
HAL Id: hal-00341895
https://hal.science/hal-00341895

Submitted on 26 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Defining product architectures.
Eric Bonjour, Ghassen Harmel, Maryvonne Dulmet

To cite this version:
Eric Bonjour, Ghassen Harmel, Maryvonne Dulmet. Defining product architectures.. Extended Prod-
uct and Process Analysis aNd Design, EXPPAND’08., Mar 2008, Bordeaux, France. 8 p. �hal-
00341895�

https://hal.science/hal-00341895
https://hal.archives-ouvertes.fr

Defining product architectures

Eric Bonjour, Ghassen Harmel and Maryvonne Dulmet

Département Automatique et Systèmes Micro-Mécatroniques (AS2M)
Institut FEMTO-ST, UMR CNRS 6174 - UFC / ENSMM / UTBM
24, rue Alain Savary 25000 Besançon (France)- ebonjour@ens2m.fr

Abstract

Identifying product architectures is recognized as a critical activity during the preliminary design phase
since the selected architecture has a great impact on the product quality, on the organization of the
following phases of the design project and on the global performance of this project. System architects
need methods to pre-determine cohesive modules and integrative elements. In this paper we present a
new method to jointly design the functional and physical architectures. Starting from an incidence matrix
that represents the couplings between elements of two domains (here, functions and components), it
generates a Design Structure Matrix (DSM) for each domain. Each DSM is then rearranged by a clustering
algorithm in order to reveal a "satisfactory" architecture. To illustrate our approach, we present an
industrial case study in the framework of a new automobile engine development project.

Keywords: modular design, product architecture, DSM

1. Introduction

Modular product design has proved to be an efficient strategy to obtain scale economy and to reduce
design efforts. According to Ulrich [1], the product architecture is the mapping of the product functions
onto its components. Optimal modular product architectures can be defined as the clustering of
components such that the degree of interaction/dependency is maximised within groups (or modules) and
minimised between groups (inter-modules) [2]. Modules are commonly described as groups of
functionally or structurally dependent components. Research, concerning platform-based product
development and product family design [3, 4], has received huge interest over the last decade since it aims
at providing methods to identify common modules and generate product variants with distinctive modules
(commonality vs variety). Modularity has many advantages but few methods exist to partition a product
into modules, even in the special case of single complex products. Ulrich [1] defines product architectures
as “the scheme by which the function of a product is allocated to physical components.” A key feature of
product architecture is the degree to which it is modular or integrative [5]. Sharman and Yassine [6] point
out that modularity has drawbacks. The inter-module interfaces must allow change to occur within
modules without adversely affecting inter-module working. This requires an appropriate definition of
interfaces that play the key role of connecting and interacting between components.
The system architect and the teams (s)he manages need formal representations in order to address
interactions between elements in the system [7]. When couplings between the elements of product
domains have not been formally addressed, the integration of the teams' contributions is more difficult
and requires numerous design iterations. Few architecting methods have been developed to identify
modular product architecture. They use different product architecture representations [6] for instance,
diagrams [8], oriented graphs [9] or matrices. The inputs of these methods may be either functional
models [8], or components interactions [10], [11], [12], or a mapping of functions onto physical

E.Bonjour, G.Harmel, M.Dulmet

components [13], or more complex data intended to take into account key factors of the whole life cycle
of the system [14]. Sosa et al. (2003) [11] introduce the concepts of modular and integrative systems, from
an external perspective, that is, based on the existence of design interfaces between components of the
same product. They define "modular systems as those whose design interfaces with other systems are
clustered among a few physically adjacent systems, whereas integrative systems are those whose design
interfaces span all or most of the systems that comprise the product due to their physically distributed or
functionally integrative nature throughout the product." Following this definition, we use the terms
"module" and "integrative elements" in the remainder of this paper.
In this paper, we propose to provide the system architects with a tool that supports the generation of both
functional and physical product architectures. First, we review matrix-based methods for product
architecture modelling. Second, we propose a fuzzy method to simultaneously generate the functional and
physical architectures of the product. Finally, we present and interpret the results obtained with this
method concerning the preliminary layout of an automotive engine block, along with further works.

