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RANDOM WALKS IN RANDOM DIRICHLET ENVIRONMENTARE TRANSIENT IN DIMENSION d ≥ 3CHRISTOPHE SABOTAbstrat: We onsider random walks in random Dirihlet environment (RWDE)whih is a speial type of random walks in random environment where the exit prob-abilities at eah site are i.i.d. Dirihlet random variables. On Zd, RWDE are parame-terized by a 2d-uplet of positive reals. We prove that for all values of the parameters,RWDE are transient in dimension d ≥ 3. We also prove that the Green funtion hassome �nite moments and, on Zd, d ≥ 3, we expliitly ompute the ritial integrabilityexponent. Our result is more general and applies for example to �nitely generatedtransient Cayley graphs. In terms of reinfored random walks it implies that linearlyedge-oriented reinfored random walks are transient for d ≥ 3.1. IntrodutionRandom Walks in Random Environment (RWRE) have reeived a onsiderableattention in the last years. At lot is known for one-dimensional RWRE, but thesituation far from being so lear in dimension 2 and larger. Progresses have beenmade for multidimensional RWRE (in partiular, sine the work of Sznitman andZerner, f [22℄) essentially in two diretions: for ballisti RWRE (f [22℄, [19℄, [20℄,[15℄ and referene therein) and more reently for small perturbations of the simplerandom walk in dimension d ≥ 3. Nevertheless, most of the important questionsas haraterization of reurrene, of ballisti behavior, invariane priniple remainlargely open. Reently, for RWRE whih are small isotropi perturbation of thesimple random walk on Zd, d ≥ 3, Bolthausen and Zeitouni ([3℄) made some progressin the diretion of the invariane priniple and proved transiene using renormalizationtehnis (invariane priniple for the orresponding ontinuous model has previouslybeen obtained by Sznitman and Zeitouni, [21℄). We refer to [25℄ or [17℄ for surveys.In this paper we take a di�erent approah, we onsider a speial type of environment,the Dirihlet environment. It orresponds to the ase where the transition probabilitiesat eah site are hosen as i.i.d. Dirihlet random variables. This model has beenintrodued by N. Enriquez and the author in [5℄, where it has been remarked thatthe annealed law of a random walk in a Dirihlet environment orresponds to the lawof a linearly reinfored random walk, on oriented edges. In [4℄, N. Enriquez and theauthor obtained a simple riterion for ballistiity, latter improved by L. Tournier in[24℄. Besides, in the one-dimensional ase, it appeared in [6℄ that limit theorems in thesub-ballisti regime are fully expliit in the ase of Dirihlet environments, highlightingthe speial r�le of Dirihlet environment among random environments. Finally, in [16℄we have desribed a preise relation between RWDE and hypergeometri integralsassoiated with ertain arrangement of hyperplanes.2000 Mathematis Subjet Classi�ation. primary 60K37, 60K35, seondary 5C20.Key words and phrases. Random walk in random environment, Dirihlet distribution, Reinforedrandom walks, Max-Flow Min-Cut theorem. 1



2 C. SABOTOn Z
d, RWDE are parameterized by 2d positive reals (α1, . . . , α2d), one for eahdiretion. We all (αi) the weights. In this paper, we prove that RWDE on Zd, for

d ≥ 3, are transient for all values of the weights (in partiular for the ase of unbiasedweights). In fat, we prove something stronger. We prove that the Green funtion hassome �nite moments and we expliitly ompute the ritial integrability exponent κ,i.e. the supremum of the reals s > 0 suh that the Green funtion G(0, 0)s has �niteexpetation. We show that this real is the same as the one for the RWDE killed whenit exists a �nite large ball (whih has been omputed by Tournier in [24℄). In someway, it means that trapping is only due to �nite size traps whih omes from the nonuniform elliptiity of the environment. Our result is in fat more general and appliesfor example to any �nitely generated Caley graph on whih the simple random walk istransient. Compared to the results of [3℄, our results are non-perturbative, they applyto any hoie of the weights, but the ounterpart is that our method is very spei�to the Dirihlet environment. Besides, the proof is remarkably simple. We think ithighlights the speial r�le of Dirihlet environments and we think that the tehnispresented in this paper will help us to understand more on RWDE.Our proof is based on an expliit formula valid for Dirihlet environments and ona method of perturbation of the weights. Finally, the ritial exponent is obtainedthanks to an L2 version of the Max-Flow Min-Cut theorem (proposition 2). Theexpliit formula (orollary 1) was in fat hinted in our joint work with N. Enriquezand O. Zindy ([6, 7℄) where it appeared that in the ase of one-dimensional RWDE, theGreen funtion on the half-line at 0 has an expliit law (whih is in fat a onsequeneof a result of Chamayou and Leta on expliit solutions of renewal equations, [9℄).From the point of view of reinfored random walks, our result implies the transieneof all edge-oriented linearly reinfored random walks on Zd, for d ≥ 3. Compared tothe two other natural models of linearly reinfored random walks, namely vertexreinfored random walks and (non-oriented) edge reinfored random walks (f [23,14℄, [12, 13℄) this model has a diret representation as a random walk in randomenvironment, but the di�ulty of this model lies in its non-reversibility.Let us present our results for the graph Z
d. Let (e1, . . . , ed) be the anonial baseof Zd, and set ej = −ej−d, for j = d + 1, . . . , 2d. The set {e1, . . . , e2d} is the set ofunit vetors of Zd. We onsider a probability law λ on

