yet. Vertex reinforced random walks are expected to
get localized on a finite set, but this is completely solved only in dimension 1 ([28, 39]).
Concerning edge reinforced random walks, Diaconis and Coppersmith proved that it
can be represented as a ”complicated” mixture of reversible random walks. Recurrence
of edge reinforced random walks has been proved by Merkl and Rolles ([24]) on a two
dimensional graph (but the question is still open on Z2 itself). By comparison, directed
edge reinforced random walks correspond to the annealed law of RWDE, hence they
are a simple mixture of non-reversible Markov chains. The difficulty of this model
does not come from the representation as a RWRE, but lies in the non-reversibility
of this RWRE. We refer to [27] for a survey on the subject.

On Zd, RWDE are parameterized by 2d positive reals (α1, . . . , α2d), one for each
direction. We call (αi) the weights. In this paper, we prove that RWDE on Zd, for
d ≥ 3, are transient for all values of the weights (in particular for the case of unbiased
weights). In fact, we prove that the Green function has some finite moments and
we explicitly compute the critical integrability exponent κ, i.e. the supremum of the
reals s > 0 such that the Green function G(0, 0)s has finite expectation. We show
that this real is the same as the one for the RWDE killed when it exists a finite large
ball (which has been computed by Tournier in [40]). In some way, it means that
trapping is only due to finite size traps which come from the non uniform ellipticity
of the environment. Our result is in fact more general and applies for example to
any finitely generated Cayley graph on which the simple random walk is transient
(cf theorem 2 and corollary 1). Compared to the results of [3], our results are non-
perturbative, they apply to any choice of the weights, but our method is specific to the
Dirichlet environment. The proof is remarkably short, and it is quite surprising that
for RWDE things simplify so much. We don’t have a clear explanation for this, it may
be related to the correspondence with linearly reinforced random walks (even if it does
not appear in this proof) or from the relation between RWDE and hypergeometric
integrals (cf [30]). We think it highlights the special role of Dirichlet environment and
we think that the techniques presented in this paper will help us to understand more
on RWDE.

Our proof is based on an explicit formula valid for Dirichlet environments and on
a method of perturbation of the weights. Finally, the critical exponent is obtained
thanks to an L2 version of the Max-Flow Min-Cut theorem (proposition 2). The ex-
plicit formula (corollary 2) was in fact hinted in our joint work with N. Enriquez and
O. Zindy ([14, 15]) where it appeared that in the case of one-dimensional RWDE, the
Green function on the half-line at 0 has an explicit law (which is in fact a consequence
of a result of Chamayou and Letac on explicit solutions of renewal equations, [11]).
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Let us present our results for the graph Z
d. Let (e1, . . . , ed) be the canonical base

of Zd, and set ej = −ej−d, for j = d + 1, . . . , 2d. The set {e1, . . . , e2d} is the set of
unit vectors of Zd. We consider a probability law λ on

{(x1, . . . , x2d) ∈]0, 1]
2d,

2d
∑

i=1

xi = 1}(1.1)

We construct a Markov chain on Zd, to nearest neighbors as follows: we choose
independently at each point x ∈ Zd, some transition probabilities

p(x) = (p(x, x+ ei))i=1,...,2d ,

according to the law λ. It means that the vector (p(x))x∈Zd is chosen according to the
product measure µ = ⊗x∈Zdλ. It defines the transition probability of a Markov chain

on Zd, and we denote by P
(p)
x the law of this Markov chain starting from x:

P (p)
x [Xn+1 = x+ ei|Xn = x] = p(x, x+ ei).

Random Dirichlet environments correspond to the case where the law λ is a Dirich-
let law (cf section 2 for details). More precisely, we choose some positive weights
(α1, . . . , α2d) and we take λ = λ(α) with density

Γ(
∑2d

i=1 αi)
∏2d

i=1 Γ(αi)

(

2d
∏

i=1

xαi−1
i

)

dx1 · · · dx2d−1,(1.2)

where Γ is the usual Gamma function Γ(α) =
∫∞

0
tα−1e−tdt. (In the previous ex-

pression dx1 · · · dx2d−1 represents the image of the Lebesgue measure on R2d−1 by the
application (x1, . . . , x2d−1) → (x1, . . . , x2d−1, 1− (x1+ · · ·+x2d−1). Obviously, the law
does not depends on the specific role of x2d.) We denote by P(α) the law obtained on
the environment in this way. This type of environment plays a specific role, since the

annealed law P
(α)
x [·] = E(α)[P

(p)
x (·)] corresponds to a directed edge reinforced random

walk with an affine reinforcement, i.e.

P
(α)
x [Xn+1 = Xn + ei|σ(Xk, k ≤ n)] =

αi +Ni(Xn, n)
∑2d

k=1 αk +Nk(Xn, n)
,

where Nk(x, n) is the number of crossings of the directed edge (x, x+ ek) up to time
n (cf [13]). When the weights are constant equal to α, the environment is isotropic:
when α is large, the environment is close to the deterministic environment of the
simple random walk, when α is small the environment is very disordered.

Let us now describe precisely our results for Zd, d ≥ 3. We denote by G(x, y) the
green function in the environment (p(x))x∈Zd.

G(x, y) = E(p)
x [

∞
∑

k=0

1Xk=y].

Theorem 1. For d ≥ 3 and for any choice of weights (α1, . . . , α2d) we have

E
(α) (G(0, 0)s) <∞

if and only if s < κ where

κ = 2

2d
∑

j=1

αej − max
i=1,...,d

(αei + α−ei).

In particular, the RWDE is transient for almost all environments.



4 C. SABOT

Remark 1. In [40], Tournier computed the critical integrability exponent for RWDE
on finite graphs. For N > 1, let GN be the Green function of the RWDE killed when
it exists the ball B(0, N): theorem 2 of [40] implies that GN(0, 0)

s is integrable if and
only if s < κ. Hence, GN(0, 0) has no higher integrable moments than the Green
function G(0, 0) itself. It seems to mean that there is no infinite size trap and that
the trapping effect comes only from finite size traps due to the non-uniform ellipticity
of the environment (cf also remark 8 after theorem 2).

Remark 2. The result for Zd is in fact a consequence of a more general result valid
for directed symmetric graph, under a condition on the weights (positive divergence),
cf theorem 2.