2. DSM and DMM as product architecture modelling tools

Matrix-based product modelling methods are being increasingly used [6], since they could support
different research goals: for example, product modularisation [10], analysis of technical interactions either
within the products or within the project organization [11], and change propagation analysis [15]. System
architecture modelling relies on two kinds of matrix in order to design a complex system in a systematic
and coherent way: Domain Mapping Matrix, DMM, and Design Structure Matrix, DSM.

A DMM represents relationships between two domains. These matrices are basically incidence matrices.
They can represent a set of design decisions or relationships between what and how. One example is the
Axiomatic Design Matrix [16], which captures the relationships between a function, and the design
parameter that realises the function. Another example is the Quality Function Deployment (QFD)
method [17] that uses several inter-domains matrices to convey the customer requirements throughout the
development project. In [18], the authors use binary function-component matrices in order to obtain
morphological matrices by using matrices multiplication. In [19], we find a very recent use of Domain
Mapping Matrices (DMM), we can notice that the authors apply clustering directly on DMM.
We assume in our research work that the incidence matrices are of high importance since they have to
ensure the cohesion between the product sub-domains and more generally, between project domains
(Product, process and Organisation) [20].

DSM [21] are now popular modelling and analysis tools, especially for purposes of decomposition and
integration. DSM display the relationships between elements of a system in a compact and visual format.
DSM can be applied on various levels of abstraction to study interactions between requirements, between
functions, between sub-systems or components, and between design parameters. They are used to analyse
project domain architectures: the architecture of products, the architecture of design process or the
decomposition of the projects into different teams [11]. A DSM is a square matrix with identical elements
in rows and columns. Cells along the diagonal have no sense. Reading across a row reveals what other
elements the element in that row provides to. Scanning down a column reveals what other elements the
element in that column depends on.

3. Case study: an engine development project

In this part, we present an industrial case that concerns a diesel engine architecture development in a
French car manufacturer and that will illustrate the interests of the method we propose. In this paper, we
focus on the product domains architectures but this method could be applied on other project domains.
Either, in the conceptual design that establishes functional structures or in the preliminary embodiment
design that develops the preliminary layouts [22] a crucial design activity corresponds to the mapping

between two domains and then, the choice of the preliminary architectures. The main architecture
decisions are represented by the inter-domains matrices: requirements - Systems Functions incidence
matrix; System Functions - Product Components (SF-PC) incidence matrix. The cells of this latter matrix
correspond to coupling weights between functions and components: a function may be allocated to
components that contribute to this function.
Generally speaking, incidence matrices either exist or need to be formalised. We will generate them by
asking the system architect to fill in the incidence matrices with numerical values. The values are ranged
from 0, for no coupling between the SF in column and the PC in row, to 9 for a total coupling between
the parameters and attributes defining the SF and the PC.