{(x1, . . . , x2d) ∈]0, 1]2d,
2d
∑

i=1

xi = 1}(1.1)We onstrut a Markov hain on Zd, to nearest neighbors as follows: we hooseindependently at eah point x ∈ Zd, some transition probabilities
p(x) = (p(x, x+ ei))i=1,...,2d ,aording to the law λ. It means that the vetor (p(x))x∈Zd is hosen aording to theprodut measure µ = ⊗x∈Zdλ. It de�nes the transition probability of a Markov hainon Zd, and we denote P (p)

x the law of this Markov hain starting from x:
P (p)

x [Xn+1 = x+ ei|Xn = x] = p(x, x+ ei).RandomDirihlet environment orresponds to the ase where the law λ is a Dirihletlaw. More preisely, we hoose some positive weights (α1, . . . , α2d) and we take λ =
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λ(α) with density

Γ(
∑2d

i=1 αi)
∏2d

i=1 Γ(αi)

(

2d
∏

i=1

xαi−1
i

)

dx2 · · · dx2d,where Γ is the usual Gamma funtion Γ(α) =
∫∞

0
tα−1e−tdt. We denote P(α) the lawobtained on the environment in this way. This type of environment plays a spei�r�le, sine the annealed law P

(α)
x [·] = E(α)[P

(p)
x (·)] orresponds to an edge orientedreinfored random walk with an a�ne reinforement, i.e.

P
(α)
x [Xn+1 = Xn + ei|σ(Xk, k ≤ n)] =

αi +Ni(Xn, n)
∑2d

k=1 αk +Nk(Xn, n)
,where Nk(x, n) is the number of rossings of the oriented edge (x, x+ ek) up to time

n (f [5℄). When the weights are onstant equal to α, the environment is isotropi:when α is large, the environment is lose to the deterministi environment of thesimple random walk, when α is small the environment is very disordered.Let us now desribe preisely our results for Zd, d ≥ 3. We denote G(x, y) the greenfuntion in the environment (p(x))x∈Zd.
G(x, y) = E(p)

x [

∞
∑

k=0

1Xk=y].Theorem 1. For d ≥ 3 and for any hoie of weights (α1, . . . , α2d) we have
E

(α) (G(0, 0)s) <∞if and only if s < κ where
κ = 2

2d
∑

j=1

αj − min
i=1,...,d

(αei
− α−ei

).In partiular, the RWDE is transient for almost all environment.Remark 1. In [24℄, Tournier omputed the ritial integrability exponent for RWDEon �nite graphs. For N > 1, let GN be the Green funtion of the RWDE killed whenit exists the ball B(0, N): it appears that GN(0, 0)s is integrable if and only if s < κ.Hene, it seems to mean that there is no in�nite size trap and that the trapping e�etomes only from �nite size traps due to the non-uniform elliptiity of the environment.Remark 2. The result for Zd is in fat a onsequene of a more general result validfor direted graph onstruted from undireted graph, under a ondition on the weights(null-divergene), f theorem 3.Let us desribe the organization of the paper. In setion 2, we desribe the model ofRWDE on direted graphs. In setion 3, we prove the key expliit formulas. Setion4 is devoted to the proof of the main result on integrability. In setion 5, we prove ageneralization of the Max-Flow Min-Cut theorem for �ows of �nite energy. In setion6 we apply the results to direted graphs onstruted from undireted graphs, and wededue theorem 1.



4 C. SABOT2. Markov hain in Dirihlet environment on direted graphsLet us �rst desribe Random walk in Dirihlet Environment (RWDE for short) ona general graph. A direted graph is a ouple G = (V,E) where V is the ountableset of verties and E is the ountable set of edges (i.e. E is a olletion of elementsof E × E; for simpliity we do not allow loops). The tail of the edge e is denoted
e = x and the head is denoted e = y if e orresponds to (x, y). We suppose that thegraph has bounded degree i.e. that the number of edges exiting a vertex x or pointingto a vertex x is bounded. For an integer n and a vertex x we denote B(x, n) theball with enter x and radius n for the graph distane (de�ned independently of theorientation of the edges). We say that a subset K ⊂ V is strongly onneted if forany two verties x and y in K there is a direted path in K from x to y.Let us de�ne the divergene operator on the graph G: it is the operator div : RE 7→
RV de�ned for a funtion θ : E 7→ R bydiv(θ)(x) =

∑

e,e=x

θ(e) −
∑

e,e=x

θ(e), ∀x ∈ V.The set of environments on G is de�ned as the set
∆ = {(pe)e∈E ∈]0, 1]E , suh that ∑

e,e=x

pe = 1, ∀x ∈ V }.With any environnement (pe) we assoiate the Markov hain on V with law (P
(p)
x ),where P (p)

x0 is the law of the Markov hain starting from x0 with transition probabilitiesgiven by
P (p)

x0
(Xn+1 = y|Xn = x) = p(x,y) =

∑

e,e=x,e=y

pe.If y is a vertex suh that no edge is exiting y then we put P (p)
x0 (Xn+1 = y|Xn = y) = 1,so that y is an absorbing point.Let (αe)e∈E be a set of positive weights on the edges. For any vertex x we set

αx =
∑

e,e=x

αethe sum of the weights of the edges with origin x. The Dirihlet environnement withparameters (αe) is the law on ∆ obtained by taking at eah site x the transitionprobabilities (pe)e=x independently aordingly to the Dirihlet law with parameters
(αe)e=x i.e. with distribution

(

Γ(αx)
∏

e, e=x Γ(αe)

)(

∏

e, e=x

pαe−1
e

)





∏

e∈Ẽ,e=x

dpe



 .where Ẽ is obtained from E by removing arbitrary, for eah vertex x, one edge withorigin x (easily, it is independent of this hoie). We denote P(α) the orrespondingprobability measure on ∆ and E(α) the assoiated expetation.When the graph is �nite the distribution of the Dirihlet environment is given by
∏

x∈V Γ(αx)
∏

e∈E Γ(αe)

(

∏

e∈E

pαe−1
e

)

dλ∆.