Remark 3. This theorem solves, in the special case of Dirichlet environments, prob-
lem 3 stated in Kalikow’s paper [18] : Kalikow’s problem is to prove that all RWRE
with i.i.d. elliptic environments in dimension d ≥ 3 are transient.

Remark 4. Let us make some comments on previous results on recurrence or tran-
sience of RWRE. In [21], Lawler proved a CLT for RWRE with symmetric environ-
ments (i.e. almost surely, the environment is symmetric at each site in each direction)
and recurrence on Z

2 and transience on Z
d, d ≥ 3, are proved in [45], theorem 3.3.22.

Transience has been proved by Bolthausen and Zeitouni ([3]) in dimension d ≥ 3 for
small isotropic random perturbations of the simple random walk (in fact, there is no
intersection between the cases treated in [3] and in this paper). In the same paper they
also obtain some estimates on the exit distributions of large balls. In [37], Sznitman
and Zeitouni proved an invariance principal for diffusions in isotropic environment at
low disorder in dimension d ≥ 3 (which is the continuous analogue of isotropic RWRE
at low disorder investigated in [5]) and obtained transience as a by-product.

In the closely related model of (undirected) edge reinforced random walks they are
very few available results. Recurrence has been proved on a graph of the type of Z2

by Merkl and Rolles ([24]). On regular trees transience or recurrence depends on the
reinforcement parameter (cf [25]). On Z

d, d ≥ 3, there is, up to my knowledge, no
clear conjecture.

Remark 5. The exponent κ should play an important role in the asymptotic behaviour
of the RWDE. Indeed, κ is related to the tail of the expected number of visits to the
point 0. In dimension 1 in the transient case, the exponent κ defined as the supremum
of the s > 0 such that G(0, 0)s is integrable is also the exponent which governs the
asymptotic behaviour of the walk (cf [20]). For RWDE, in dimension d ≥ 3, with
non-balanced weights (i.e. αi+d 6= αi for a direction i = 1, . . . , d) this result leads to
conjecture that the RWDE is ballistic if and only if κ > 1. It has been proved in [40],
proposition 11, that the RWDE has null velocity when κ ≤ 1.

Let us describe the organization of the paper. In section 2, we describe the model of
RWDE on directed graphs and in section 3 we state the general results on symmetric
graphs. In section 4, we prove the key explicit formulas. Section 5 is devoted to the
proof of the main result on integrability and section 6 to the transience part of the
result. In section 7, we prove a generalization of the Max-Flow Min-Cut theorem for
flows of finite energy. In section 8 we apply the results to directed symmetric graphs
and we prove theorem 2 (ii). Remark that the proof of transience on Zd, d ≥ 3, can
be understood by reading sections 2,4,5 only.
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2. Markov chain in Dirichlet environment on directed graphs

The Dirichlet law is the multivariate generalization of the beta law. The Dirichlet
law with parameters (α1, . . . , αN), αi > 0 is the law on the simplex

{(p1, . . . , pN) ∈ [0, 1]N , such that
∑

pi = 1},

with distribution
(

Γ(
∑N

i=1 αi)
∏N

i=1 Γ(αi)

N
∏

i=1

pαi−1
i

)

dx1 · · · dxN−1,

where as previously dx1 · · · dxN−1 represents the image of the Lebesgue measure on
RN−1 by the application (x1, . . . , xN−1) → (x1, . . . , xN−1, 1− (x1+ · · ·+xN−1)) (which
does not depend on the specific role of xN ). The first coordinate of a Dirichlet random
variable with parameters (α, β) is by definition a beta random variable with param-
eter (α, β). The following representation of Dirichlet ditribution is classical (cf e.g.
[42], page 180): if (γ1, . . . , γN) are independent gamma random variables with param-
eters α1, . . . , αN then ( γ1∑

γi
, . . . , γN∑

γi
) is a Dirichlet random variable with parameters

(α1, . . . , αN). The following properties are easy consequences of this representation
(cf [42] page 179-182).

(Associativity) Let I1, . . . , Ik be a partition of {1, . . . N}. Then the random variable
(
∑

j∈Ii
pj)i=1,...,k is a Dirichlet random variable with parameters (

∑

j∈Ii
αj)i=1,...,k.

(Restriction) Let J be a non-empty subset of {1, . . . , N}. The random variable
(

pj∑
i∈J pi

)j∈J follows a Dirichlet law with parameters (αj)j∈J and is independent of
∑

i∈J pi (which follows a beta random variable with parameters (
∑

J αi,
∑

Jc αi) by
the associativity property.)

Let us first describe Random Walks in Dirichlet Environment (RWDE for short) on
a general graph. A directed graph is a couple G = (V,E) where V is the countable set
of vertices and E is the countable set of edges. By definition, to an edge e corresponds
a couple of vertices (e, e) : e and e represent respectively the tail and the head of the
edge e. For convenience we allow multiple edges and loops (i.e. edges with e = e).
We suppose that the graph has bounded degree i.e. that the number of edges exiting
a vertex x or pointing to a vertex x is bounded. For an integer n and a vertex x we
denote by B(x, n) the ball with center x and radius n for the graph distance (defined
independently of the orientation of the edges). We say that a subset K ⊂ V is strongly
connected if for any two vertices x and y in K there is a directed path in K from x
to y.

Let us define the divergence operator on the graph G: it is the operator div : RE 7→
RV defined for a function θ : E 7→ R by

div(θ)(x) =
∑

e,e=x

θ(e)−
∑

e,e=x

θ(e), ∀x ∈ V.

The set of environments on G is defined as the set

∆ = {(pe)e∈E ∈]0, 1]E, such that
∑

e,e=x

pe = 1, ∀x ∈ V such that {e, e = x} 6= ∅}.

With any environment (pe) we associate the Markov chain on V with law (P
(p)
x ), where

P
(p)
x0 is the law of the Markov chain starting from x0 with transition probabilities given
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by

P (p)
x0

(Xn+1 = y|Xn = x) = p(x,y) =
∑

e,e=x,e=y

pe, ∀x 6= y.

If y is a vertex such that no edge is exiting y then we put P
(p)
x0 (Xn+1 = y|Xn = y) = 1,

so that y is an absorbing point. We denote by G(p)(x, y) the Green function in the
environment (p) defined for x and y in V by

G(p)(x, y) = E(p)
x

(

∞
∑

k=0

1Xk=y

)

.

(We often simply write G(x, y) for G(p)(x, y)).

