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Abstract 

Identifying product architectures is recognized as a critical activity during the preliminary design phase 
since the selected architecture has a great impact on the product quality, on the organization of the 
following phases of the design project and on the global performance of this project. System architects 
need methods to pre-determine cohesive modules and integrative elements. In this paper we present a 
new method to jointly design the functional and physical architectures. Starting from an incidence matrix 
that represents the couplings between elements of two domains (here, functions and components), it 
generates a Design Structure Matrix (DSM) for each domain. Each DSM is then rearranged by a clustering 
algorithm in order to reveal a "satisfactory" architecture. To illustrate our approach, we present an 
industrial case study in the framework of a new automobile engine development project. 

Keywords: modular design, product architecture, DSM 

1. Introduction  

Modular product design has proved to be an efficient strategy to obtain scale economy and to reduce 
design efforts. According to Ulrich [1], the product architecture is the mapping of the product functions 
onto its components. Optimal modular product architectures can be defined as the clustering of 
components such that the degree of interaction/dependency is maximised within groups (or modules) and 
minimised between groups (inter-modules) [2]. Modules are commonly described as groups of 
functionally or structurally dependent components. Research, concerning platform-based product 
development and product family design [3, 4], has received huge interest over the last decade since it aims 
at providing methods to identify common modules and generate product variants with distinctive modules 
(commonality vs variety). Modularity has many advantages but few methods exist to partition a product 
into modules, even in the special case of single complex products. Ulrich [1] defines product architectures 
as “the scheme by which the function of a product is allocated to physical components.” A key feature of 
product architecture is the degree to which it is modular or integrative [5]. Sharman and Yassine [6] point 
out that modularity has drawbacks. The inter-module interfaces must allow change to occur within 
modules without adversely affecting inter-module working. This requires an appropriate definition of 
interfaces that play the key role of connecting and interacting between components.  
The system architect and the teams (s)he manages need formal representations in order to address 
interactions between elements in the system [7]. When couplings between the elements of product 
domains have not been formally addressed, the integration of the teams' contributions is more difficult 
and requires numerous design iterations. Few architecting methods have been developed to identify 
modular product architecture. They use different product architecture representations [6] for instance, 
diagrams [8], oriented graphs [9] or matrices. The inputs of these methods may be either functional 
models [8], or components interactions [10], [11], [12], or a mapping of functions onto physical 
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components [13], or more complex data intended to take into account key factors of the whole life cycle 
of the system [14]. Sosa et al. (2003) [11] introduce the concepts of modular and integrative systems, from 
an external perspective, that is, based on the existence of design interfaces between components of the 
same product. They define "modular systems as those whose design interfaces with other systems are 
clustered among a few physically adjacent systems, whereas integrative systems are those whose design 
interfaces span all or most of the systems that comprise the product due to their physically distributed or 
functionally integrative nature throughout the product." Following this definition, we use the terms 
"module" and "integrative elements" in the remainder of this paper. 
In this paper, we propose to provide the system architects with a tool that supports the generation of both 
functional and physical product architectures. First, we review matrix-based methods for product 
architecture modelling. Second, we propose a fuzzy method to simultaneously generate the functional and 
physical architectures of the product. Finally, we present and interpret the results obtained with this 
method concerning the preliminary layout of an automotive engine block, along with further works.  

2. DSM and DMM as product architecture modelling tools 

Matrix-based product modelling methods are being increasingly used [6], since they could support 
different research goals: for example, product modularisation [10], analysis of technical interactions either 
within the products or within the project organization [11], and change propagation analysis [15]. System 
architecture modelling relies on two kinds of matrix in order to design a complex system in a systematic 
and coherent way: Domain Mapping Matrix, DMM, and Design Structure Matrix, DSM. 
 