DIRICHLET ENVIRONMENT 5where dλ∆ is the measure on ∆ given by
dλ∆ =

∏

e∈Ẽ

dpe,(2.1) 3. Stability by time reversal3.1. The key lemma. Suppose now that the graph is �nite and strongly onnetedi.e. that there is a direted path between any two verties x and y. Let Ǧ = (V, Ě)be the graph obtained from G by reversing all the edges, i.e. Ẽ is obtained from Eby reversing the head and the tail of the edges. For an environment (pe) we denoted
(p̌ě) the environment obtained by time reversal of the Markov hain, i.e. for all e in
E

p̌ě =
πe

πe
pe,where (πx)x∈V is the invariant probability on V for the Markov hain P (p). (Sine weassume that the graph is strongly reurrent and that the weights pe are positive thisinvariant probability exists and is unique).Lemma 1. Suppose that the weights (αe) have divergene null, i.e.div(α)(x) = 0, ∀x ∈ V,then (p̌e)e∈Ě is a Dirihlet environment on Ǧ with parameters (αe).Remark 3. By this we mean that (p̌e) is distributed aording to a Dirihlet environ-ment with parameters (α̌ě∈Ě) where α̌ě = αe if ě is the reversed edge of e. We willoften identify the edges in E with their reversed edges in Ě.Proof. The proof is based on a hange of variable. Let e0 be a spei�ed edge of thegraph. Let He0

be the a�ne spae de�ned by
He0

= {(ze)e∈E ∈ R
E , ze0

= 1, div(z) ≡ 0}.and H the vetor spae
H = {(ze)e∈E ∈ R

E , div(z) ≡ 0}.Let ∆̃e0
= He0

∩ (R∗
+)E. The strategy is to make the hange of variable

∆ 7→ ∆̃e0

(pe)e∈E → (ze =
πepe

πe0
pe0

)e∈E.Hene, (ze) is the oupation time of the graph normalized so that ze0
= 1. It iseasy to see that the previous hange of variable is a C∞-di�eomorphism. Let T be aspanning tree of the graph G suh that e0 /∈ T . (This is possible sine the graph isstrongly onneted and thus e0 belongs to at least one direted yle of the graph.)We set B = T ∪ {e0}. Then (ze)e∈T c is a base of H and (ze)e∈Bc is a base of He0

. Let
x0 ∈ V be any vertex, and set U = V \ {x0}. We �rst prove the following lemma.Lemma 2. Let ψ be a positive test funtion on ∆. Then
∫

∆

Ψ((pe))

(

∏

e∈E

pαe−1
e

)

dλ∆ =

∫

∆̃e0

Ψ((
ze

ze
))

(
∏

e∈E z
αe−1
e

∏

x∈V z
αx
x

)

det
(

Z|U×U

)

∏

e∈Bc

dze.



6 C. SABOTwhere as usual zx =
∑

e,e=x ze and Z is the V × V matrix de�ned by
Zx,x = zx, ∀x ∈ V, Zx,y = −zx,y = −

∑

e,e=x,e=y

ze, ∀x 6= y.Remark 4. This formula is essentially the same as the one whih gives the orrespon-dane between RWDE and hypergeometri integrals assoiated with an arrangement ofhyperplanes in [16℄.We see that lemma 1 is a diret onsequene of the previous result. Indeed we seethat lemma 2 applied to the reversed graph (Ǧ, Ě), starting with the weights α̌ě = αewould give the same integrand with αx replaed by αx =
∑

e,e=x αe. The two oinideafter the hange of variables exatly when div(α) ≡ 0. �Proof. of lemma 2. Let us �rst remark that det(Z|U×U) does not depend on the hoieof x0: indeed, the lines and olumns of Z has sum 0. By addition of lines and olumnswe an swith from x0 to y0. Hene, we an freely hoose x0 = e0. Remark now that
H and He0

are the a�ne subspaes of RE de�ned by
H = ∩x∈U{div(z)(x) = 0}, He0

= {ze0
= 1} ∩x∈U {div(z)(x) = 0}.For simpli�ation, we write

hx(z) = div(z)(x),for all x in U . It is not easy to ompute diretly the Jaobian of the hange ofvariables, the strategy is to use Fourier transform to make the hange of variables onfree variables. We �rst prove the following lemma.Lemma 3. For any funtion φ : RE → C, C∞, with ompat support in (R∗
+)E wehave that

∫

He0

φ|He0

∏

e∈Bc

dze =

∫

RU×R

∫

RE

φ(z) exp

(

2iπ

(

u0(ze0
− 1) +

∑

x∈U

uxhx(z)

))(

∏

e∈E

dze

)(

du0

∏

x∈U

dux

)

.Proof. of lemma 3. We will use several times the following simple fat (whih is aonsequene of the inverse Fourier transform). Let g : RN+k → R be a C∞ funtionwith ompat support, then
∫

RN

g(x1, . . . , xN , 0, . . . , 0)dx1 · · · dxN

=

∫

Rk

∫

RN+k

exp

(

2iπ

k
∑

j=1

ujxN+j

)

g(x1, . . . , xN+k)(dx1 · · · dxN+k)(du1 · · · duk)Let us ompute the Jaobian of the linear hange of variables
R

E 7→ R
U × R

T c

((ze)e∈E) → ((hx(z))x∈U , (ze)e∈T c).(3.1)



DIRICHLET ENVIRONMENT 7Denoting T = {ej1, . . . , ej|U|
} and T c = {ei1, . . . , ei|E|−|U|

}, U = {x1, . . . , x|U |}:
|J | = | det































∂hx1

∂zej1

· · ·
∂hx|U|

∂zej1... ... 0
∂hx1

∂zej|U|

· · ·
∂hx|U|

∂zej|U|

∂hx1

∂zei1

· · ·
∂hx|U|

∂zei1... ... IdT c×T c

∂hx1

∂zei|E|−|U|

· · ·
∂hx|U|

∂zei|E|−|U|































|.