Let (αe)e∈E be a set of positive weights on the edges. For any vertex x we set

αx =
∑

e,e=x

αe

the sum of the weights of the edges with origin x. The Dirichlet environment with
parameters (αe), denoted by P(α), is the law on ∆ obtained by taking at each site
x the transition probabilities (pe)e=x independently accordingly to the Dirichlet law
with parameters (αe)e=x.

When the graph is finite the distribution of the Dirichlet environment is given by
∏

x∈V Γ(αx)
∏

e∈E Γ(αe)

(

∏

e∈E

pαe−1
e

)

dλ∆.(2.1)

where dλ∆ is the measure on ∆ given by

dλ∆ =
∏

e∈Ẽ

dpe,

where Ẽ is obtained from E by removing arbitrarily, for each vertex x, one edge with
origin x (easily, it is independent of this choice)

Remark 6. We allow multiple edges for convenience (for the proof of corollary 2) but
it does not play any role in terms of the process: indeed, if G = (V,E) with weights

(αe)e∈E has multiple edges we can consider the quotiented graph G̃ = (V, Ẽ) with
weights (α̃e) obtained by replacing multiple edges by a unique edge with weight equal
to the sum of the weights of the corresponding edges in G. If (pe)e∈E is a Dirichlet
environment on the graph G, the corresponding environment on the quotiented graph
G̃ obtained by summing the (pe) of multiple edges is again a Dirichlet environment on

G̃ with weights (α̃e). This is due to the associativity property of Dirichlet laws.

3. Statement of the results on transient symmetric graphs

For us, a directed symmetric graph will be a directed graph G without multiple
edges and such that if (x, y) ∈ E then (y, x) ∈ E. To G corresponds a non-directed
graph G = (V,E) where {x, y} ∈ E if and only if (x, y) ∈ E.

Theorem 2. Let G be a connected directed symmetric graph with bounded degree.
Suppose that the weights (αe)e∈E satisfy

(H1) there exists c > 0 and C > c such that c ≤ αe ≤ C for all e in E.

(H2) For all vertices x, div(α)(x) ≥ 0.
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Suppose that the simple random walk on the non-directed graph G is transient.

(i) For any x0 in V , there exists κ0 > 0 such that

E
(α)(G(x0, x0)

s) <∞

for all s < κ0. In particular, the RWDE on G with parameter (αe) is transient for
almost all environments.

(ii) Assume moreover that the following condition on G holds

(H’3) There exists a strictly increasing sequence of integers ηn such that B(x0, ηn+1)\
B(x0, ηn) is connected in G.

Then

E
(α)(G(x0, x0)

s) <∞, if and only if s < κ

where if (x0, x0) 6∈ E

κ = min{α(∂EK), K ⊂ V is finite connected in G, x0 ∈ K and K 6= {x0},}

and if (x0, x0) ∈ E

κ = min{α(∂EK), K ⊂ V is finite connected in G, x0 ∈ K.}

with ∂EK = {e ∈ E, e ∈ K, e /∈ K} and α(∂EK) =
∑

e∈∂EK αe.

Remark 7. An expression for κ0 in terms of a L2-Max-Flow problem is given in the
proof, cf formula 5.3.

Remark 8. The interpretation of κ is the following : the finite subsets K which appear
in the infimum should be understood as finite traps and the value α(∂EK) represents
the strength of the trap K : indeed, α(∂EK) governs the tail of the probability that
the values of (pe)e∈∂E(K) are all smaller than ǫ ; when the exit probabilities (pe)e∈∂EK

are small the process spends a long time in the strongly connected region K. In [40],
corollary 4, Tournier computed the critical integrability exponent for RWDE on finite
graphs: (ii) shows that κ is the same as the critical integrability exponent of the
Green function of the RWDE killed when it exits the ball B(x0, N), for N such that
B(x0, N) contains the subset K which realizes the minimum in the expression of κ.
This suggests that trapping only comes from finite size traps on transient symmetric
graphs that satisfy (H’3).

Remark 9. The difference between the expression of κ when there is a loop at x0 or
not comes from the fact that when (x0, x0) ∈ E the RWDE can be trapped on {x0} but
not when (x0, x0) 6∈ E.

Corollary 1. Let {e1, . . . , ed} be a finite, symmetric (i.e. the set is stable by in-
version), set of generators of a group and G be the associated Cayley graph. Let
(α1, . . . , αd) be positive reals. If the simple random walk on the Caley graph is tran-
sient, then the RWDE on the Caley graph G, with weights (α(g,gei) = αi), is transient
almost surely.

Proof. (H1) is clearly true. For all element of the group g,
∑N

i=1 αg,gei =
∑N

i=1 αi =
∑N

i=1 αge−1

i ,g. Thus (H2) is satisfied. �
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4. Stability by time reversal

4.1. The key lemma. Suppose now that the graph is finite and strongly connected
i.e. that there is a directed path between any two vertices x and y. Let Ǧ = (V, Ě)
be the graph obtained from G by reversing all the edges, i.e. Ě is obtained from E by
reversing the head and the tail of the edges. If e ∈ E we denote by ě ∈ Ě the reversed
edge with tail e and head e. For an environment (pe), (p̌ě) denotes the environment
obtained by time reversal of the Markov chain, i.e. for all e in E

p̌ě =
πe
πe
pe,

where (πx)x∈V is the invariant probability on V for the Markov chain P (p). (Since we
assume that the graph is strongly connected and that the weights pe are positive this
invariant probability exists and is unique).

Lemma 1. Let G = (V,E) be a strongly connected finite directed graph. Suppose that
the weights (αe) have divergence null, i.e.

div(α)(x) = 0, ∀x ∈ V,

If (pe)e∈E is a Dirichlet environment with parameters (αe)e∈E then the time reversed
environment (p̌e)e∈Ě is a Dirichlet environment on Ǧ with parameters (αe).

Remark 10. By this we mean that (p̌e) is distributed according to a Dirichlet envi-
ronment with parameters (α̌ě∈Ě) where α̌ě = αe if ě is the reversed edge of e. We will
often identify the edges in E with their reversed edges in Ě.

Proof. Two proofs are available for this lemma. The original proof given in this paper
is analytic and based on a change of variable. Later, in collaboration with L. Tournier,
we obtained a shorter probabilistic proof, cf [33]. The analytic proof has nevertheless
an interest since it leads to an interesting distribution on the space of occupation
density (cf lemma and remark below).