A DMM represents relationships between two domains. These matrices are basically incidence matrices. 
They can represent a set of design decisions or relationships between what and how. One example is the 
Axiomatic Design Matrix [16], which captures the relationships between a function, and the design 
parameter that realises the function. Another example is the Quality Function Deployment (QFD) 
method [17] that uses several inter-domains matrices to convey the customer requirements throughout the 
development project. In [18], the authors use binary function-component matrices in order to obtain 
morphological matrices by using matrices multiplication. In [19], we find a very recent use of Domain 
Mapping Matrices (DMM), we can notice that the authors apply clustering directly on DMM.  
We assume in our research work that the incidence matrices are of high importance since they have to 
ensure the cohesion between the product sub-domains and more generally, between project domains 
(Product, process and Organisation) [20]. 
 

DSM [21] are now popular modelling and analysis tools, especially for purposes of decomposition and 
integration. DSM display the relationships between elements of a system in a compact and visual format. 
DSM can be applied on various levels of abstraction to study interactions between requirements, between 
functions, between sub-systems or components, and between design parameters. They are used to analyse 
project domain architectures: the architecture of products, the architecture of design process or the 
decomposition of the projects into different teams [11]. A DSM is a square matrix with identical elements 
in rows and columns. Cells along the diagonal have no sense. Reading across a row reveals what other 
elements the element in that row provides to. Scanning down a column reveals what other elements the 
element in that column depends on.  

3. Case study: an engine development project 

In this part, we present an industrial case that concerns a diesel engine architecture development in a 
French car manufacturer and that will illustrate the interests of the method we propose. In this paper, we 
focus on the product domains architectures but this method could be applied on other project domains.  
Either, in the conceptual design that establishes functional structures or in the preliminary embodiment 
design that develops the preliminary layouts [22] a crucial design activity corresponds to the mapping 



between two domains and then, the choice of the preliminary architectures. The main architecture 
decisions are represented by the inter-domains matrices: requirements - Systems Functions incidence 
matrix; System Functions - Product Components (SF-PC) incidence matrix. The cells of this latter matrix 
correspond to coupling weights between functions and components: a function may be allocated to 
components that contribute to this function. 
Generally speaking, incidence matrices either exist or need to be formalised. We will generate them by 
asking the system architect to fill in the incidence matrices with numerical values. The values are ranged 
from 0, for no coupling between the SF in column and the PC in row, to 9 for a total coupling between 
the parameters and attributes defining the SF and the PC.  
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1 EGR 9 0 9 0 0 0 0 0 0 0 0 9 9 0 7 

2 Fuel System 0 8 0 8 0 7 5 9 8 0 9 8 6 0 8 

3 Breech Block 8 9 6 7 0 0 8 9 5 9 5 0 9 0 8 

4 Air Intake 7 0 5 9 0 0 0 0 0 6 8 7 9 0 8 

5 Exhaust 8 0 8 0 0 0 4 8 0 0 8 7 8 0 7 

6 Camshaft/Valve Train 9 0 0 0 0 8 8 4 9 0 5 0 6 0 8 

7 Crankshaft 0 0 0 9 7 9 7 6 6 0 8 5 8 8 9 

8 Casing 0 0 0 6 9 8 9 8 7 9 7 0 8 9 9 

9 Lubrication and Blow-by 0 0 0 0 8 7 9 0 0 7 0 4 8 0 7 

10 Accessory Drive 0 0 0 0 7 6 0 9 7 0 7 0 4 0 8 

11 Synchronous Drive 0 0 0 0 8 5 0 7 8 0 7 0 6 0 7 

12 Vacuum Circuit 8 0 0 0 0 0 4 0 9 6 0 0 0 0 8 

13 Cooling Circuit 0 0 5 0 0 0 4 0 5 0 6 0 7 0 7 

14 Secondary Energy Generator 0 0 0 0 0 4 0 5 9 0 5 0 5 0 7 

15 Sensors and Control 7 9 7 0 0 0 6 0 0 0 0 7 4 0 4 

 
 

Table 1. Numerical SF-PC incidence matrix 

Table 1 shows a SF-PC incidence matrix concerning an engine block. It is a numerical matrix with 15 
elements in rows corresponding to 15 components that make up the engine block and 15 elements in 
columns corresponding to 15 SF (obviously, it is a coincidence if the number of PC equals the number of 
SF). More precisely, we can read by scanning down the "Fuel providing" column that this function 
constrains several components: Fuel System, Breech Block and Sensors. In the same way, we can read 
through the "Fuel System" row that this component is constrained by (or contributes to) several SF: Fuel 
Providing, Combustion, Friction, Lubrication, Power Transmission, Vibration, Control, Thermics and 
Functional Volumes. 
 
