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RANDOM WALKS IN RANDOM DIRICHLET ENVIRONMENTARE TRANSIENT IN DIMENSION d ≥ 3CHRISTOPHE SABOTAbstra
t: We 
onsider random walks in random Diri
hlet environment (RWDE)whi
h is a spe
ial type of random walks in random environment where the exit prob-abilities at ea
h site are i.i.d. Diri
hlet random variables. On Zd, RWDE are parame-terized by a 2d-uplet of positive reals. We prove that for all values of the parameters,RWDE are transient in dimension d ≥ 3. We also prove that the Green fun
tion hassome �nite moments and, on Zd, d ≥ 3, we expli
itly 
ompute the 
riti
al integrabilityexponent. Our result is more general and applies for example to �nitely generatedtransient Cayley graphs. In terms of reinfor
ed random walks it implies that linearlyedge-oriented reinfor
ed random walks are transient for d ≥ 3.1. Introdu
tionRandom Walks in Random Environment (RWRE) have re
eived a 
onsiderableattention in the last years. At lot is known for one-dimensional RWRE, but thesituation far from being so 
lear in dimension 2 and larger. Progresses have beenmade for multidimensional RWRE (in parti
ular, sin
e the work of Sznitman andZerner, 
f [22℄) essentially in two dire
tions: for ballisti
 RWRE (
f [22℄, [19℄, [20℄,[15℄ and referen
e therein) and more re
ently for small perturbations of the simplerandom walk in dimension d ≥ 3. Nevertheless, most of the important questionsas 
hara
terization of re
urren
e, of ballisti
 behavior, invarian
e prin
iple remainlargely open. Re
ently, for RWRE whi
h are small isotropi
 perturbation of thesimple random walk on Zd, d ≥ 3, Bolthausen and Zeitouni ([3℄) made some progressin the dire
tion of the invarian
e prin
iple and proved transien
e using renormalizationte
hni
s (invarian
e prin
iple for the 
orresponding 
ontinuous model has previouslybeen obtained by Sznitman and Zeitouni, [21℄). We refer to [25℄ or [17℄ for surveys.In this paper we take a di�erent approa
h, we 
onsider a spe
ial type of environment,the Diri
hlet environment. It 
orresponds to the 
ase where the transition probabilitiesat ea
h site are 
hosen as i.i.d. Diri
hlet random variables. This model has beenintrodu
ed by N. Enriquez and the author in [5℄, where it has been remarked thatthe annealed law of a random walk in a Diri
hlet environment 
orresponds to the lawof a linearly reinfor
ed random walk, on oriented edges. In [4℄, N. Enriquez and theauthor obtained a simple 
riterion for ballisti
ity, latter improved by L. Tournier in[24℄. Besides, in the one-dimensional 
ase, it appeared in [6℄ that limit theorems in thesub-ballisti
 regime are fully expli
it in the 
ase of Diri
hlet environments, highlightingthe spe
ial r�le of Diri
hlet environment among random environments. Finally, in [16℄we have des
ribed a pre
ise relation between RWDE and hypergeometri
 integralsasso
iated with 
ertain arrangement of hyperplanes.2000 Mathemati
s Subje
t Classi�
ation. primary 60K37, 60K35, se
ondary 5C20.Key words and phrases. Random walk in random environment, Diri
hlet distribution, Reinfor
edrandom walks, Max-Flow Min-Cut theorem. 1



2 C. SABOTOn Z
d, RWDE are parameterized by 2d positive reals (α1, . . . , α2d), one for ea
hdire
tion. We 
all (αi) the weights. In this paper, we prove that RWDE on Zd, for

d ≥ 3, are transient for all values of the weights (in parti
ular for the 
ase of unbiasedweights). In fa
t, we prove something stronger. We prove that the Green fun
tion hassome �nite moments and we expli
itly 
ompute the 
riti
al integrability exponent κ,i.e. the supremum of the reals s > 0 su
h that the Green fun
tion G(0, 0)s has �niteexpe
tation. We show that this real is the same as the one for the RWDE killed whenit exists a �nite large ball (whi
h has been 
omputed by Tournier in [24℄). In someway, it means that trapping is only due to �nite size traps whi
h 
omes from the nonuniform ellipti
ity of the environment. Our result is in fa
t more general and appliesfor example to any �nitely generated Caley graph on whi
h the simple random walk istransient. Compared to the results of [3℄, our results are non-perturbative, they applyto any 
hoi
e of the weights, but the 
ounterpart is that our method is very spe
i�
to the Diri
hlet environment. Besides, the proof is remarkably simple. We think ithighlights the spe
ial r�le of Diri
hlet environments and we think that the te
hni
spresented in this paper will help us to understand more on RWDE.Our proof is based on an expli
it formula valid for Diri
hlet environments and ona method of perturbation of the weights. Finally, the 
riti
al exponent is obtainedthanks to an L2 version of the Max-Flow Min-Cut theorem (proposition 2). Theexpli
it formula (
orollary 1) was in fa
t hinted in our joint work with N. Enriquezand O. Zindy ([6, 7℄) where it appeared that in the 
ase of one-dimensional RWDE, theGreen fun
tion on the half-line at 0 has an expli
it law (whi
h is in fa
t a 
onsequen
eof a result of Chamayou and Leta
 on expli
it solutions of renewal equations, [9℄).From the point of view of reinfor
ed random walks, our result implies the transien
eof all edge-oriented linearly reinfor
ed random walks on Zd, for d ≥ 3. Compared tothe two other natural models of linearly reinfor
ed random walks, namely vertexreinfor
ed random walks and (non-oriented) edge reinfor
ed random walks (
f [23,14℄, [12, 13℄) this model has a dire
t representation as a random walk in randomenvironment, but the di�
ulty of this model lies in its non-reversibility.Let us present our results for the graph Z
d. Let (e1, . . . , ed) be the 
anoni
al baseof Zd, and set ej = −ej−d, for j = d + 1, . . . , 2d. The set {e1, . . . , e2d} is the set ofunit ve
tors of Zd. We 
onsider a probability law λ on