Let e0 be a specified edge of the graph. Let He0 be the affine space defined by

He0 = {(ze)e∈E ∈ R
E , ze0 = 1, div(z) ≡ 0}.

and H the vector space

H = {(ze)e∈E ∈ R
E , div(z) ≡ 0}.

Let ∆̃e0 = He0 ∩ (R∗
+)

E . The strategy is to make the change of variable

∆ 7→ ∆̃e0

(pe)e∈E → (ze =
πepe
πe0pe0

)e∈E.

Hence, (ze) is the occupation time of the graph normalized so that ze0 = 1. It is
easy to see that the previous change of variable is a C∞-diffeomorphism. Let T be a
spanning tree of the graph G such that e0 /∈ T . (This is possible since the graph is
strongly connected and thus e0 belongs to at least one directed cycle of the graph.)
We denote by B = T ∪ {e0}. Then (ze)e∈T c is a base of H and (ze)e∈Bc is a base of
He0 . Let x0 ∈ V be any vertex, and set U = V \ {x0}. We need the following lemma.
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Lemma 2. Let ψ be a positive test function on ∆. Then
∫

∆

Ψ((pe))

(

∏

e∈E

pαe−1
e

)

dλ∆ =

∫

∆̃e0

Ψ((
ze
ze
))

(
∏

e∈E z
αe−1
e

∏

x∈V z
αx
x

)

det
(

Z|U×U

)

∏

e∈Bc

dze.

where as usual zx =
∑

e,e=x ze and Z is the V × V matrix defined by

Zx,x = zx, ∀x ∈ V, Zx,y = −zx,y = −
∑

e,e=x,e=y

ze, ∀x 6= y.

Remark 11. This formula is essentially the same as the one which gives the corre-
spondence between RWDE and hypergeometric integrals associated with an arrange-
ment of hyperplanes in [30].

Remark 12. This lemma expresses the law of the random environment in the vari-
ables (ze) which correspond to the occupation densities of the edges (properly renormal-
ized). We can remark that this formula is reminiscent of the distribution discovered
by Diaconis and Coppersmith ([7, 8, 19, 9]) which expresses edge-reinforced random
walk as a mixture of reversible Markov chains.

We see that lemma 1 is a direct consequence of the previous result. Indeed we see
that lemma 2 applied to the reversed graph (Ǧ, Ě), starting with the weights α̌ě = αe

gives the same integrand with αx replaced by αx =
∑

e,e=x αe. The two coincide after

the change of variables exactly when div(α) ≡ 0. �

The proof of lemma 2 needs some lengthy computation and is deferred to the
appendix in section 8.

4.2. Applications. Consider now a finite graph with a cemetery point, i.e. we sup-
pose that G = (V,E), that V and E are finite and that V can be written V = U ∪{δ}
where

• no edge is exiting δ (δ is called the cemetery point)
• for any point x in U there is a directed path from x to δ.

It means that δ is absorbing for the Markov chain on G with law P (p). For x and y
in U we denote by G(p)(x, y) the Green function in the environment (pe)

G(p)(x, y) = E(p)
x (

∞
∑

k=0

1Xk=y).

Corollary 2. (i) Suppose that div(α)(x) = 0 for all x in U such that x 6= x0 then
div(α)(x0) > 0 and G(p)(x0, x0) is distributed as 1

W
where W is a beta random variable

with parameter (div(α)(x0), αx0
− div(α)(x0)).

(ii) Suppose that div(α)(x) is non-negative for all x in U . Let x0 be a vertex in
U such that div(α)(x0) ≥ γ > 0, then G(p)(x0, x0) is stochastically dominated by 1

W
where W is a beta random variable with parameter (γ, αx0

− γ).

Remark 13. The explicit formula in (i) was in fact suggested by our joint work with
N. Enriquez and O. Zindy ([14]) and also by the correspondence established in [30]. It
appeared in [14] that in the case of sub-ballistic one-dimensional RWRE limit theorems
are fully explicit in the case of Dirichlet environments. This is a consequence of the
fact that the Green function at 0 of the RWDE on the half line Z+ is equal in law to
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1/W where W is a beta random variable with appropriate weights. In the case of one-
dimensional RWDE, this explicit formula is a consequence of a result of Chamayou
and Letac ([11]) on explicit solutions for renewal equations. From the point of view of
the correspondence with hypergeometric integrals described in [30], the condition of null
divergence corresponds to a condition of resonance of the weights of the arrangement.
Resonant arrangements are not well understood yet.

Proof. (of corollary 2) (i) We can freely suppose that any y in U can be reached
following a directed path from x0 (indeed, the part of the graph which cannot be
reached from x0 does not play any role in G(x0, x0)). Suppose that div(α)(x0) =
γ, γ > 0. It means that div(α)(δ) = −γ. Consider now the graph G̃ = (U,E)

obtained by identification of the vertices δ and x0. The edges of G̃ are just obtained
by identification of δ and x0 in the edges of G (with possibly creation of multiples edges
and loops in G̃), and we denote by x̃0 the point corresponding to the indentification of

δ and x0. The graph G̃ is clearly strongly connected and if we keep the same weights

on the edges we have divG̃(α) ≡ 0. Consider the invariant probability (πx)x∈U for
the RWDE on G̃. It gives the occupation time on the edges ze = πepe, and the time

reversal transition probabilities p̌e =
ze
πe
. If G(p)(x0, x0) is the Green function on the

graph G (which is the graph with the cemetery point)

G(p)(x0, x0) =
1

∑

e=δ p̌ě
.

(where e = δ is relative to the edges in the initial graph G). Indeed, we have

1

G(p)(x0, x0)
=
∑

σ∈Σ

pσ,

where Σ is the set of direct paths σ in G from x0 to δ i.e. σ = (e0, . . . , en−1) with
ei−1 = ei for i = 1, . . . , n−1 and e0 = x0, en−1 = δ and ei 6∈ {x0, δ} for i = 1, . . . , n−1.
Since in G̃ σ ∈ Σ is a cycle from x̃0 to x̃0, we have

1

G(p)(x0, x0)
=
∑

σ∈Σ

p̌σ̌.

where σ̌ is the returned path (ěn−1, . . . , ě0) if σ = (e0, . . . , en−1). But since there is no
edge exiting δ in the graph G we have

∑

σ∈Σ

p̌σ̌ =
∑

e=δ

p̌ě.