In this paper, we propose a method to simultaneously design two product domains architectures. We 
focus on the SF-PC incidence matrix that supports the design of the functional and physical architectures.  

4. From one incidence matrix (or DMM) to 2 DSM: a fuzzy method  

The generation of a SF DSM and the generation of a PC DSM are symmetrical. Thus we will explain only 
how to generate the SF DSM.  
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4.1. Axioms 
In this section, we explain the axioms which are at the basis of our method, along with the underlying 
assumptions. 
• Axiom 1. If two System Functions SF1 and SF2 constrain a component PCi then SF1 and SF2 are 
coupled through that component (the symmetric axiom is: "If two Product Components PC1 and 
PC2 contribute to the fulfilment of SFj then PC1 and PC2 are coupled through that function"). 

• Axiom 2. The intensity of the coupling between SF1 and SF2 (respectively PC1 and PC2) is related to 
the intensity of their coupling with the component PCi (respectively SFj). 

 

Let us consider a component defined through a limited set of parameters. We distinguish between two 
situations. First, both SF1 and SF2 constrain a subset of parameters of the component PCi. In that case, 
the coupling between the two SF is clear and negotiations need to be carried out. Conversely, if there is no 
overlapping constrains between SF1 and SF2 for the design of all components, we assume that the two SF 
are mutually independent (no coupling) regarding the component domain. Second, if we consider that a 
given System Function SFi has a weak impact on the component PCj (that means that the value of 
coupling between SFi and PCj is low in the SF-PC incidence matrix), so there is a low probability that SFi 
impacts the same parameters describing PCj than the other SFs, that is, we assume that the coupling 
between SFi and the other SFs is low through the component PCj. 

4.2. A fuzzy method 
The fuzzy inference system we proposed is based on five stages that we will develop in this section.  
We will generate one SF DSM for each component by identifying the System Functions impacting each 
component and by applying the rules introduced by the axioms and translated into a fuzzy inference 
system. We will then aggregate the resulting DSM and filter the aggregate DSM to delete meaningless 
values. A clustering algorithm is used to identify modules and integrative elements. The results are 
displayed to allow the architect to interpret the proposed architectures. 

inferencesfuzzification defuzzificationinferencesfuzzification defuzzification

 

Figure 1. A fuzzy process 

Step 1: build a numerical SF-PC incidence matrix 

The incidence matrix has to be filled in with the system architect and his (her) team. Discussions may be 
necessary to identify if the interactions really exist and to estimate each incidence value. Since intensity 
values may be imprecise and subjective, we are clearly in a context where the use of Fuzzy Logic is 
relevant [23].  

Step 2: for each PC, generate one SF DSM by a fuzzy process 

The axioms presented in Section 4.1 are at the basis of the generation of one SF DSM per component 
using a Mamdani fuzzy inference system [23] for analyzing the inputs through a set of ‘if-then’ rules and a 



T-norm aggregation operator. So if the number of components in the incidence matrix is Npc then this 
step generates Npc "System Function DSM". Then we use an aggregate method to obtain one DSM only 
(the average of all contributions). The fuzzy processing is made up of three basic stages (Figure 1). 
 
The “fuzzification” stage (see Figure 1, left side) corresponds to the transformation of a numerical value 
through fuzzy variables (input). We choose the structure of the membership functions characterising the 
two inputs, by taking into account the architect's reasoning. We define three linguistic variables which are 
Low, Medium and High and we use the most common membership function, a trapezoidal function. 
 