{(x1, . . . , x2d) ∈]0, 1]2d,
2d
∑

i=1

xi = 1}(1.1)We 
onstru
t a Markov 
hain on Zd, to nearest neighbors as follows: we 
hooseindependently at ea
h point x ∈ Zd, some transition probabilities
p(x) = (p(x, x+ ei))i=1,...,2d ,a

ording to the law λ. It means that the ve
tor (p(x))x∈Zd is 
hosen a

ording to theprodu
t measure µ = ⊗x∈Zdλ. It de�nes the transition probability of a Markov 
hainon Zd, and we denote P (p)

x the law of this Markov 
hain starting from x:
P (p)

x [Xn+1 = x+ ei|Xn = x] = p(x, x+ ei).RandomDiri
hlet environment 
orresponds to the 
ase where the law λ is a Diri
hletlaw. More pre
isely, we 
hoose some positive weights (α1, . . . , α2d) and we take λ =
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λ(α) with density

Γ(
∑2d

i=1 αi)
∏2d

i=1 Γ(αi)

(

2d
∏

i=1

xαi−1
i

)

dx2 · · · dx2d,where Γ is the usual Gamma fun
tion Γ(α) =
∫∞

0
tα−1e−tdt. We denote P(α) the lawobtained on the environment in this way. This type of environment plays a spe
i�
r�le, sin
e the annealed law P

(α)
x [·] = E(α)[P

(p)
x (·)] 
orresponds to an edge orientedreinfor
ed random walk with an a�ne reinfor
ement, i.e.

P
(α)
x [Xn+1 = Xn + ei|σ(Xk, k ≤ n)] =

αi +Ni(Xn, n)
∑2d

k=1 αk +Nk(Xn, n)
,where Nk(x, n) is the number of 
rossings of the oriented edge (x, x+ ek) up to time

n (
f [5℄). When the weights are 
onstant equal to α, the environment is isotropi
:when α is large, the environment is 
lose to the deterministi
 environment of thesimple random walk, when α is small the environment is very disordered.Let us now des
ribe pre
isely our results for Zd, d ≥ 3. We denote G(x, y) the greenfun
tion in the environment (p(x))x∈Zd.
G(x, y) = E(p)

x [

∞
∑

k=0

1Xk=y].Theorem 1. For d ≥ 3 and for any 
hoi
e of weights (α1, . . . , α2d) we have
E

(α) (G(0, 0)s) <∞if and only if s < κ where
κ = 2

2d
∑

j=1

αj − min
i=1,...,d

(αei
− α−ei

).In parti
ular, the RWDE is transient for almost all environment.Remark 1. In [24℄, Tournier 
omputed the 
riti
al integrability exponent for RWDEon �nite graphs. For N > 1, let GN be the Green fun
tion of the RWDE killed whenit exists the ball B(0, N): it appears that GN(0, 0)s is integrable if and only if s < κ.Hen
e, it seems to mean that there is no in�nite size trap and that the trapping e�e
t
omes only from �nite size traps due to the non-uniform ellipti
ity of the environment.Remark 2. The result for Zd is in fa
t a 
onsequen
e of a more general result validfor dire
ted graph 
onstru
ted from undire
ted graph, under a 
ondition on the weights(null-divergen
e), 
f theorem 3.Let us des
ribe the organization of the paper. In se
tion 2, we des
ribe the model ofRWDE on dire
ted graphs. In se
tion 3, we prove the key expli
it formulas. Se
tion4 is devoted to the proof of the main result on integrability. In se
tion 5, we prove ageneralization of the Max-Flow Min-Cut theorem for �ows of �nite energy. In se
tion6 we apply the results to dire
ted graphs 
onstru
ted from undire
ted graphs, and wededu
e theorem 1.



4 C. SABOT2. Markov 
hain in Diri
hlet environment on dire
ted graphsLet us �rst des
ribe Random walk in Diri
hlet Environment (RWDE for short) ona general graph. A dire
ted graph is a 
ouple G = (V,E) where V is the 
ountableset of verti
es and E is the 
ountable set of edges (i.e. E is a 
olle
tion of elementsof E × E; for simpli
ity we do not allow loops). The tail of the edge e is denoted
e = x and the head is denoted e = y if e 
orresponds to (x, y). We suppose that thegraph has bounded degree i.e. that the number of edges exiting a vertex x or pointingto a vertex x is bounded. For an integer n and a vertex x we denote B(x, n) theball with 
enter x and radius n for the graph distan
e (de�ned independently of theorientation of the edges). We say that a subset K ⊂ V is strongly 
onne
ted if forany two verti
es x and y in K there is a dire
ted path in K from x to y.Let us de�ne the divergen
e operator on the graph G: it is the operator div : RE 7→
RV de�ned for a fun
tion θ : E 7→ R bydiv(θ)(x) =

∑

e,e=x

θ(e) −
∑

e,e=x

θ(e), ∀x ∈ V.The set of environments on G is de�ned as the set
∆ = {(pe)e∈E ∈]0, 1]E , su
h that ∑

e,e=x

pe = 1, ∀x ∈ V }.With any environnement (pe) we asso
iate the Markov 
hain on V with law (P
(p)
x ),where P (p)

x0 is the law of the Markov 
hain starting from x0 with transition probabilitiesgiven by
P (p)

x0
(Xn+1 = y|Xn = x) = p(x,y) =

∑

e,e=x,e=y

pe.If y is a vertex su
h that no edge is exiting y then we put P (p)
x0 (Xn+1 = y|Xn = y) = 1,so that y is an absorbing point.Let (αe)e∈E be a set of positive weights on the edges. For any vertex x we set

αx =
∑

e,e=x

αethe sum of the weights of the edges with origin x. The Diri
hlet environnement withparameters (αe) is the law on ∆ obtained by taking at ea
h site x the transitionprobabilities (pe)e=x independently a

ordingly to the Diri
hlet law with parameters
(αe)e=x i.e. with distribution

(

Γ(αx)
∏

e, e=x Γ(αe)

)(

∏

e, e=x

pαe−1
e

)





∏

e∈Ẽ,e=x

dpe



 .where Ẽ is obtained from E by removing arbitrary, for ea
h vertex x, one edge withorigin x (easily, it is independent of this 
hoi
e). We denote P(α) the 
orrespondingprobability measure on ∆ and E(α) the asso
iated expe
tation.When the graph is �nite the distribution of the Diri
hlet environment is given by
∏

x∈V Γ(αx)
∏

e∈E Γ(αe)

(

∏

e∈E

pαe−1
e

)

dλ∆.