By the previous lemma we know that (p̌e)e=δ or e=x0
has the law of a Dirichlet

random variable with parameters (αe)e=δ or e=x0
. (Indeed, the vertices δ and x0 are

identified in the quotiented graph G̃.) The conclusion comes from the associativity
property of Dirichlet random variables (cf section 2).

(ii) Consider the graph G̃ = (Ũ ∪ {δ̃}, Ẽ) obtained as follows. The set of vertices

is defined by Ũ = U ∪ {δ} and δ̃ is the new cemetery point. The set of edges Ẽ is
obtained by adding to the edges E of G some new edges with origin δ: for x 6= x0
in U such that div(α)(x) > 0 we add the edge (δ, x) with weight div(α)(x); for x0,
if div(α)(x0) > γ we put a new edge (δ, x0) with weight div(α)(x0)− γ; we also add

the edge (δ, δ̃) with weight γ. Clearly, the new graph G̃ with the previous choice of
weights (denoted by α̃) satisfies the condition of (i) since div(α̃)|Ũ = γδx0

. Moreover
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if (pe)e∈E is a Dirichlet environment on G with weights (αe) it can be extended to
a Dirichlet environment (p̃e)e∈Ẽ on G̃ just by choosing independently the transition
probabilities on the edges exiting δ according to a Dirichlet random variable with the
appropriate weights. Remark that

G(p)(x0, x0) ≤ G(p̃)(x0, x0).

Indeed, the Markov chains on G and G̃ behave the same as long as they are on U but
the Markov chain on G is stuck on δ although the Markov chain on G̃ can come back
to U from δ. The conclusion is a consequence of (i) since (i) implies that G(p̃)(x0, x0)
has the law of 1/W with W a beta random variable with weights (γ, αx0

− γ). �

5. Integrability condition

Suppose now that G = (V,E) is a countable connected directed graph with bounded
degree. Suppose for simplicity that there is at least one edge exiting each vertex.

We recall that a flow from a vertex x0 to infinity (cf [22]) is a positive function θ
on the edges such that

div(θ)(x) = 0, ∀x 6= x0,

and
div(θ)(x0) ≥ 0.

The strength of the flow is the value

strength(θ) = div(θ)(x0).

A unit flow is a flow of strength 1.

We say that the flow θ has finite energy if it is square integrable i.e. if
∑

e∈E

θ2e <∞.

Theorem 3. Let (αe)e∈E be a family of positive weights on the edges which satisfy

(H1) there exists c > 0 and C ≥ c such that c ≤ αe ≤ C for all e in E.

(H2) For all vertices x, div(α)(x) ≥ 0.

Suppose that θ is a unit flow with finite energy from x0 to infinity then

E
(α) (G(x0, x0)

s) <∞

as soon as
s < inf

e∈E

αe

θe

Proof. Let γ be a positive real. We define the weights

αγ = α + γθ.

We clearly have
div(αγ) ≥ γδx0

.

For a positive integer N , let UN be the ball with center x0 and radius N in G. We
define the graph GN = (UN ∪ {δ}, EN) as follows. We contract all the vertices of
(UN)

c to the cemetery point δ. The edges EN are obtained from E as follows: in E
we delete all the edges exiting a point of U c

N and we define EN from the remaining
edges by contraction of U c

N to the single vertex δ. By the bounded degree property
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we see that GN is a finite graph. We keep the same weights on the edges and we see
that on the graph GN we have for x in UN

divN(αγ)(x) =
∑

e∈E,e=x

αγ
e −

∑

e∈E,e=x,e∈UN

αγ
e ≥ div(αγ)(x)

(With divN the divergence operator on the graph GN). Hence divN (αγ) ≥ 0, and

divN(αγ)(x0) ≥ γ.

Denote by G
(p)
N (x0, x0) the Green function of the Markov chain killed when it exits

UN . From corollary 2 (ii) we see that under P
(αγ) the Green function G

(p)
N (x0, x0) is

stochastically dominated by 1
W

where W is a beta random variable with parameters
(γ, αx0

+ γθx0
− γ) (for N large enough).

Considering formula (2.1) we see that on the graph GN , the measure P(α) is abso-
lutely continuous with respect to the measure P(αγ ) and that

dP(α)

dP(αγ)
=

∏

x∈UN
Γ(αx)

∏

e∈EN
Γ(αe)

∏

e∈EN
Γ(αγ

e )
∏

x∈UN
Γ(αγ

x)

∏

e∈EN

p−γθe
e .

Consider now s > 0. We have (we write simply GN (x0, x0) for G
(p)
N (x0, x0) the Green

function in environment (pe))

E
(α) (GN(x0, x0)

s) =

∏

x∈UN
Γ(αx)

∏

e∈EN
Γ(αe)

∏

e∈EN
Γ(αγ

e )
∏

x∈UN
Γ(αγ

x)
E
(αγ )

(

GN(x0, x0)
s
∏

e∈EN

p−γθe
e

)

.

Using Hölder’s inequality for q > 1 and p = q
q−1

we get that E(α) (GN (x0, x0)
s) is lower

than
∏

x∈UN
Γ(αx)

∏

e∈EN
Γ(αe)

∏

e∈EN
Γ(αγ

e )
∏

x∈UN
Γ(αγ

x)

(

E
(αγ ) (GN(x0, x0)

ps)
)1/p

(

E
(αγ )

(

∏

e∈EN

p−qγθe
e

))1/q

.

Remark that the second expectation is finite if and only if qγθe < αγ
e for all e in EN ,

or equivalently

q − 1 <
αe

γθe
for all e in EN . We now choose q such that

q − 1 < inf
e∈E

αe

γθe
(5.1)

so that the previous condition is fulfilled for all e in E. In terms of p it is equivalent
to

p >
infe∈E

αe

γθe
+ 1

infe∈E
αe

γθe

.(5.2)

Now we compute the second expectation. We have
∏

x∈UN
Γ(αx)

∏

e∈EN
Γ(αe)

∏

e∈EN
Γ(αγ

e )
∏

x∈UN
Γ(αγ

x)

(

E
(αγ )

(

∏

e∈EN

p−qγθe
e

))1/q

=

∏

x∈UN
Γ(αx)

∏

e∈EN
Γ(αe)

∏

e∈EN
Γ(αγ

e )
1− 1

q

∏

x∈UN
Γ(αγ

x)
1− 1

q

∏

e∈EN
Γ(αe − (q − 1)γθe)

1

q

∏

x∈UN
Γ(αx − (q − 1)γθx)

1

q
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Considering the function

ν(α, u) =
1

q
ln Γ(α− (q − 1)u) + (1−

1

q
) ln Γ(α+ u)− ln Γ(α),

we see that the previous expression is equal to

exp

(

∑

e∈EN

ν(αe, γθe)−
∑

x∈UN

ν(αx, γθx)

)

.