SF 1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

P
C

System Functions /

Components

incidence matrix

A
ir

 P
ro

v
id

in
g

F
u

el
 P

ro
v

id
in

g

G
as

 C
le

an
in

g
-u

p

C
o

m
b

u
st

io
n

P
re

ss
u

re
-T

o
rq

u
e

C
o

n
v

er
si

o
n

F
ri

ct
io

n

L
u

b
ri

ca
ti

o
n

P
o

w
er

T
ra

n
sm

is
si

o
n

S
ec

o
n

d
ar

y
 E

n
er

g
y

C
o

n
v

er
si

o
n

V
en

ti
la

ti
o
n

V
ib

ra
ti

o
n

C
o

n
tr

o
l

T
h

er
m

ic
s

C
o

u
p
li

n
g

F
u

n
ct

io
n

al

V
o

lu
m

es

1 EGR 9 0 9 0 0 0 0 0 0 0 0 9 9 0 7

2 Fuel System 0 8 0 8 0 7 5 9 8 0 9 8 6 0 8

3 Breech Block 8 9 6 7 0 0 8 9 5 9 5 0 9 0 8

4 Air Intake 7 0 5 9 0 0 0 0 0 6 8 7 9 0 8

5 Exhaust 8 0 8 0 0 0 4 8 0 0 8 7 8 0 7

6 Camshaft/Valve Train 9 0 0 0 0 8 8 4 9 0 5 0 6 0 8

7 Crankshaft 0 0 0 9 7 9 7 6 6 0 8 5 8 8 9

8 Casing 0 0 0 6 9 8 9 8 7 9 7 0 8 9 9

9 Lubrication and Blow-by 0 0 0 0 8 7 9 0 0 7 0 4 8 0 7

10 Accessory Drive 0 0 0 0 7 6 0 9 7 0 7 0 4 0 8

11 Synchronous Drive 0 0 0 0 8 5 0 7 8 0 7 0 6 0 7

12 Vacuum Circuit 8 0 0 0 0 0 4 0 9 6 0 0 0 0 8

13 Cooling Circuit 0 0 5 0 0 0 4 0 5 0 6 0 7 0 7

14 Secondary Energy Generator 0 0 0 0 0 4 0 5 9 0 5 0 5 0 7

15 Sensors and Control 7 9 7 0 0 0 6 0 0 0 0 7 4 0 4

Table 1. Numerical SF-PC incidence matrix

Table 1 shows a SF-PC incidence matrix concerning an engine block. It is a numerical matrix with 15
elements in rows corresponding to 15 components that make up the engine block and 15 elements in
columns corresponding to 15 SF (obviously, it is a coincidence if the number of PC equals the number of
SF). More precisely, we can read by scanning down the "Fuel providing" column that this function
constrains several components: Fuel System, Breech Block and Sensors. In the same way, we can read
through the "Fuel System" row that this component is constrained by (or contributes to) several SF: Fuel
Providing, Combustion, Friction, Lubrication, Power Transmission, Vibration, Control, Thermics and
Functional Volumes.

In this paper, we propose a method to simultaneously design two product domains architectures. We
focus on the SF-PC incidence matrix that supports the design of the functional and physical architectures.

4. From one incidence matrix (or DMM) to 2 DSM: a fuzzy method

The generation of a SF DSM and the generation of a PC DSM are symmetrical. Thus we will explain only
how to generate the SF DSM.

E.Bonjour, G.Harmel, M.Dulmet

4.1. Axioms
In this section, we explain the axioms which are at the basis of our method, along with the underlying
assumptions.
• Axiom 1. If two System Functions SF1 and SF2 constrain a component PCi then SF1 and SF2 are
coupled through that component (the symmetric axiom is: "If two Product Components PC1 and
PC2 contribute to the fulfilment of SFj then PC1 and PC2 are coupled through that function").

• Axiom 2. The intensity of the coupling between SF1 and SF2 (respectively PC1 and PC2) is related to
the intensity of their coupling with the component PCi (respectively SFj).

Let us consider a component defined through a limited set of parameters. We distinguish between two
situations. First, both SF1 and SF2 constrain a subset of parameters of the component PCi. In that case,
the coupling between the two SF is clear and negotiations need to be carried out. Conversely, if there is no
overlapping constrains between SF1 and SF2 for the design of all components, we assume that the two SF
are mutually independent (no coupling) regarding the component domain. Second, if we consider that a
given System Function SFi has a weak impact on the component PCj (that means that the value of
coupling between SFi and PCj is low in the SF-PC incidence matrix), so there is a low probability that SFi
impacts the same parameters describing PCj than the other SFs, that is, we assume that the coupling
between SFi and the other SFs is low through the component PCj.

4.2. A fuzzy method
The fuzzy inference system we proposed is based on five stages that we will develop in this section.
We will generate one SF DSM for each component by identifying the System Functions impacting each
component and by applying the rules introduced by the axioms and translated into a fuzzy inference
system. We will then aggregate the resulting DSM and filter the aggregate DSM to delete meaningless
values. A clustering algorithm is used to identify modules and integrative elements. The results are
displayed to allow the architect to interpret the proposed architectures.

inferencesfuzzification defuzzificationinferencesfuzzification defuzzification

Figure 1. A fuzzy process

Step 1: build a numerical SF-PC incidence matrix

The incidence matrix has to be filled in with the system architect and his (her) team. Discussions may be
necessary to identify if the interactions really exist and to estimate each incidence value. Since intensity
values may be imprecise and subjective, we are clearly in a context where the use of Fuzzy Logic is
relevant [23].