DIRICHLET ENVIRONMENT 5where dλ∆ is the measure on ∆ given by
dλ∆ =

∏

e∈Ẽ

dpe,(2.1) 3. Stability by time reversal3.1. The key lemma. Suppose now that the graph is �nite and strongly 
onne
tedi.e. that there is a dire
ted path between any two verti
es x and y. Let Ǧ = (V, Ě)be the graph obtained from G by reversing all the edges, i.e. Ẽ is obtained from Eby reversing the head and the tail of the edges. For an environment (pe) we denoted
(p̌ě) the environment obtained by time reversal of the Markov 
hain, i.e. for all e in
E

p̌ě =
πe

πe
pe,where (πx)x∈V is the invariant probability on V for the Markov 
hain P (p). (Sin
e weassume that the graph is strongly re
urrent and that the weights pe are positive thisinvariant probability exists and is unique).Lemma 1. Suppose that the weights (αe) have divergen
e null, i.e.div(α)(x) = 0, ∀x ∈ V,then (p̌e)e∈Ě is a Diri
hlet environment on Ǧ with parameters (αe).Remark 3. By this we mean that (p̌e) is distributed a

ording to a Diri
hlet environ-ment with parameters (α̌ě∈Ě) where α̌ě = αe if ě is the reversed edge of e. We willoften identify the edges in E with their reversed edges in Ě.Proof. The proof is based on a 
hange of variable. Let e0 be a spe
i�ed edge of thegraph. Let He0

be the a�ne spa
e de�ned by
He0

= {(ze)e∈E ∈ R
E , ze0

= 1, div(z) ≡ 0}.and H the ve
tor spa
e
H = {(ze)e∈E ∈ R

E , div(z) ≡ 0}.Let ∆̃e0
= He0

∩ (R∗
+)E. The strategy is to make the 
hange of variable

∆ 7→ ∆̃e0

(pe)e∈E → (ze =
πepe

πe0
pe0

)e∈E.Hen
e, (ze) is the o

upation time of the graph normalized so that ze0
= 1. It iseasy to see that the previous 
hange of variable is a C∞-di�eomorphism. Let T be aspanning tree of the graph G su
h that e0 /∈ T . (This is possible sin
e the graph isstrongly 
onne
ted and thus e0 belongs to at least one dire
ted 
y
le of the graph.)We set B = T ∪ {e0}. Then (ze)e∈T c is a base of H and (ze)e∈Bc is a base of He0

. Let
x0 ∈ V be any vertex, and set U = V \ {x0}. We �rst prove the following lemma.Lemma 2. Let ψ be a positive test fun
tion on ∆. Then
∫

∆

Ψ((pe))

(

∏

e∈E

pαe−1
e

)

dλ∆ =

∫

∆̃e0

Ψ((
ze

ze
))

(
∏

e∈E z
αe−1
e

∏

x∈V z
αx
x

)

det
(

Z|U×U

)

∏

e∈Bc

dze.



6 C. SABOTwhere as usual zx =
∑

e,e=x ze and Z is the V × V matrix de�ned by
Zx,x = zx, ∀x ∈ V, Zx,y = −zx,y = −

∑

e,e=x,e=y

ze, ∀x 6= y.Remark 4. This formula is essentially the same as the one whi
h gives the 
orrespon-dan
e between RWDE and hypergeometri
 integrals asso
iated with an arrangement ofhyperplanes in [16℄.We see that lemma 1 is a dire
t 
onsequen
e of the previous result. Indeed we seethat lemma 2 applied to the reversed graph (Ǧ, Ě), starting with the weights α̌ě = αewould give the same integrand with αx repla
ed by αx =
∑

e,e=x αe. The two 
oin
ideafter the 
hange of variables exa
tly when div(α) ≡ 0. �Proof. of lemma 2. Let us �rst remark that det(Z|U×U) does not depend on the 
hoi
eof x0: indeed, the lines and 
olumns of Z has sum 0. By addition of lines and 
olumnswe 
an swit
h from x0 to y0. Hen
e, we 
an freely 
hoose x0 = e0. Remark now that
H and He0

are the a�ne subspa
es of RE de�ned by
H = ∩x∈U{div(z)(x) = 0}, He0

= {ze0
= 1} ∩x∈U {div(z)(x) = 0}.For simpli�
ation, we write

hx(z) = div(z)(x),for all x in U . It is not easy to 
ompute dire
tly the Ja
obian of the 
hange ofvariables, the strategy is to use Fourier transform to make the 
hange of variables onfree variables. We �rst prove the following lemma.Lemma 3. For any fun
tion φ : RE → C, C∞, with 
ompa
t support in (R∗
+)E wehave that

∫

He0

φ|He0

∏

e∈Bc

dze =

∫

RU×R

∫

RE

φ(z) exp

(

2iπ

(

u0(ze0
− 1) +

∑

x∈U

uxhx(z)

))(

∏

e∈E

dze

)(

du0

∏

x∈U

dux

)

.Proof. of lemma 3. We will use several times the following simple fa
t (whi
h is a
onsequen
e of the inverse Fourier transform). Let g : RN+k → R be a C∞ fun
tionwith 
ompa
t support, then
∫