Now, ν(α, 0) = 0 and one can easily compute and see that ∂
∂u
ν(α, 0) = 0. The function

ν(α, u) is C∞ on the domain D = {α > 0} ∩ {u < α/(q − 1)}. By conditions (H1)
of theorem 3 and (5.1) we know that (αe, γθe)e∈E and (αx, γθx)x∈V are in a compact
subset of D. Hence, we can find a constant C > 0 such that for all N > 0

∑

e∈EN

ν(αe, γθe)−
∑

x∈UN

ν(αx, γθx) ≤ C

(

∑

e∈EN

(γθe)
2 +

∑

x∈UN

(γθx)
2

)

.

Since (θe) is square integrable and the graph G has bounded degree, (θx) is square
integrable. Hence we have a constant C ′ > 0, such that for all N

E
(α) (GN(x0, x0)

s) ≤ C ′
(

E
(αγ ) (GN(x0, x0)

ps)
)1/p

Using corollary 2 we have

E
(α) (GN (x0, x0)

s) ≤ C ′
(

E
(

W−ps
))1/p

where W is a beta random variable with parameter (γ, αx0
+ γθx0

− γ). Since W−ps

is integrable for ps < γ we see that

E
(α) (G(x0, x0)

s) = sup
N

E
(α) (GN(x0, x0)

s) <∞

for all s such that sp < γ. This is true for any choice of p which satisfies (5.2), so
G(x0, x0)

s is integrable as soon as

s <
infe∈E

αe

θe

1 + infe∈E
αe

γθe

.

Letting γ tend to infinity we get the result. �

Maximizing on the L2 unit-flows, we see that under the conditions of theorem 3,
E(α) (G(x0, x0)

s) is finite for all s < κ0 where

κ0 = sup
θ L2-unit flow

inf
E

αe

θe
.

Remark that if θ is a unit flow with finite energy then infE
αe

θe
> 0 if condition (H1)

is satisfied. Hence, under conditions (H1) and (H2), the existence of a unit flow with
finite energy ensures that G(x0, x0) has some finite moments and hence the transience
of the RWDE. We see that κ0 can be rewritten as a Max-Flow problem (cf section 7)
with an extra L2 condition.

(5.3)

κ0 = sup{strength(θ), θ is a flow from x0 to ∞ of finite energy such that θ ≤ α}



14 C. SABOT

6. Proof of transience on symmetric transient graphs

This section is devoted to the proof of theorem 2 (i). Let G be a symmetric graph
and G the associated undirected graph. Let us recall the definition of a flow on an
undirected graph. We choose an arbitrarily orientation of the edges of G. A flow from
x0 to infinity is a (non-necessarily positive) function θ on the edges such that for the
orientation chosen

div(θ)(x) = 0, ∀x 6= x0.

The flow θ is a unit flow if moreover div(θ)(x0) = 1. To any flow θ on the undirected
graph G we can associate a flow θ on the directed graph as follows: for two opposite
edges of the directed graph, θ is null on one of them and on the other one it is equal
to the absolute value of θ on the corresponding undirected edge. The choice of the
edge with positive flow is of course made according to the sign of the flow θ and the
orientation of the edges (cf [22], section 2.6). By construction the L2 norm of θ and
θ are the same. Then the result comes from a classical result on electrical networks
(cf [22] proposition 2.10, or [23]) which says that the undirected graph G is transient
if and only if there exists a unit flow with finite energy from a point x0 to infinity.
Hence, it implies that κ0 > 0.

7. Max-flow of finite energy

Let us recall some notions about Max-Flow Min-Cut theorem (cf [22], section 2.6,
[2]). Let G be a countable directed graph and x0 a vertex such that there is an infinite
directed simple path starting at x0. Let (c(e))e∈E be a family of non-negative reals,
called the capacities.

Definition 1. A flow θ from x0 to ∞ is compatible with the capacities (c(e))e∈E if

θ(e) ≤ c(e), ∀e ∈ E.

A cutset is a subset S ⊂ E such that any infinite directed simple path from x0 contains
at least one edge of S.

The well-known Maw-Flow Min-Cut theorem says that the maximum flow equals
the minimal cutset sum (cf [16]). We give here a version for countable graphs ([22],
theorem 2.19, cf also [2]).

Proposition 1. The maximum compatible flow equals the infimum of the cutset sum,
i.e.

max{strength(θ), θ is a flow from x0 to ∞ compatible with (c(e))}

= inf{c(S), S is a cutset separating x0 from ∞}.(7.1)

where
c(S) =

∑

e∈S

c(e).

Theorem 3 tells us that κ0, defined as the max strength of flows of finite energy (cf
(5.3)), gives a lower bound on the critical integrability exponent of the Green function.
It is natural to ask wether κ0 is also equal to the min-cut. It is not true in general (cf
the following remark) but it is true under fairly general conditions.



DIRICHLET ENVIRONMENT 15

Proposition 2. Let (c(e))e∈E be a family of capacities. Suppose that

inf
e∈E

c(e) > 0,

and that the following holds

(H3) There exists a strictly increasing sequence of integers ηn such that B(x0, ηn+1)\
B(x0, ηn) is strongly connected in G.

If there exists a unit flow of finite energy on G from x0 to ∞ then the infimum in
(7.1) is reached and

max{strength(θ), θ is a flow from x0 of finite energy compatible with (c(e))}

= min{c(S), S is a cutset separating x0 from ∞}.

Remark 14. : If condition (H3) fails the equality may be wrong. The following
counter-example is due to R. Aharoni, [1]: let G be a binary tree glued by its root to
a copy of Z+. Take capacities constant equal to 1. Then any flow of finite energy
necessarily vanishes on the copy of Z+ and the equality cannot hold.

Proof. Let θ be a unit flow from x0 to ∞ of finite energy. Set

c(G) = inf{c(S), S is a cutset separating x0 from ∞}.

The strategy is to modify the capacities c using θ. For a positive integer r, BE(x0, r)
denotes the set of edges

BE(x0, r) = {e ∈ E, e ∈ B(x0, r), e ∈ B(x0, r)}.

and
BE(x0, r) = {e ∈ E, e ∈ B(x0, r)}.