Step 2: for each PC, generate one SF DSM by a fuzzy process

The axioms presented in Section 4.1 are at the basis of the generation of one SF DSM per component
using a Mamdani fuzzy inference system [23] for analyzing the inputs through a set of ‘if-then’ rules and a

T-norm aggregation operator. So if the number of components in the incidence matrix is Npc then this
step generates Npc "System Function DSM". Then we use an aggregate method to obtain one DSM only
(the average of all contributions). The fuzzy processing is made up of three basic stages (Figure 1).

The “fuzzification” stage (see Figure 1, left side) corresponds to the transformation of a numerical value
through fuzzy variables (input). We choose the structure of the membership functions characterising the
two inputs, by taking into account the architect's reasoning. We define three linguistic variables which are
Low, Medium and High and we use the most common membership function, a trapezoidal function.

The fuzzy ‘if-then’ rules are developed to relate input to output variables. These rules represent the
expert’s knowledge about the interactions between input variables and their effects on the output. The
inference system approximates the way an architect estimates the coupling between two SF (SFj and SFk)
through one component PCi. It is based on the following set of rules (see at the centre of Figure 1 - issued
from Matlab Toolbox):
1. IF (SFj-PCi is Low) OR (SFk-PCi is Low) THEN (SFj - SFk is Weak)
2. IF (SFj-PCi is High) AND (SFk-PCi is NOT Low) THEN (SFj - SFk is Strong)
3. IF (SFj-PCi is NOT Low) AND (SFk-PCi is High) THEN (SFj - SFk is Strong)
4. IF (SFj-PCi is Medium) AND (SFk-PCi is Medium) THEN (SFj - SFk is Average)
Our goal has been to generate an understandable inference system for the architect. So we intentionally
limit the number of rules and hence, the number of linguistic variables.

A trapezoidal membership function is used for the fuzzy logic output linguistic variables which are Weak,
Average and Strong. The "Defuzzification" stage involves finding a crisp value for the coupling using the
output membership function. The aggregated fuzzy output is defuzzified using the "centroid of area"
technique. The formula is given in [23]. This is the most widely adopted defuzzification method, which is
reminiscent of the calculation of expected values of probability distributions.

The choice of these linguistic variables aims at limiting the influence of low inputs. Tuning the system has
been done to choose the more appropriate input-output membership functions and defuzzification
method. This fuzzy model has been judged satisfactory both from the architect' point of view and with
the simulated results. The relevance of this fuzzy inference system will be presented later when we will
interpret the results of the industrial example.

Step 3: aggregate the Npc DSM and filter

In order to obtain the aggregated DSM, we used the average method. Let ()
k

jiDSM , denote the

coupling value between iSF and jSF in the DSM generated by the component kPC . Let ADSM

denote the Aggregated DSM. Then this DSM is computed as follows (Equation 1):

()
()

∑
=

=

Npc

k

k
A

Npc

jiDSM
jiDSM

1

,
, (1)

Then we need to filter the low values in the aggregated SF DSM. The filter aims at reducing meaningless
coupling values by converting them to zero:

() () 0,, =≤ jiDSMthenXjiDSMif (2)

Where X is a parameter that has to be higher than 1.06 (minimum crisp value obtained for rule 1).

Step 4: use a clustering algorithm

The goal of a clustering algorithm is to generate modules in a systematic way by optimising an objective
function. The original goal of clustering was to find similarity between elements and group them together
based on a threshold of similarity between elements [24]. Recent algorithms have been developed for
optimizing modular design of complex products including simulated annealing [25] and Genetic
Algorithms [12]. The clustering algorithm we use in our research work is based on an algorithm developed

E.Bonjour, G.Harmel, M.Dulmet

by Idicula [26] and improved by Thebeau [25]. Idicula's algorithm assumes an underlying directed graph
model for the development effort, and uses a depth-first-search technique to solve the problem.

Step 5: display the results

Different ways for displaying the results can be used. First, the clustered DSM can be represented as a
graphical matrix with diamonds like in Figures 3 and 4. We choose this representation in order to display
the results related to the industrial case we develop in this paper. Direct inspection of the DSM itself is
one valid way of interpreting the product architecture [6].

5. Application: Identifying an engine architecture

The fuzzy method uses a numerical inter-domains incidence matrix as input and gives two DSM as results.
In our industrial example, we generate one SF DSM and one PC DSM. We observe (Figures 2 and 3) that
the clustering of the 2 DSM leads to approximately the same architecture. In both cases, we obtain 2
modules and 5 integrative elements. These results partially match the architect's expectations and
objectively highlight some modules already built in past projects.