RN

g(x1, . . . , xN , 0, . . . , 0)dx1 · · · dxN

=

∫

Rk

∫

RN+k

exp

(

2iπ

k
∑

j=1

ujxN+j

)

g(x1, . . . , xN+k)(dx1 · · · dxN+k)(du1 · · · duk)Let us 
ompute the Ja
obian of the linear 
hange of variables
R

E 7→ R
U × R

T c

((ze)e∈E) → ((hx(z))x∈U , (ze)e∈T c).(3.1)



DIRICHLET ENVIRONMENT 7Denoting T = {ej1, . . . , ej|U|
} and T c = {ei1, . . . , ei|E|−|U|

}, U = {x1, . . . , x|U |}:
|J | = | det































∂hx1

∂zej1

· · ·
∂hx|U|

∂zej1... ... 0
∂hx1

∂zej|U|

· · ·
∂hx|U|

∂zej|U|

∂hx1

∂zei1

· · ·
∂hx|U|

∂zei1... ... IdT c×T c

∂hx1

∂zei|E|−|U|

· · ·
∂hx|U|

∂zei|E|−|U|































|.

So, we get
|J | = | det











∂hx1

∂zej1

· · ·
∂hx|U|

∂zej1... ...
∂hx1

∂zej|U|

· · ·
∂hx|U|

∂zej|U|











|.The previous matrix is the in
iden
e matrix on U of the spanning tree T , indeed wehave if x ∈ U

∂hx

∂ze
=







+1 if e = x,
−1 if e = x,
0 otherwise.It is well know that this determinant is equal to ±1. Let us now denote φ̃ : RU×RT c

7→
C the fun
tion de�ned by

φ((ze)e∈E) = φ̃((hx(z))x∈U , (ze)e∈T c).By formula (3.1) and sin
e φ̃(0, (ze)e∈T c) = φ((ze)e∈E) on H, we get
∫

He0

φ|He0
((ze))

∏

e∈Bc

dze =

∫

R

∫

H

φ|H((ze))e
2iπu0(ze0−1)

(

∏

e∈T c

dze

)

du0

=

∫

R

∫

H

φ̃(0, (ze)e∈T c)e2iπu0(ze0−1)

(

∏

e∈T c

dze

)

du0Using again formula 3.1 we see that the previous integral is equal to
=

∫

R×RU

∫

RU×RTc

exp
(

2iπ
(

u0(ze0
− 1) +

∑

x∈U uxhx

))

φ̃((hx)x∈U , (ze)e∈T c)

(
∏

x∈U dhx

∏

e∈T c dze

) (

du0

∏

x∈U dux

)

.Then, the 
hange of variables (3.1) gives lemma 3. �We make the following 
hange of variables:
(R∗

+)E → (R∗
+)V × ∆

(ze) 7→ ((vx)x∈V , (pe)e∈E),given by
vx =

∑

e=x

ze, pe =
ze

ve
.



8 C. SABOT(More pre
isely, it is the 
hange of variables onto the set (R∗
+)V ×]0, 1]Ẽ where Ẽ isde�ned in (2.1). It means that we 
hoose (pe)e∈Ẽ as the 
oordinate system on ∆.) Wehave ze = ve pe and the Ja
obian is given by

∏

x∈U

vnx−1
x ,where nx = |{e, e = x}|. Implementing this 
hange of variables in lemma 3 gives that

∫

He0

φ|He0

∏

e∈Bc

dzeis equal to
∫

R×RU

∫

RV ×∆

(

∏

x∈V

vnx−1
x

)

φ((vepe)) exp
(

iu0(ve0
pe0

− 1) + i
∑

x∈U uxhx

)

(

(
∏

x∈U dvx)dλ∆

) (

du0

∏

x∈U dux

)

,where dλ∆ is the measure on ∆ de�ned in (2.1) and with
hx((vx), (pe)) = vx −

∑

e,e=x

vepe.The strategy is now to apply formula (3) to get ride of variables (u0, (ux)x∈U). Forthis we need to 
hange to variables (ve0
pe0
, (hx)x∈U). We make the following 
hangeof variables.

R
V × ∆ 7→ R × R

U × ∆

((vx)x∈V , (pe)) → (k0(v, p), (hx(v, p))x∈U , (pe)),with k0 = ve0
pe0

. This 
hange of variables 
an be inverted by
(vx)x∈V = (M (p))−1(k0, (hx)),where

M (p)
x,y = (I − P )x,y, ∀x ∈ U, ∀y ∈ V,and M0,y = pe0

1y=e0
(where P is the transition matrix in the environment (p)). Sin
ewe have 
hosen x0 = e0, the Ja
obian of the 
hange of variables is

|J | = pe0
det(I − P )U×U .By this 
hange of variables, the integral be
omes

∫

R×RU

∫

R×RU×∆

φ((vepe))

(
∏

x∈V v
nx−1
x

)

pe0
det(I − P )U×U

exp
(

2iπ
(

u0(k0 − 1) +
∑

x∈U uxhx

))

(

(dk0

∏

x∈U dhx)dλ∆

) (

du0

∏

x∈U dux

)

,Remark that if the following equalities are satis�ed
hx((vx), (pe)) = 0, ∀x ∈ U, ve0

pe0
= 1it implies that vx = πx

πe0
pe0

for all x. Integrating over the variables (u0, (ux)) by formula(3.1) we get
∫

He0

φ|He0

∏

e∈Bc

dze =

∫

∆

∏

x∈V

(

πx

πe0
pe0

)nx−1
φ((ze))

pe0
det(I − P )U×U

dλΩ,



DIRICHLET ENVIRONMENT 9where ze =
πepe

πe0
pe0

. Then we just have to repla
e φ by
φ((ze)) = ψ

(

(
ze

ze
)