The fuzzy ‘if-then’ rules are developed to relate input to output variables. These rules represent the 
expert’s knowledge about the interactions between input variables and their effects on the output. The 
inference system approximates the way an architect estimates the coupling between two SF (SFj and SFk) 
through one component PCi. It is based on the following set of rules (see at the centre of Figure 1 - issued 
from Matlab Toolbox):  
1. IF (SFj-PCi is Low) OR (SFk-PCi is Low) THEN (SFj - SFk is Weak) 
2. IF (SFj-PCi is High) AND (SFk-PCi is NOT Low) THEN (SFj - SFk is Strong) 
3. IF (SFj-PCi is NOT Low) AND (SFk-PCi is High) THEN (SFj - SFk is Strong) 
4. IF (SFj-PCi is Medium) AND (SFk-PCi is Medium) THEN (SFj - SFk is Average) 
Our goal has been to generate an understandable inference system for the architect. So we intentionally 
limit the number of rules and hence, the number of linguistic variables. 
 
A trapezoidal membership function is used for the fuzzy logic output linguistic variables which are Weak, 
Average and Strong. The "Defuzzification" stage involves finding a crisp value for the coupling using the 
output membership function. The aggregated fuzzy output is defuzzified using the "centroid of area" 
technique. The formula is given in [23]. This is the most widely adopted defuzzification method, which is 
reminiscent of the calculation of expected values of probability distributions.  
 
The choice of these linguistic variables aims at limiting the influence of low inputs. Tuning the system has 
been done to choose the more appropriate input-output membership functions and defuzzification 
method. This fuzzy model has been judged satisfactory both from the architect' point of view and with 
the simulated results. The relevance of this fuzzy inference system will be presented later when we will 
interpret the results of the industrial example. 

Step 3: aggregate the Npc DSM and filter 

In order to obtain the aggregated DSM, we used the average method. Let ( )
k

jiDSM ,  denote the 

coupling value between iSF  and jSF  in the DSM generated by the component kPC . Let ADSM  

denote the Aggregated DSM. Then this DSM is computed as follows (Equation 1): 

( )
( )

∑
=

=

Npc

k

k
A

Npc

jiDSM
jiDSM

1

,
,     (1) 

Then we need to filter the low values in the aggregated SF DSM. The filter aims at reducing meaningless 
coupling values by converting them to zero:  

( ) ( ) 0,, =≤ jiDSMthenXjiDSMif    (2) 

Where X is a parameter that has to be higher than 1.06 (minimum crisp value obtained for rule 1). 

Step 4: use a clustering algorithm  

The goal of a clustering algorithm is to generate modules in a systematic way by optimising an objective 
function. The original goal of clustering was to find similarity between elements and group them together 
based on a threshold of similarity between elements [24]. Recent algorithms have been developed for 
optimizing modular design of complex products including simulated annealing [25] and Genetic 
Algorithms [12]. The clustering algorithm we use in our research work is based on an algorithm developed 
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by Idicula [26] and improved by Thebeau [25]. Idicula's algorithm assumes an underlying directed graph 
model for the development effort, and uses a depth-first-search technique to solve the problem.  

Step 5: display the results  

Different ways for displaying the results can be used. First, the clustered DSM can be represented as a 
graphical matrix with diamonds like in Figures 3 and 4. We choose this representation in order to display 
the results related to the industrial case we develop in this paper. Direct inspection of the DSM itself is 
one valid way of interpreting the product architecture [6].  

5. Application: Identifying an engine architecture 

The fuzzy method uses a numerical inter-domains incidence matrix as input and gives two DSM as results. 
In our industrial example, we generate one SF DSM and one PC DSM. We observe (Figures 2 and 3) that 
the clustering of the 2 DSM leads to approximately the same architecture. In both cases, we obtain 2 
modules and 5 integrative elements. These results partially match the architect's expectations and 
objectively highlight some modules already built in past projects.  
 