Let N0 be such that

sup
e/∈BE(x0,ηN0

)

θ(e) ≤
infE c

2c(G)
.(7.2)

Let N1 be such that
(N1 −N0) inf

E
c > 2c(G).

Consider now the capacities c′ defined by

c′(e) =

{

c(e), if e ∈ BE(x0, ηN1
)

2c(G)θ(e), if e /∈ BE(x0, ηN1
).

By condition (7.2), we clearly have

c′(e) ≤ c(e), ∀e ∈ E,

and
∑

E

(c′(e))2 <∞.

We now want to check that the min cutset sum is the same for c and c′. Let S
be a minimal cutset for inclusion. If S ⊂ BE(x0, ηN1

) then c′(S) = c(S) ≥ c(G).
If S ⊂ BE(x0, ηN0

)c then by (7.2) c′(S) ≥ 2c(G)θ(S) ≥ 2c(G) since θ is a unit
flow. Otherwise, it means that S has one edge e0 in BE(x0, ηN0

) and one edge e1 in
BE(x0, ηN1

)c. Let K be the set of vertices that can be reached by a directed path in
E \ S from x0. Since S is minimal for inclusion, it means that there is a simple path
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from e0 to ∞ in Kc. Hence, there is a directed path in Kc from B(x0, N0) to ∞, and
there is a sequence y1, . . . , yN1−N0

in Kc such that yk ∈ Uk where

Uk = B(x0, ηk+1) \B(x0, ηk).

Similarly, there is a directed path in K from x0 to e1. It implies that there is a
sequence z1, . . . , zN1−N0

in K such that zk ∈ Uk. By assumption (H3) there is a
directed path in Uk from zk to yk. This directed path necessarily contains an edge
of S. Hence, |S| ≥ N1 − N0 so that c′(S) > 2c(G). Then, we apply the Max-Flow
Min-Cut theorem to the capacities c′. It gives a flow of finite energy (since c′ is
squared integrable) compatible with c′ and consequently with c, and with strength
c(G). Moreover the proof implies that c(G) is reached for a cut-set S ⊂ BE(x0, ηN1

),
and the infimum is a minimum. �

8. Proof of theorem 2 (ii)

Let κ0 be defined as in section 5 (5.3), and κ as in theorem 2 (ii). Clearly, if the
non-directed graph G satisfies (H’3) then the directed graph G satisfies (H3). Let
us first prove that Gs(x0, x0) is integrable if s < κ. Under condition (H3) we have
κ0 ≤ κ. Indeed, if K is a finite connected subset containing x0 then ∂E(K) is a cut-set
separating x0 from infinity and α(∂E(K)) ≥ κ0 by proposition 2.

Case 1. If (x0, x0) is in E then we have κ0 = κ. Indeed, let S0 be a cut-set which
realizes the minimum in proposition 2, so that κ0 = α(S0). Let K0 ⊂ V be the set
of vertices that can be reached from x0 by a directed path using edges of E \ S0. By
minimality we have S0 = ∂E(K0) and κ0 = α(∂EK0). The subset K0 is finite and
connected and it contains x0; it implies that κ = κ0. It implies by theorem 3 that
E(α)(G(x0, x0)

s) <∞ for s < κ.

Case 2. Suppose that (x0, x0) 6∈ E. For any environment (p), we have
∑

e=x0

pe = 1,

hence G(x0, x0)
s is integrable if and only if pseG(x0, x0)

s is integrable for any e such
that e = x0. Let e0 be an edge exiting x0 and α(e0) be the weight obtained from α by
adding s to αe0 . For any cutset S containing e0, α

(e0)(S) > s. Hence, by theorem 3
and proposition 2, pse0G(x0, x0)

s is integrable if s is smaller than the minimal cutset
sum (for (α)) among cutsets which do not contain e0. It means that G(x0, x0)

s is
integrable if

s < min{α(S), S cutset, S 6⊃ {e}e=x0
}.(8.1)

Let S be a cutset which does not contain {e}e=x0
. Let K be the set of vertices that

can be reached from x0 by a directed path using edges of E \S. Then, ∂EK is a cutset
contained in S and K is connected in G. Moreover K 6= {x0} thanks to the condition
that (x0, x0) 6∈ E (indeed, if K = {x0} then ∂E(K) = {e}e=x0

if (x0, x0) 6∈ E). This
implies that Gs(x0, x0) is integrable if s < κ.

If s ≥ κ, then by taking a large enough box B(x0, N), we know that the cutset which
achieves the minimum in the definition of κ is included in B(x0, N) (the infimum is
reached, cf proposition 2). From [40], corollary 4, it implies that G(x0, x0)

s is not
integrable (the statement is written for (x0, x0) 6∈ E but it clearly extends to the case
where there is a loop at x0 with the κ defined in theorem 2).
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8.1. The case of Zd. Of course theorem 2 (i) and (ii) apply to the model of RWDE
on Zd described in the introduction, for d ≥ 3. It is easy to see that on Zd, the critical
exponent κ is obtained for K = {0, ei0} for some i0 in {1, . . . , d}. Hence we have

κ = min
i0=1,...,d

(

2

(

∑

i=1,...,d, i 6=i0

αei + α−ei

)

+ αei0
+ α−ei0

)

.

This proves theorem 1.

9. Appendix

Proof. (of lemma 2) Let us first remark that det(Z|U×U) does not depend on the choice
of x0: indeed, the lines and columns of Z have sum 0. By addition of lines and columns
we can switch from x0 to y0. Hence, we can freely choose x0 = e0. Remark now that
H and He0 are the affine subspaces of RE defined by

H = ∩x∈U{div(z)(x) = 0}, He0 = {ze0 = 1} ∩x∈U {div(z)(x) = 0}.

For simplification, we write
hx(z) = div(z)(x),

for all x in U . It is not easy to compute directly the Jacobian of the change of
variables, the strategy is to use Fourier transform to make the change of variables on
free variables. We first prove the following lemma.

Lemma 3. For any function φ : RE → C, C∞, with compact support in (R∗
+)

E we
have that

∫

He0

φ|He0

∏

e∈Bc

dze =

∫

RU×R

∫

RE

φ(z) exp

(

2iπ

(

u0(ze0 − 1) +
∑

x∈U

uxhx(z)

))(

∏

e∈E

dze

)(

du0
∏

x∈U

dux

)

.