)
∏

e∈E 1ze>0z
αe−1
e

∏

x∈V z
αx
x

det(Z|U×U)This 
an be done by monotone 
onvergen
e. �3.2. Appli
ations. Consider now a �nite graph with a 
emetery point, i.e. we sup-pose that G = (V,E), that V and E are �nite and that V 
an be written V = U ∪{δ}where
• no edge is exiting δ (δ is 
alled the 
emetery point)
• for any point x in U there is a dire
ted path form x to δ.It means that δ is absorbing for the Markov 
hain on G with law P (p). For x and yin U we denote G(p)(x, y) the Green fun
tion in the environment (pe)

G(p)(x, y) = E(p)
x (

∞
∑

k=0

1Xn=y).Corollary 1. (i) Suppose that div(α)(x) = 0 for all x in U su
h that x 6= x0 thendiv(α)(x0) > 0 and G(p)(x0, x0) is distributed as 1
W

where W is a beta random variablewith parameter (div(α)(x0), αx0
− div(α)(x0)).(ii) Suppose that div(α)(x) is non-negative for all x in U . For all x0 in U su
hthat div(α)(x0) > 0, G(p)(x0, x0) is sto
hasti
ally dominated by 1

W
where W is a betarandom variable with parameter (div(α)(x0), αx0

− div(α)(x0)).Remark 5. The expli
it formula in (i) was in fa
t suggested by our joint work with N.Enriquez and O. Zindy ([6℄) and by the 
orrespondan
e established in [16℄. Indeed, itappeared in [6℄ that in the 
ase of sub-ballisti
 one-dimensional RWRE limit theoremsare fully expli
it in the 
ase of Diri
hlet environments. This is a 
onsequen
e of thefa
t that the Green fun
tion at 0 of the RWDE on the half line Z+ is equal in law to
1/W where W is a beta random variable with appropriate weights. In the 
ase of one-dimensional RWDE, this expli
it formula is a 
onsequen
e of a result of Chamayouand Leta
 ([9℄) on expli
it solutions for renewal equations.Remark 6. By the prin
iple of 
onservation of mass we know that∑x∈U div(α)(x) =
∑

e=δ αe so that there is always a vertex x su
h that div(α)(x) > 0.(i) We 
an freely suppose that any y in U 
an be rea
hed following a dire
ted pathfrom x0 (indeed, the part of the graph whi
h 
annot be rea
hed from x0 does notplay any role in G(x0, x0)). Suppose that div(α)(x0) = γ, γ > 0. It means thatdiv(α)(δ) = −γ. Consider now the graph G̃ = (U,E) obtained by identi�
ation of theverti
es δ and x0. The edges of G̃ are just obtained by identi�
ation of δ and x0 in theedges of G (with eventually multiples edges in G̃). The graph G̃ is 
learly strongly
onne
ted and if we keep the same weights on the edges we have divG̃(α) ≡ 0. Considerthe invariant probability (πx)x∈U for the RWDE on G̃. It gives the o

upation timeon the edges ze = πepe, and the time reversal transition probabilities p̌e = ze

πe
. If

G(p)(x0, x0) is the Green fun
tion on the graph with 
emetery G then we have
G(p)(x0, x0) =

πx0
∑

e=δ ze
=

1
∑

e=δ p̌e
.



10 C. SABOT(where e = δ is relative to the edges in the initial graph G). By the previous lemma weknow that (p̌e)e=δ or e=x0
has the law of a Diri
hlet random variable with parameters

(αe)e=δ or e=x0
. (Indeed, the verti
es δ and x0 are identi�ed in the quotiented graph

G̃.) The 
on
lusion 
omes from general properties of Diri
hlet random variables.(ii) Consider the graph G̃ = (Ũ ∪ {δ̃}, Ẽ) obtained as follows. The set of verti
esis de�ned by Ũ = U ∪ {δ} and δ̃ is the new 
emetery point. The set of edges Ẽ isobtained by adding to the edges E of G some new edges with origin δ: for any x 6= x0su
h that div(α)(x) > 0 we add the edge (δ, x) with weight div(α)(x); we also add theedge (δ, δ̃) with weight div(α)(x0). Clearly, the new graph G̃ with the previous 
hoi
eof weights satis�es the 
ondition of (i). Moreover if (pe)e∈E is a Diri
hlet environmenton G with weights (αe) it 
an be extended to a Diri
hlet environment (p̃e)e∈Ẽ on
G̃ just by 
hoosing independently the transition probabilities on the edges exiting δa

ording to a Diri
hlet random variable with the appropriate weights. Remark that

G(p)(x0, x0) < G(p̃)(x0, x0).Indeed, the Markov 
hains on G and G̃ behave the same as long as they are on U butthe Markov 
hain on G is stu
k on δ although the Markov 
hain on G̃ 
an 
ome ba
kto U from δ. The 
on
lusion is a 
onsequen
e of (i) sin
e (i) implies that G(p̃)(x0, x0)has the law of 1/W with W a beta random variable with appropriate weights. �4. Integrability 
onditionSuppose now thatG = (V,E) is a 
ountable 
onne
ted dire
ted graph with boundeddegree. Suppose for simpli
ity that there is at least one edge exiting ea
h vertex.We re
all that a unit �ow from a vertex x0 to in�nity (
f [10℄) is a positive fun
tion
θ on the edges su
h that div(θ)(x) = 0, ∀x 6= x0,and div(θ)(x0) ≥ 0.The strength of the �ow is the valuestrength(θ) = div(θ)(x0).A unit �ow is a �ow of strength 1.We say that the �ow θ has �nite energy if it is square integrable i.e. if

∑

e∈E

θ2
e <∞.Theorem 2. Let (αe)e∈E be a family of positive weights on the edges whi
h satisfy(H1) there exists c > 0 and C > c su
h that c ≤ αe ≤ C for all e in E.(H2) For all vertex x, div(α)(x) = 0.Suppose that θ is a unit �ow with �nite energy from x0 to in�nity then