So, we get
|J | = | det











∂hx1

∂zej1

· · ·
∂hx|U|

∂zej1... ...
∂hx1

∂zej|U|

· · ·
∂hx|U|

∂zej|U|











|.The previous matrix is the inidene matrix on U of the spanning tree T , indeed wehave if x ∈ U

∂hx

∂ze
=







+1 if e = x,
−1 if e = x,
0 otherwise.It is well know that this determinant is equal to ±1. Let us now denote φ̃ : RU×RT c

7→
C the funtion de�ned by

φ((ze)e∈E) = φ̃((hx(z))x∈U , (ze)e∈T c).By formula (3.1) and sine φ̃(0, (ze)e∈T c) = φ((ze)e∈E) on H, we get
∫

He0

φ|He0
((ze))

∏

e∈Bc

dze =

∫

R

∫

H

φ|H((ze))e
2iπu0(ze0−1)

(

∏

e∈T c

dze

)

du0

=

∫

R

∫

H

φ̃(0, (ze)e∈T c)e2iπu0(ze0−1)

(

∏

e∈T c

dze

)

du0Using again formula 3.1 we see that the previous integral is equal to
=

∫

R×RU

∫

RU×RTc

exp
(

2iπ
(

u0(ze0
− 1) +

∑

x∈U uxhx

))

φ̃((hx)x∈U , (ze)e∈T c)

(
∏

x∈U dhx

∏

e∈T c dze

) (

du0

∏

x∈U dux

)

.Then, the hange of variables (3.1) gives lemma 3. �We make the following hange of variables:
(R∗

+)E → (R∗
+)V × ∆

(ze) 7→ ((vx)x∈V , (pe)e∈E),given by
vx =

∑

e=x

ze, pe =
ze

ve
.



8 C. SABOT(More preisely, it is the hange of variables onto the set (R∗
+)V ×]0, 1]Ẽ where Ẽ isde�ned in (2.1). It means that we hoose (pe)e∈Ẽ as the oordinate system on ∆.) Wehave ze = ve pe and the Jaobian is given by

∏

x∈U

vnx−1
x ,where nx = |{e, e = x}|. Implementing this hange of variables in lemma 3 gives that

∫

He0

φ|He0

∏

e∈Bc

dzeis equal to
∫

R×RU

∫

RV ×∆

(

∏

x∈V

vnx−1
x

)

φ((vepe)) exp
(

iu0(ve0
pe0

− 1) + i
∑

x∈U uxhx

)

(

(
∏

x∈U dvx)dλ∆

) (

du0

∏

x∈U dux

)

,where dλ∆ is the measure on ∆ de�ned in (2.1) and with
hx((vx), (pe)) = vx −

∑

e,e=x

vepe.The strategy is now to apply formula (3) to get ride of variables (u0, (ux)x∈U). Forthis we need to hange to variables (ve0
pe0
, (hx)x∈U). We make the following hangeof variables.

R
V × ∆ 7→ R × R

U × ∆

((vx)x∈V , (pe)) → (k0(v, p), (hx(v, p))x∈U , (pe)),with k0 = ve0
pe0

. This hange of variables an be inverted by
(vx)x∈V = (M (p))−1(k0, (hx)),where

M (p)
x,y = (I − P )x,y, ∀x ∈ U, ∀y ∈ V,and M0,y = pe0

1y=e0
(where P is the transition matrix in the environment (p)). Sinewe have hosen x0 = e0, the Jaobian of the hange of variables is

|J | = pe0
det(I − P )U×U .By this hange of variables, the integral beomes

∫

R×RU

∫

R×RU×∆

φ((vepe))

(
∏

x∈V v
nx−1
x

)

pe0
det(I − P )U×U

exp
(

2iπ
(

u0(k0 − 1) +
∑

x∈U uxhx

))

(

(dk0

∏

x∈U dhx)dλ∆

) (

du0

∏

x∈U dux

)

,Remark that if the following equalities are satis�ed
hx((vx), (pe)) = 0, ∀x ∈ U, ve0

pe0
= 1it implies that vx = πx

πe0
pe0

for all x. Integrating over the variables (u0, (ux)) by formula(3.1) we get
∫

He0

φ|He0

∏

e∈Bc

dze =

∫

∆

∏

x∈V

(

πx

πe0
pe0

)nx−1
φ((ze))

pe0
det(I − P )U×U

dλΩ,
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πepe

πe0
pe0

. Then we just have to replae φ by
φ((ze)) = ψ

(

(
ze

ze
)

)
∏

e∈E 1ze>0z
αe−1
e

∏

x∈V z
αx
x

det(Z|U×U)This an be done by monotone onvergene. �3.2. Appliations. Consider now a �nite graph with a emetery point, i.e. we sup-pose that G = (V,E), that V and E are �nite and that V an be written V = U ∪{δ}where
• no edge is exiting δ (δ is alled the emetery point)
• for any point x in U there is a direted path form x to δ.It means that δ is absorbing for the Markov hain on G with law P (p). For x and yin U we denote G(p)(x, y) the Green funtion in the environment (pe)