The architecture obtained after clustering the SF DSM (Figure 2) is as follows: 
• SF Module 1: Air providing, Fuel providing, Gas Cleaning-up and Combustion SF. 
• SF Module 2: Pressure-Torque Conversion, Friction, Lubrication, Secondary Energy 
Conversion and Coupling SF. 
• Integrative elements: Functional Volumes, Thermics, Vibration, Ventilation and Power 
Transmission SF. 
The first module corresponds to pre-combustion system functions and groups all the functions leading to 
the realisation of the combustion. The second module corresponds to post-combustion system functions 
and groups all the functions transforming the energy of combustion into mechanical energy. The 
integrative SF act as functions that map together all the other SF. They create the cohesion of the entire 
product SF.  

     

 

Figure 2. SF DSM with clustering  Figure 3. PC DSM with clustering 

With the same parameters values for the clustering algorithm, we generate the clustered PC DSM, 
simultaneously with the clustered SF DSM. When presented to the architect, the clustered PC DSM 
(Figure 3) received a mixed reaction. But, when analysed in depth, the architect judged that the simulated 
architectures were coherent with the physical flows throughout the product: 
• PC Module 1: The first module is composed of 6 components that directly contribute to the 
main external engine function, that is, to transform a thermal energy into a kinetic energy. 
• PC Module 2: The second module puts together components that contribute to secondary 
engine functions like vacuum and electricity generating.  
• There are 3 integrative elements: casing, fuel system and camshaft. 



 
The clusters with main and secondary external functions formalise the current design process structure 
which gives priority to designing components realising the principal engine functions. The three 
integrative components had not been identified by the development team as integrative elements before 
we presented these results. In fact, only the casing has a physical integrative role since it links together the 
other engine components. But the architect judges that it is interesting to identify the fuel system and the 
camshaft as integrative elements since they play a central role in the engine working. These components 
share many constraints with the other components in reality and often these constraints are propagated by 
System Functions. 
 
In idealistic modular architecture, we will find direct mapping between SF modules and PC modules. This 
kind of architecture ensures well decoupled modules (i.e., design sub-problems) that can be easily 
specified, then dealt with by different teams concurrently and reused in future system design. 
Unfortunately in real design situations, the modules are not completely uncoupled and in addition, there 
are integrative elements that link all the elements together. The consequence is that it is difficult to group a 
set of functions and to attach this set to a physical module, for instance for outsourcing. Our method for 
identifying engine architectures helps architects to question their decisions and to iterate in order to 
determine satisfactory SF-PC architectures.  

6. Conclusions and perspectives 

The tool presented in this paper transforms a given numerical SF-PC DMM into two DSM and then 
generates both functional and physical architectures of the product. It is based on a new fuzzy inference 
system and a clustering algorithm that groups elements into modules and integrative elements. The 
architectures generated by this tool are recommendations only but the architects should be aware of the 
fact that the choice of other modules could increase coordination and teams' efforts to design the system. 
The product architectures can deeply influence the design process structure since the product modules 
should be designed independently by different design teams [11].  
In this paper, we intentionally apply the method on two product domains only. More generally, this 
method may be used similarly by starting from another DMM, that is, product – tasks, tasks – team 
DMM. The axioms proposed in this work assume that if one SF is coupled to a group of components 
then these components are all inter-related, this assumption is not always true since one direct coupling 
between two components can be replaced by indirect coupling through one or more components. 
Finally, different further works are envisaged. Currently, the DSM optimization of the two domains 
remains separate. We intend to adapt the clustering algorithm to jointly optimize the two DSM and to 
enhance the modularization. We aim at providing the system architect with an integrated tool that allows 
him to simulate and structure the different project domains in a concurrent manner. In the preliminary 
design stages ("planning and clarifying the task", "conceptual design" [22]), the system architect who plays 
the role of project manager too has to design concurrently the preliminary product architecture and the 
overall project structure, related to the embodiment and detail design stages.  
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