E
(α) (G(x0, x0)

s) <∞as soon as
s < inf

e∈E

αe

θe



DIRICHLET ENVIRONMENT 11Proof. Let γ be a positive real. We de�ne the weights
αγ = α + γθ.We 
learly have div(αγ) = γδx0

.For a positive integer N , let UN be the ball with 
enter x0 and radius N in G. Wede�ne the graph GN = (UN ∪ {δ}, VN) as follows. We 
ontra
t all the verti
es of
(UN)c to the 
emetery point δ. The edges EN are obtained from E as follows: in Ewe delete all the edges exiting a point of U c

N and we de�ne EN from the remainingedges by 
ontra
tion of U c
N to the single vertex δ. By the bounded degree propertywe see that GN is a �nite graph. We keep the same weights on the edges and we seethat on the graph GN we havedivN (α)(x) =

∑

e∈E,e=x,e6∈UN

αe.(With divN the divergen
e operator on the graph GN). Hen
e divN(α) ≥ 0, and for
N large enough (when all the edges pointing to x0 are in EN) we havedivN(αγ)(x0) = γ.Denote by G(p)

N (x0, x0) the Green fun
tion of the Markov 
hain killed when it exits UN .From lemma 1 we see that under P(αγ ) the Green fun
tion G(p)
N (x0, x0) is sto
hasti
allydominated by 1

W
where W is a beta random variable with parameters (γ, αx + θx −γ)(for N large enough).Consider now s > 0. We have (we write simply GN(x0, x0) for G(p)

N (x0, x0) theGreen fun
tion in environment (pe))
E

(α) (GN(x0, x0)
s) =

∏

x∈UN
Γ(αx)

∏

e∈EN
Γ(αe)

∏

e∈EN
Γ(αγ

e )
∏

x∈UN
Γ(αγ

x)
E

(αγ )

(

GN(x0, x0)
s
∏

e∈EN

p−γθe

e

)

.Using Hölder's inequality for q > 1 and p = q
q−1

we get that E
(α) (GN (x0, x0)

s) is lowerthan
∏

x∈UN
Γ(αx)

∏

e∈EN
Γ(αe)

∏

e∈EN
Γ(αγ

e )
∏

x∈UN
Γ(αγ

x)

(

E
(αγ ) (GN(x0, x0)

ps)
)1/p

(

E
(αγ )

(

∏

e∈EN

p−qγθe

e

))1/q

.Remark that the se
ond expe
tation is �nite if and only if qγθe < αγ
e for all e in EN ,or equivalently

q − 1 <
αe

γθefor all e in EN . We now 
hoose q su
h that
q − 1 < inf

e∈E

αe

γθe

(4.1)so that the previous 
ondition is ful�lled for all e in E. In terms of p it is equivalentto
p >

infe∈E
αe

γθe
+ 1

infe∈E
αe

γθe

.(4.2)



12 C. SABOTNow we 
ompute the se
ond expe
tation. We have
∏

x∈UN
Γ(αx)

∏

e∈EN
Γ(αe)

∏

e∈EN
Γ(αγ

e )
∏

x∈UN
Γ(αγ

x)

(

E
(αγ )

(

∏

e∈EN

p−qγθe

e

))1/q

=

∏

x∈UN
Γ(αx)

∏

e∈EN
Γ(αe)

∏

e∈EN
Γ(αγ

e )
1− 1

q

∏

x∈UN
Γ(αγ

x)
1− 1

q

∏

e∈EN
Γ(αe − (q − 1)γθe)

1

q

∏

x∈UN
Γ(αx − (q − 1)γθx)

1

qConsidering the fun
tion
ν(α, u) =

1

q
ln Γ(α− (q − 1)u) + (1 −

1

q
) ln Γ(α+ u) − ln Γ(α),we see that the previous expression is equal to

exp

(

∑

e∈EN

ν(αe, γθe) −
∑

x∈UN

ν(αx, γθx)

)

.Now, ν(α, 0) = 0 and 
learly ∂
∂u
ν(α, 0) = 0. The fun
tion ν(α, u) is C∞ on thedomain D = {α > 0} ∩ {u < α/(q − 1)}. By 
onditions (H1) and (4.1) we knowthat (αe, γθe)e∈E and (αx, γθx)x∈V are in a 
ompa
t subset of D. Hen
e, we 
an �nda 
onstant C > 0 su
h that for all N > 0

∑

e∈EN

ν(αe, γθe) −
∑

x∈UN

ν(αx, γθx) ≤ C

(

∑

e∈EN

(γθe)
2 +

∑

x∈UN

(γθx)
2

)

.Sin
e (θe) is square integrable and the graph G has bounded degree, (θx) is squareintegrable. Hen
e we have a 
onstant C ′ > 0, su
h that for all N
E

(α) (GN(x0, x0)
s) ≤ C ′

(

E
(αγ ) (GN(x0, x0)

ps)
)1/pUsing 
orollary 1 we have

E
(α) (GN (x0, x0)

s) ≤ C ′
(

E
(

W−ps
))1/pwhere W is a beta random variable with parameter (γ, αx0

+ θx0
− γ). Sin
e W−ps isintegrable for ps < γ we see that

E
(α) (G(x0, x0)

s) = sup
N

E
(α) (GN(x0, x0)

s) <∞for all s su
h that sp < γ. This is true for any 
hoi
e of p whi
h satis�es (4.2), so
G(x0, x0)

s is integrable as soon as
s <

infe∈E
αe

θe

1 + infe∈E
αe

γθe

.Letting γ tend to in�nity we get the result. �5. Max-flow of finite energyLet us re
all some notions about Max-Flow Min-Cut theorem (
f [10℄, se
tion 2.6,[2℄). Let G be a 
ountable dire
ted graph and x0 a vertex su
h that there is an in�nitedire
ted simple path starting at x0. Let (c(e))e∈E be a family of non-negative reals,
alled the 
apa
ities.