G(p)(x, y) = E(p)
x (

∞
∑

k=0

1Xn=y).Corollary 1. (i) Suppose that div(α)(x) = 0 for all x in U suh that x 6= x0 thendiv(α)(x0) > 0 and G(p)(x0, x0) is distributed as 1
W

where W is a beta random variablewith parameter (div(α)(x0), αx0
− div(α)(x0)).(ii) Suppose that div(α)(x) is non-negative for all x in U . For all x0 in U suhthat div(α)(x0) > 0, G(p)(x0, x0) is stohastially dominated by 1

W
where W is a betarandom variable with parameter (div(α)(x0), αx0

− div(α)(x0)).Remark 5. The expliit formula in (i) was in fat suggested by our joint work with N.Enriquez and O. Zindy ([6℄) and by the orrespondane established in [16℄. Indeed, itappeared in [6℄ that in the ase of sub-ballisti one-dimensional RWRE limit theoremsare fully expliit in the ase of Dirihlet environments. This is a onsequene of thefat that the Green funtion at 0 of the RWDE on the half line Z+ is equal in law to
1/W where W is a beta random variable with appropriate weights. In the ase of one-dimensional RWDE, this expliit formula is a onsequene of a result of Chamayouand Leta ([9℄) on expliit solutions for renewal equations.Remark 6. By the priniple of onservation of mass we know that∑x∈U div(α)(x) =
∑

e=δ αe so that there is always a vertex x suh that div(α)(x) > 0.(i) We an freely suppose that any y in U an be reahed following a direted pathfrom x0 (indeed, the part of the graph whih annot be reahed from x0 does notplay any role in G(x0, x0)). Suppose that div(α)(x0) = γ, γ > 0. It means thatdiv(α)(δ) = −γ. Consider now the graph G̃ = (U,E) obtained by identi�ation of theverties δ and x0. The edges of G̃ are just obtained by identi�ation of δ and x0 in theedges of G (with eventually multiples edges in G̃). The graph G̃ is learly stronglyonneted and if we keep the same weights on the edges we have divG̃(α) ≡ 0. Considerthe invariant probability (πx)x∈U for the RWDE on G̃. It gives the oupation timeon the edges ze = πepe, and the time reversal transition probabilities p̌e = ze

πe
. If

G(p)(x0, x0) is the Green funtion on the graph with emetery G then we have
G(p)(x0, x0) =

πx0
∑

e=δ ze
=

1
∑

e=δ p̌e
.



10 C. SABOT(where e = δ is relative to the edges in the initial graph G). By the previous lemma weknow that (p̌e)e=δ or e=x0
has the law of a Dirihlet random variable with parameters

(αe)e=δ or e=x0
. (Indeed, the verties δ and x0 are identi�ed in the quotiented graph

G̃.) The onlusion omes from general properties of Dirihlet random variables.(ii) Consider the graph G̃ = (Ũ ∪ {δ̃}, Ẽ) obtained as follows. The set of vertiesis de�ned by Ũ = U ∪ {δ} and δ̃ is the new emetery point. The set of edges Ẽ isobtained by adding to the edges E of G some new edges with origin δ: for any x 6= x0suh that div(α)(x) > 0 we add the edge (δ, x) with weight div(α)(x); we also add theedge (δ, δ̃) with weight div(α)(x0). Clearly, the new graph G̃ with the previous hoieof weights satis�es the ondition of (i). Moreover if (pe)e∈E is a Dirihlet environmenton G with weights (αe) it an be extended to a Dirihlet environment (p̃e)e∈Ẽ on
G̃ just by hoosing independently the transition probabilities on the edges exiting δaording to a Dirihlet random variable with the appropriate weights. Remark that

G(p)(x0, x0) < G(p̃)(x0, x0).Indeed, the Markov hains on G and G̃ behave the same as long as they are on U butthe Markov hain on G is stuk on δ although the Markov hain on G̃ an ome bakto U from δ. The onlusion is a onsequene of (i) sine (i) implies that G(p̃)(x0, x0)has the law of 1/W with W a beta random variable with appropriate weights. �4. Integrability onditionSuppose now thatG = (V,E) is a ountable onneted direted graph with boundeddegree. Suppose for simpliity that there is at least one edge exiting eah vertex.We reall that a unit �ow from a vertex x0 to in�nity (f [10℄) is a positive funtion
θ on the edges suh that div(θ)(x) = 0, ∀x 6= x0,and div(θ)(x0) ≥ 0.The strength of the �ow is the valuestrength(θ) = div(θ)(x0).A unit �ow is a �ow of strength 1.We say that the �ow θ has �nite energy if it is square integrable i.e. if

∑

e∈E

θ2
e <∞.Theorem 2. Let (αe)e∈E be a family of positive weights on the edges whih satisfy(H1) there exists c > 0 and C > c suh that c ≤ αe ≤ C for all e in E.(H2) For all vertex x, div(α)(x) = 0.Suppose that θ is a unit �ow with �nite energy from x0 to in�nity then

E
(α) (G(x0, x0)

s) <∞as soon as
s < inf

e∈E

αe

θe



DIRICHLET ENVIRONMENT 11Proof. Let γ be a positive real. We de�ne the weights
αγ = α + γθ.We learly have div(αγ) = γδx0