Proof. of lemma 3. We will use several times the following simple fact (which is a
consequence of the inverse Fourier transform). Let g : RN+k → R be a C∞ function
with compact support, then

∫

RN

g(x1, . . . , xN , 0, . . . , 0)dx1 · · · dxN

=

∫

Rk

∫

RN+k

exp

(

2iπ
k
∑

j=1

ujxN+j

)

g(x1, . . . , xN+k)(dx1 · · · dxN+k)(du1 · · · duk)

N.B.: These integrals are well-defined as integrals in the Schwartz space.
Let us compute the Jacobian of the linear change of variables

R
E 7→ R

U × R
T c

((ze)e∈E) → ((hx(z))x∈U , (ze)e∈T c).(9.1)
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Denoting T = {ej1, . . . , ej|U|
} and T c = {ei1 , . . . , ei|E|−|U|

}, U = {x1, . . . , x|U |}, the
Jacobian of the change of variable is:

|J | = | det































∂hx1

∂zej1
· · ·

∂hx|U|

∂zej1
...

... 0
∂hx1

∂zej|U|

· · ·
∂hx|U|

∂zej|U|

∂hx1

∂zei1
· · ·

∂hx|U|

∂zei1
...

... IdT c×T c

∂hx1

∂zei|E|−|U|

· · ·
∂hx|U|

∂zei|E|−|U|































|.

So, we get

|J | = | det











∂hx1

∂zej1
· · ·

∂hx|U|

∂zej1
...

...
∂hx1

∂zej|U|

· · ·
∂hx|U|

∂zej|U|











|.

The previous matrix is the incidence matrix on U of the spanning tree T , indeed we
have if x ∈ U

∂hx
∂ze

=







+1 if e = x,
−1 if e = x,
0 otherwise.

It is well know that this determinant is equal to ±1 : indeed, it is a special case of
the Kirchhoff’s matrix-tree theorem (see [17]) where the graph is only composed of
the edges of the spanning tree T ; in this case there is a unique spanning tree, T itself,
and the incident matrix of the graph is the matrix below). Let φ̃ : RU × RT c

7→ C

denote the function defined by

φ((ze)e∈E) = φ̃((hx(z))x∈U , (ze)e∈T c).

By formula (9.1) and since φ̃(0, (ze)e∈T c) = φ((ze)e∈E) on H, we get
∫

He0

φ|He0
((ze))

∏

e∈Bc

dze =

∫

R

∫

H

φ|H((ze))e
2iπu0(ze0−1)

(

∏

e∈T c

dze

)

du0

=

∫

R

∫

H

φ̃(0, (ze)e∈T c)e2iπu0(ze0−1)

(

∏

e∈T c

dze

)

du0

Using again formula 9.1 we see that the previous integral is equal to

=

∫

R×RU

∫

RU×RTc

exp
(

2iπ
(

u0(ze0 − 1) +
∑

x∈U uxhx
))

φ̃((hx)x∈U , (ze)e∈T c)

(
∏

x∈U dhx
∏

e∈T c dze
) (

du0
∏

x∈U dux
)

.

Then, the change of variables (9.1) gives lemma 3. �

We make the following change of variables:

(R∗
+)

E → (R∗
+)

V ×∆

(ze) 7→ ((vx)x∈V , (pe)e∈E),
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given by

vx =
∑

e=x

ze, pe =
ze
ve
.

(More precisely, it is the change of variables onto the set (R∗
+)

V×]0, 1]Ẽ where Ẽ is
defined in (2.1). It means that we choose (pe)e∈Ẽ as the coordinate system on ∆.) We
have ze = ve pe and the Jacobian is given by

∏

x∈V

vnx−1
x ,

where nx = |{e, e = x}|. Implementing this change of variables in lemma 3 gives that
∫

He0

φ|He0

∏

e∈Bc

dze

is equal to
∫

R×RU

∫

RV ×∆

(

∏

x∈V

vnx−1
x

)

φ((vepe)) exp
(

iu0(ve0pe0 − 1) + i
∑

x∈U uxhx
)

(

(
∏

x∈V dvx)dλ∆
) (

du0
∏

x∈U dux
)

,

where dλ∆ is the measure on ∆ defined in (2.1) and with

hx((vx), (pe)) = vx −
∑

e,e=x

vepe.

The strategy is now to apply formula (3) to get ride of variables (u0, (ux)x∈U). For
this we need to change to variables (ve0pe0 , (hx)x∈U). We make the following change
of variables.

R
V ×∆ 7→ R× R

U ×∆

((vx)x∈V , (pe)) → (k0(v, p), (hx(v, p))x∈U , (pe)),

with k0 = ve0pe0 . This change of variables can be inverted by

(vx)x∈V = (M (p))−1(k0, (hx)),

where
M (p)

x,y = (I − P )x,y, ∀x ∈ U, ∀y ∈ V,

and M0,y = pe01y=e0
(where P is the transition matrix in the environment (p)). Since

we have chosen x0 = e0, the Jacobian of the change of variables is

|J | = pe0 det(I − P )U×U .

By this change of variables, the integral becomes
∫

R×RU

∫

R×RU×∆

φ((vepe))

(
∏

x∈V v
nx−1
x

)

pe0 det(I − P )U×U
exp

(

2iπ
(

u0(k0 − 1) +
∑

x∈U uxhx
))

(

(dk0
∏

x∈U dhx)dλ∆
) (

du0
∏

x∈U dux
)

,

Remark that if the following equalities are satisfied

hx((vx), (pe)) = 0, ∀x ∈ U, ve0pe0 = 1
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it implies that vx = πx

πe0
pe0

for all x. Integrating over the variables (u0, (ux)) by formula

(9.1) we get
∫

He0

φ|He0

∏

e∈Bc

dze =

∫

∆

∏

x∈V

(

πx
πe0pe0

)nx−1
φ((ze))

pe0 det(I − P )U×U

dλΩ,

where ze =
πepe

πe0
pe0

. Then we just have to replace φ by

φ((ze)) = ψ

(

(
ze
ze
)

)
∏

e∈E 1ze>0z
αe−1
e

∏

x∈V z
αx
x

det(Z|U×U)

This can be done by monotone convergence. �
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[4] Brémond, J., Recurrence of a symmetric random walk on Z
2 in random medium. Juillet 2000,
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