DIRICHLET ENVIRONMENT 13De�nition 1. A �ow θ from x0 to ∞ is 
ompatible with the 
apa
ities (c(e))e∈E if
θ(e) ≤ c(e), ∀e ∈ E.A 
utset is a subset S ⊂ E su
h that any in�nite dire
ted simple path from x0 
ontainsat least one edge of S.The well-known Maw-Flow Min-Cut theorem says that the maximum �ow equalsthe minimal 
utset sum (
f [8℄). We give here a version for 
ountable graphs ([10℄,theorem 2.19, 
f also [2℄).Proposition 1. The maximum 
ompatible �ow equals the in�mum of the 
utset sum,i.e.

max{strength(θ), θ is a �ow from x0 to ∞ 
ompatible with (c(e))}

= inf{c(S), S is a 
utset separating x0 from ∞}.where
c(S) =

∑

e∈S

c(e).In theorem 2, we see that the max strength of �ows of �nite energy gives a lowerbound on the 
riti
al integrability exponent of the Green fun
tion. More pre
isely, let
κ0 = sup{strengh(θ), θ is a �ow from x0 of �nite energy 
ompatible with (αe)},Then G(x0, x0)

s is integrable for s < κ0. Naturally, the question is to know whether
κ0 is also equal to the min-
ut. It is not true in general (
f the following remark) butit is true under fairly general 
onditions.Proposition 2. Let (c(e))e∈E be a family of 
apa
ities. Suppose that

inf
e∈E

c(e) > 0,and that the following holds(H3) There exists a stri
tly in
reasing sequen
e of integers ηn su
h that B(x0, ηn+1)\
B(x0, ηn) is strongly 
onne
ted in G.If there exists a unit �ow of �nite energy on G from x0 to ∞ then

max{strength(θ), θ is a �ow from x0 of �nite energy 
ompatible with (c(e))}

= min{c(S), S is a 
utset separating x0 from ∞}.Remark 7. : If 
ondition (H3) fails the equality maybe wrong. The following 
ounter-example is due to R. Aharoni, [1℄: let G be a binary tree glued by its root to a 
opyof Z+. Take 
apa
ities 
onstant equal to 1. Then any �ow of �nite energy ne
essarilyvanishes on the 
opy of Z+ and the equality 
annot hold.Proof. Let θ be a unit �ow from x0 to ∞ of �nite energy. The existen
e of su
h a �owimplies easily sin
e c is bounded from below by a positive 
onstant that there existsa 
utset S0 su
h that
c(S0) = min{c(S), S is a 
utset separating x0 from ∞}.The strategy is to modify the 
apa
ities c using θ. For a positive integer r, we denote

BE(x0, r) the set of edges
BE(x0, r) = {e ∈ E, e ∈ B(x0, r), e ∈ B(x0, r)}.



14 C. SABOTand
BE(x0, r) = {e ∈ E, e ∈ B(x0, r)}.Let N0 be su
h that S0 ⊂ BE(x0, ηN0

) and
sup

e/∈BE(x0,ηN0
)

θ(e) ≤
infE c

c(S0)
.(5.1)Let N1 be su
h that

(N1 −N0) inf
E
c > c(S0).Consider now the 
apa
ities c′ de�ned by

c′(e) =

{

c(e), if e ∈ BE(x0, ηN1
)

c(S0)θ(e), if e /∈ BE(x0, ηN1
).By the 
ondition on N0, we 
learly have

c′(e) ≤ c(e), ∀e ∈ E,and
∑

E

(c′(e))2 <∞.We now want to 
he
k that the min 
utset sum is the same for c and c′. Let S be aminimal 
utset for in
lusion. If S ⊂ BE(x0, ηN1
) then c′(S) = c(S) ≥ c(S0). If S ⊂

BE(x0, ηN0
)c then by (5.1) c′(S) ≥ c(S0)θ(S) ≥ c(S0) sin
e θ is a unit �ow. Otherwise,it means that S has one edge e0 in BE(x0, ηN0

) and one edge e1 in BE(x0, ηN1
)c. Let

K be the set of verti
es that 
an be rea
hed by a dire
ted path in E \S from x0. Sin
e
S is minimal for in
lusion, it means that there is a simple path from e0 to ∞ in Kc.Hen
e, there is a dire
ted path in Kc from B(x0, N0) to ∞, and there is a sequen
e
y1, . . . , yN1−N0

in Kc su
h that yk ∈ Uk where
Uk = B(x0, ηk+1) \B(x0, ηk).Similarly, there is a dire
ted path inK from x0 to e1. It implies that there is a sequen
e

z1, . . . , zN1−N0
in K su
h that zk ∈ Uk. By assumption (H3) there is a dire
ted pathin Uk from zk to yk. This dire
ted path ne
essarily 
ontains an edge of S. Hen
e,

|S| ≥ N1−N0 so that c′(S) > c(S0). Then, we apply the Max-Flow Min-Cut theoremto the 
apa
ities c′. It gives a �ow of �nite energy (sin
e c′ is squared integrable)
ompatible with c′ and 
onsequently with c, and with strength c(S0). �6. Appli
ationsTheorem 2 tells us thatG(x0, x0)
s is integrable for s < κ0 where κ0 is the max-�ow of�nite energy, 
ompatible with the 
apa
ities (αe). Proposition 2 tells us that this max-�ow 
oin
ides with the min-
ut under 
ondition (H3). But, it is easy to see that evenunder assumption (H3), κ0 may not 
oin
ide with the 
riti
al integrability exponent

κ de�ned as the supremum of the reals s > 0 su
h that G(x0, x0)
s is integrable.Indeed, for example if there is no dire
ted path ending at x0, then G(x0, x0) = 1and κ = ∞ whereas κ0 < ∞. We strongly 
onje
ture that, when 
ondition (H3) isvalid, then κ should be the same as the integrability exponent obtained on �nite largeenough boxes (as 
omputed in [24℄). In the 
ase of dire
ted graphs 
onstru
ted fromundire
ted graphs, it is easy to dedu
e this 
onje
ture from previous results. Thisis in fa
t the most interesting 
ase sin
e it 
ontains Zd and more generally �nitelygenerated Caley graphs.