.For a positive integer N , let UN be the ball with enter x0 and radius N in G. Wede�ne the graph GN = (UN ∪ {δ}, VN) as follows. We ontrat all the verties of
(UN)c to the emetery point δ. The edges EN are obtained from E as follows: in Ewe delete all the edges exiting a point of U c

N and we de�ne EN from the remainingedges by ontration of U c
N to the single vertex δ. By the bounded degree propertywe see that GN is a �nite graph. We keep the same weights on the edges and we seethat on the graph GN we havedivN (α)(x) =

∑

e∈E,e=x,e6∈UN

αe.(With divN the divergene operator on the graph GN). Hene divN(α) ≥ 0, and for
N large enough (when all the edges pointing to x0 are in EN) we havedivN(αγ)(x0) = γ.Denote by G(p)

N (x0, x0) the Green funtion of the Markov hain killed when it exits UN .From lemma 1 we see that under P(αγ ) the Green funtion G(p)
N (x0, x0) is stohastiallydominated by 1

W
where W is a beta random variable with parameters (γ, αx + θx −γ)(for N large enough).Consider now s > 0. We have (we write simply GN(x0, x0) for G(p)

N (x0, x0) theGreen funtion in environment (pe))
E

(α) (GN(x0, x0)
s) =

∏

x∈UN
Γ(αx)

∏

e∈EN
Γ(αe)

∏

e∈EN
Γ(αγ

e )
∏

x∈UN
Γ(αγ

x)
E

(αγ )

(

GN(x0, x0)
s
∏

e∈EN

p−γθe

e

)

.Using Hölder's inequality for q > 1 and p = q
q−1

we get that E
(α) (GN (x0, x0)

s) is lowerthan
∏

x∈UN
Γ(αx)

∏

e∈EN
Γ(αe)

∏

e∈EN
Γ(αγ

e )
∏

x∈UN
Γ(αγ

x)

(

E
(αγ ) (GN(x0, x0)

ps)
)1/p

(

E
(αγ )

(

∏

e∈EN

p−qγθe

e

))1/q

.Remark that the seond expetation is �nite if and only if qγθe < αγ
e for all e in EN ,or equivalently

q − 1 <
αe

γθefor all e in EN . We now hoose q suh that
q − 1 < inf

e∈E

αe

γθe

(4.1)so that the previous ondition is ful�lled for all e in E. In terms of p it is equivalentto
p >

infe∈E
αe

γθe
+ 1

infe∈E
αe

γθe

.(4.2)



12 C. SABOTNow we ompute the seond expetation. We have
∏

x∈UN
Γ(αx)

∏

e∈EN
Γ(αe)

∏

e∈EN
Γ(αγ

e )
∏

x∈UN
Γ(αγ

x)

(

E
(αγ )

(

∏

e∈EN

p−qγθe

e

))1/q

=

∏

x∈UN
Γ(αx)

∏

e∈EN
Γ(αe)

∏

e∈EN
Γ(αγ

e )
1− 1

q

∏

x∈UN
Γ(αγ

x)
1− 1

q

∏

e∈EN
Γ(αe − (q − 1)γθe)

1

q

∏

x∈UN
Γ(αx − (q − 1)γθx)

1

qConsidering the funtion
ν(α, u) =

1

q
ln Γ(α− (q − 1)u) + (1 −

1

q
) ln Γ(α+ u) − ln Γ(α),we see that the previous expression is equal to

exp

(

∑

e∈EN

ν(αe, γθe) −
∑

x∈UN

ν(αx, γθx)

)

.Now, ν(α, 0) = 0 and learly ∂
∂u
ν(α, 0) = 0. The funtion ν(α, u) is C∞ on thedomain D = {α > 0} ∩ {u < α/(q − 1)}. By onditions (H1) and (4.1) we knowthat (αe, γθe)e∈E and (αx, γθx)x∈V are in a ompat subset of D. Hene, we an �nda onstant C > 0 suh that for all N > 0

∑

e∈EN

ν(αe, γθe) −
∑

x∈UN

ν(αx, γθx) ≤ C

(

∑

e∈EN

(γθe)
2 +

∑

x∈UN

(γθx)
2

)

.Sine (θe) is square integrable and the graph G has bounded degree, (θx) is squareintegrable. Hene we have a onstant C ′ > 0, suh that for all N
E

(α) (GN(x0, x0)
s) ≤ C ′

(

E
(αγ ) (GN(x0, x0)

ps)
)1/pUsing orollary 1 we have

E
(α) (GN (x0, x0)

s) ≤ C ′
(

E
(

W−ps
))1/pwhere W is a beta random variable with parameter (γ, αx0

+ θx0
− γ). Sine W−ps isintegrable for ps < γ we see that

E
(α) (G(x0, x0)

s) = sup
N

E
(α) (GN(x0, x0)

s) <∞for all s suh that sp < γ. This is true for any hoie of p whih satis�es (4.2), so
G(x0, x0)

s is integrable as soon as
s <

infe∈E
αe

θe

1 + infe∈E
αe

γθe

.Letting γ tend to in�nity we get the result. �5. Max-flow of finite energyLet us reall some notions about Max-Flow Min-Cut theorem (f [10℄, setion 2.6,[2℄). Let G be a ountable direted graph and x0 a vertex suh that there is an in�nitedireted simple path starting at x0. Let (c(e))e∈E be a family of non-negative reals,alled the apaities.



DIRICHLET ENVIRONMENT 13De�nition 1. A �ow θ from x0 to ∞ is ompatible with the apaities (c(e))e∈E if
θ(e) ≤ c(e), ∀e ∈ E.A utset is a subset S ⊂ E suh that any in�nite direted simple path from x0 ontainsat least one edge of S.The well-known Maw-Flow Min-Cut theorem says that the maximum �ow equalsthe minimal utset sum (f [8℄). We give here a version for ountable graphs ([10℄,theorem 2.19, f also [2℄).Proposition 1. The maximum ompatible �ow equals the in�mum of the utset sum,i.e.

max{strength(θ), θ is a �ow from x0 to ∞ ompatible with (c(e))}

= inf{c(S), S is a utset separating x0 from ∞}.where
c(S) =

∑

e∈S

c(e).In theorem 2, we see that the max strength of �ows of �nite energy gives a lowerbound on the ritial integrability exponent of the Green funtion. More preisely, let
κ0 = sup{strengh(θ), θ is a �ow from x0 of �nite energy ompatible with (αe)},Then G(x0, x0)

s is integrable for s < κ0. Naturally, the question is to know whether
κ0 is also equal to the min-ut. It is not true in general (f the following remark) butit is true under fairly general onditions.Proposition 2. Let (c(e))e∈E be a family of apaities. Suppose that

inf
e∈E

c(e) > 0,and that the following holds(H3) There exists a stritly inreasing sequene of integers ηn suh that B(x0, ηn+1)\
B(x0, ηn) is strongly onneted in G.If there exists a unit �ow of �nite energy on G from x0 to ∞ then

max{strength(θ), θ is a �ow from x0 of �nite energy ompatible with (c(e))}

= min{c(S), S is a utset separating x0 from ∞}.Remark 7. : If ondition (H3) fails the equality maybe wrong. The following ounter-example is due to R. Aharoni, [1℄: let G be a binary tree glued by its root to a opyof Z+. Take apaities onstant equal to 1. Then any �ow of �nite energy neessarilyvanishes on the opy of Z+ and the equality annot hold.Proof. Let θ be a unit �ow from x0 to ∞ of �nite energy. The existene of suh a �owimplies easily sine c is bounded from below by a positive onstant that there existsa utset S0 suh that
c(S0) = min{c(S), S is a utset separating x0 from ∞}.The strategy is to modify the apaities c using θ. For a positive integer r, we denote

BE(x0, r) the set of edges
BE(x0, r) = {e ∈ E, e ∈ B(x0, r), e ∈ B(x0, r)}.



14 C. SABOTand
BE(x0, r) = {e ∈ E, e ∈ B(x0, r)}.Let N0 be suh that S0 ⊂ BE(x0, ηN0

) and
sup

e/∈BE(x0,ηN0
)

θ(e) ≤
infE c

c(S0)
.(5.1)Let N1 be suh that

(N1 −N0) inf
E
c > c(S0).Consider now the apaities c′ de�ned by

c′(e) =

{

c(e), if e ∈ BE(x0, ηN1
)

c(S0)θ(e), if e /∈ BE(x0, ηN1
).By the ondition on N0, we learly have

c′(e) ≤ c(e), ∀e ∈ E,and
∑

E

(c′(e))2 <∞.We now want to hek that the min utset sum is the same for c and c′. Let S be aminimal utset for inlusion. If S ⊂ BE(x0, ηN1
) then c′(S) = c(S) ≥ c(S0). If S ⊂

BE(x0, ηN0
)c then by (5.1) c′(S) ≥ c(S0)θ(S) ≥ c(S0) sine θ is a unit �ow. Otherwise,it means that S has one edge e0 in BE(x0, ηN0

) and one edge e1 in BE(x0, ηN1
)c. Let

K be the set of verties that an be reahed by a direted path in E \S from x0. Sine
S is minimal for inlusion, it means that there is a simple path from e0 to ∞ in Kc.Hene, there is a direted path in Kc from B(x0, N0) to ∞, and there is a sequene
y1, . . . , yN1−N0

in Kc suh that yk ∈ Uk where
Uk = B(x0, ηk+1) \B(x0, ηk).Similarly, there is a direted path inK from x0 to e1. It implies that there is a sequene

z1, . . . , zN1−N0
in K suh that zk ∈ Uk. By assumption (H3) there is a direted pathin Uk from zk to yk. This direted path neessarily ontains an edge of S. Hene,

|S| ≥ N1−N0 so that c′(S) > c(S0). Then, we apply the Max-Flow Min-Cut theoremto the apaities c′. It gives a �ow of �nite energy (sine c′ is squared integrable)ompatible with c′ and onsequently with c, and with strength c(S0). �6. AppliationsTheorem 2 tells us thatG(x0, x0)
s is integrable for s < κ0 where κ0 is the max-�ow of�nite energy, ompatible with the apaities (αe). Proposition 2 tells us that this max-�ow oinides with the min-ut under ondition (H3). But, it is easy to see that evenunder assumption (H3), κ0 may not oinide with the ritial integrability exponent

κ de�ned as the supremum of the reals s > 0 suh that G(x0, x0)
s is integrable.Indeed, for example if there is no direted path ending at x0, then G(x0, x0) = 1and κ = ∞ whereas κ0 < ∞. We strongly onjeture that, when ondition (H3) isvalid, then κ should be the same as the integrability exponent obtained on �nite largeenough boxes (as omputed in [24℄). In the ase of direted graphs onstruted fromundireted graphs, it is easy to dedue this onjeture from previous results. Thisis in fat the most interesting ase sine it ontains Zd and more generally �nitelygenerated Caley graphs.