DIRICHLET ENVIRONMENT 15Let G = (V,E) be a 
onne
ted undire
ted graph with bounded degree. Classi
ally,we 
an asso
iate a dire
ted graph G = (V,E) by dupli
ating an edge of E in 2 edgeswith opposite orientation. Let (αe) be a family of weights on the set of dire
ted edges
E.Theorem 3. Suppose that the weights (αe) satisfy(H1) there exists c > 0 and C > c su
h that c ≤ αe ≤ C for all e in E.(H2) For all vertex x, div(α)(x) = 0.Suppose that the simple random walk on the undire
ted graph G is transient. Forany x0 in V , let
κ0 = max{strength(θ), θ is a �ow from x0 to ∞ of �nite energy su
h that θ ≤ α}Then κ0 > 0 and

E
(α)(G(x0, x0)

s) <∞for all s < κ0. In parti
ular, the RWDE on G with parameter (αe) is transient foralmost all environment.(ii) Assume moreover that the following 
ondition on G holds(H'3) There exists a stri
tly in
reasing sequen
e of integers ηn su
h that B(x0, ηn+1)\
B(x0, ηn) is 
onne
ted in G.Then

E
(α)(G(x0, x0)

s) <∞, if and only if s < κwhere
κ = min{α(∂EK), K ⊂ V is �nite 
onne
ted in G, x0 ∈ K and K 6= {x0}.}(With as before ∂EK = {e ∈ E, e ∈ K, e /∈ K}.)Remark 8. In [24℄, 
orollary 4, Tournier 
omputed the 
riti
al integrability exponentfor RWDE on �nite graphs: (ii) shows that κ is the same as the 
riti
al integrabilityexponent of the Green fun
tion of the RWDE killed when it exits the ball B(x0, N), for

N large enough. This suggests that trapping only 
omes from �nite size traps whi
hare due to the non-uniform ellipti
ity of the environment.Remark 9. The 
ondition K 6= {x0} 
omes from the fa
t that we do not allow loops,so that {x0} itself 
annot be a trap. Of 
ourse, if there is a loop at x0 then the sameresult holds if we remove the restri
tion K 6= {x0}: in this 
ase, under 
ondition(H'3), κ = κ0.Let us re
all the de�nition of a �ow on an undire
ted graph. We 
hoose an arbitraryorientation of the edges of G. A �ow from x0 to in�nity is a (non-ne
essarily positive)fun
tion θ on the edges su
h that for the orientation 
hosendiv(θ)(x) = 0, ∀x 6= x0.The �ow θ is a unit �ow if moreover div(θ)(x0) = 1. To any �ow θ on the undire
tedgraph G we 
an asso
iate a �ow θ on the dire
ted graph as follows: for two oppositeedges of the dire
ted graph, θ is null on one of them and on the other one it is equalto the absolute value of θ on the 
orresponding undire
ted edge. The 
hoi
e of theedge with positive �ow is of 
ourse made a

ording to the sign of the �ow θ and theorientation of the edges (
f [10℄, se
tion 2.6). By 
onstru
tion the L2 norm of θ and
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θ is the same. Then the result 
omes from a 
lassi
al result on ele
tri
al networks(
f [10℄ proposition 2.10, or [11℄) whi
h says that the undire
ted graph G is transientif and only if there exists a unit �ow with �nite energy from a point x0 to in�nity.Hen
e it implies that κ0 > 0.(ii) For any environment (p), we have

∑

e=x0

pe = 1,hen
e G(x0, x0)
s is integrable if and only if ps

eG(x0, x0)
s is integrable for any e su
hthat e = x0. Let e0 be an edge exiting x0 and α(e0) be the weight obtained from α byadding s to αe0

. For any 
utset S 
ontaining e0, α(e0)(S) > s. Hen
e, by theorem 2and proposition 2, ps
e0
G(x0, x0)

s is integrable if s is smaller than the minimal 
utsetsum (for (α)) among 
utsets whi
h do not 
ontain e0. Sin
e the graph has no loop itmeans that G(x0, x0)
s is integrable if
s < min{α(S), S 
utset, S 6⊃ {e}e=x0

}.(6.1)Let S be a 
utset whi
h does not 
ontain {e}e=x0
. Let K be the set of verti
es that
an be rea
hed from x0 by a dire
ted path using edges of E \S. Then, ∂EK is a 
utset
ontained in S and K is 
onne
ted in G. Moreover K 6= {x0} thanks to the 
onditionon S. This implies that κ is equal to the right hand side of (6.1).If s ≥ κ, then by taking a large enough box B(x0, N), we know that the 
utset whi
ha
hieves the minimum in the de�nition of κ is in
luded in B(x0, N) (the in�mum isrea
hed, 
f the proof of proposition 2). From [24℄, 
orollary 4, it implies thatG(x0, x0)

sis not integrable.6.1. The 
ase of Zd. Of 
ourse theorem 3 (i) and (ii) apply to the model of RWDEon Zd des
ribed in the introdu
tion, for d ≥ 3. It is easy to see that on Zd, the 
riti
alexponent κ is obtained for K = {0, ei0} for some i0 in {1, . . . , d}. Hen
e we have
κ = 2

(

∑

i=1,...,d, i6=i0

αei
+ α−ei

)

+ αei0
+ α−ei0

.This proves theorem 1.6.2. Finitely generated Caley graphs. Let {e1, . . . , ed} be a �nite, symmetri
 (i.e.the set is stable by inversion), set of generators of a group. We asso
iate with anygenerator ei a positive weight αi > 0. The RWDE on the asso
iated Caley graph,with weights (α(g,gei) = αi), has the property (H1) and (H2). Hen
e, if the simplerandom walk on the Caley graph is transient, so are the RWDE's.A
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