DIRICHLET ENVIRONMENT 15Let G = (V,E) be a onneted undireted graph with bounded degree. Classially,we an assoiate a direted graph G = (V,E) by dupliating an edge of E in 2 edgeswith opposite orientation. Let (αe) be a family of weights on the set of direted edges
E.Theorem 3. Suppose that the weights (αe) satisfy(H1) there exists c > 0 and C > c suh that c ≤ αe ≤ C for all e in E.(H2) For all vertex x, div(α)(x) = 0.Suppose that the simple random walk on the undireted graph G is transient. Forany x0 in V , let
κ0 = max{strength(θ), θ is a �ow from x0 to ∞ of �nite energy suh that θ ≤ α}Then κ0 > 0 and

E
(α)(G(x0, x0)

s) <∞for all s < κ0. In partiular, the RWDE on G with parameter (αe) is transient foralmost all environment.(ii) Assume moreover that the following ondition on G holds(H'3) There exists a stritly inreasing sequene of integers ηn suh that B(x0, ηn+1)\
B(x0, ηn) is onneted in G.Then

E
(α)(G(x0, x0)

s) <∞, if and only if s < κwhere
κ = min{α(∂EK), K ⊂ V is �nite onneted in G, x0 ∈ K and K 6= {x0}.}(With as before ∂EK = {e ∈ E, e ∈ K, e /∈ K}.)Remark 8. In [24℄, orollary 4, Tournier omputed the ritial integrability exponentfor RWDE on �nite graphs: (ii) shows that κ is the same as the ritial integrabilityexponent of the Green funtion of the RWDE killed when it exits the ball B(x0, N), for

N large enough. This suggests that trapping only omes from �nite size traps whihare due to the non-uniform elliptiity of the environment.Remark 9. The ondition K 6= {x0} omes from the fat that we do not allow loops,so that {x0} itself annot be a trap. Of ourse, if there is a loop at x0 then the sameresult holds if we remove the restrition K 6= {x0}: in this ase, under ondition(H'3), κ = κ0.Let us reall the de�nition of a �ow on an undireted graph. We hoose an arbitraryorientation of the edges of G. A �ow from x0 to in�nity is a (non-neessarily positive)funtion θ on the edges suh that for the orientation hosendiv(θ)(x) = 0, ∀x 6= x0.The �ow θ is a unit �ow if moreover div(θ)(x0) = 1. To any �ow θ on the undiretedgraph G we an assoiate a �ow θ on the direted graph as follows: for two oppositeedges of the direted graph, θ is null on one of them and on the other one it is equalto the absolute value of θ on the orresponding undireted edge. The hoie of theedge with positive �ow is of ourse made aording to the sign of the �ow θ and theorientation of the edges (f [10℄, setion 2.6). By onstrution the L2 norm of θ and
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θ is the same. Then the result omes from a lassial result on eletrial networks(f [10℄ proposition 2.10, or [11℄) whih says that the undireted graph G is transientif and only if there exists a unit �ow with �nite energy from a point x0 to in�nity.Hene it implies that κ0 > 0.(ii) For any environment (p), we have

∑

e=x0

pe = 1,hene G(x0, x0)
s is integrable if and only if ps

eG(x0, x0)
s is integrable for any e suhthat e = x0. Let e0 be an edge exiting x0 and α(e0) be the weight obtained from α byadding s to αe0

. For any utset S ontaining e0, α(e0)(S) > s. Hene, by theorem 2and proposition 2, ps
e0
G(x0, x0)

s is integrable if s is smaller than the minimal utsetsum (for (α)) among utsets whih do not ontain e0. Sine the graph has no loop itmeans that G(x0, x0)
s is integrable if
s < min{α(S), S utset, S 6⊃ {e}e=x0

}.(6.1)Let S be a utset whih does not ontain {e}e=x0
. Let K be the set of verties thatan be reahed from x0 by a direted path using edges of E \S. Then, ∂EK is a utsetontained in S and K is onneted in G. Moreover K 6= {x0} thanks to the onditionon S. This implies that κ is equal to the right hand side of (6.1).If s ≥ κ, then by taking a large enough box B(x0, N), we know that the utset whihahieves the minimum in the de�nition of κ is inluded in B(x0, N) (the in�mum isreahed, f the proof of proposition 2). From [24℄, orollary 4, it implies thatG(x0, x0)

sis not integrable.6.1. The ase of Zd. Of ourse theorem 3 (i) and (ii) apply to the model of RWDEon Zd desribed in the introdution, for d ≥ 3. It is easy to see that on Zd, the ritialexponent κ is obtained for K = {0, ei0} for some i0 in {1, . . . , d}. Hene we have
κ = 2

(

∑

i=1,...,d, i6=i0

αei
+ α−ei

)

+ αei0
+ α−ei0

.This proves theorem 1.6.2. Finitely generated Caley graphs. Let {e1, . . . , ed} be a �nite, symmetri (i.e.the set is stable by inversion), set of generators of a group. We assoiate with anygenerator ei a positive weight αi > 0. The RWDE on the assoiated Caley graph,with weights (α(g,gei) = αi), has the property (H1) and (H2). Hene, if the simplerandom walk on the Caley graph is transient, so are the RWDE's.Aknowledgement: I am very grateful to Nathanaël Enriquez for several disussionson the topis of this paper. I also thank Ron Aharoni and Russell Lyons for usefuldisussions on Max-Flow Min-Cut theorem.Referenes[1℄ Aharoni, R., Private ommuniation.[2℄ Aharoni, R.; Berger, E.; Georgakopoulos, A.; Perlstein, A.; Sprüssel, P., The Max-Flow Min-Cut theorem for ountable networks, preprint.
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