The architecture obtained after clustering the SF DSM (Figure 2) is as follows:
• SF Module 1: Air providing, Fuel providing, Gas Cleaning-up and Combustion SF.
• SF Module 2: Pressure-Torque Conversion, Friction, Lubrication, Secondary Energy
Conversion and Coupling SF.
• Integrative elements: Functional Volumes, Thermics, Vibration, Ventilation and Power
Transmission SF.
The first module corresponds to pre-combustion system functions and groups all the functions leading to
the realisation of the combustion. The second module corresponds to post-combustion system functions
and groups all the functions transforming the energy of combustion into mechanical energy. The
integrative SF act as functions that map together all the other SF. They create the cohesion of the entire
product SF.

Figure 2. SF DSM with clustering Figure 3. PC DSM with clustering

With the same parameters values for the clustering algorithm, we generate the clustered PC DSM,
simultaneously with the clustered SF DSM. When presented to the architect, the clustered PC DSM
(Figure 3) received a mixed reaction. But, when analysed in depth, the architect judged that the simulated
architectures were coherent with the physical flows throughout the product:
• PC Module 1: The first module is composed of 6 components that directly contribute to the
main external engine function, that is, to transform a thermal energy into a kinetic energy.
• PC Module 2: The second module puts together components that contribute to secondary
engine functions like vacuum and electricity generating.
• There are 3 integrative elements: casing, fuel system and camshaft.

The clusters with main and secondary external functions formalise the current design process structure
which gives priority to designing components realising the principal engine functions. The three
integrative components had not been identified by the development team as integrative elements before
we presented these results. In fact, only the casing has a physical integrative role since it links together the
other engine components. But the architect judges that it is interesting to identify the fuel system and the
camshaft as integrative elements since they play a central role in the engine working. These components
share many constraints with the other components in reality and often these constraints are propagated by
System Functions.

In idealistic modular architecture, we will find direct mapping between SF modules and PC modules. This
kind of architecture ensures well decoupled modules (i.e., design sub-problems) that can be easily
specified, then dealt with by different teams concurrently and reused in future system design.
Unfortunately in real design situations, the modules are not completely uncoupled and in addition, there
are integrative elements that link all the elements together. The consequence is that it is difficult to group a
set of functions and to attach this set to a physical module, for instance for outsourcing. Our method for
identifying engine architectures helps architects to question their decisions and to iterate in order to
determine satisfactory SF-PC architectures.

6. Conclusions and perspectives

The tool presented in this paper transforms a given numerical SF-PC DMM into two DSM and then
generates both functional and physical architectures of the product. It is based on a new fuzzy inference
system and a clustering algorithm that groups elements into modules and integrative elements. The
architectures generated by this tool are recommendations only but the architects should be aware of the
fact that the choice of other modules could increase coordination and teams' efforts to design the system.
The product architectures can deeply influence the design process structure since the product modules
should be designed independently by different design teams [11].
In this paper, we intentionally apply the method on two product domains only. More generally, this
method may be used similarly by starting from another DMM, that is, product – tasks, tasks – team
DMM. The axioms proposed in this work assume that if one SF is coupled to a group of components
then these components are all inter-related, this assumption is not always true since one direct coupling
between two components can be replaced by indirect coupling through one or more components.
Finally, different further works are envisaged. Currently, the DSM optimization of the two domains
remains separate. We intend to adapt the clustering algorithm to jointly optimize the two DSM and to
enhance the modularization. We aim at providing the system architect with an integrated tool that allows
him to simulate and structure the different project domains in a concurrent manner. In the preliminary
design stages ("planning and clarifying the task", "conceptual design" [22]), the system architect who plays
the role of project manager too has to design concurrently the preliminary product architecture and the
overall project structure, related to the embodiment and detail design stages.

References

[1] Ulrich K.T. The Role of Product Architecture in the Manufacturing Firm. Research Policy, 24,
1995, pp.419-440.

[2] Whitfield R.I., Smith J.S. and Duffy A.H.B. Identifying Component Modules. In Proceedings of
Seventh International Conference on Artificial Intelligence in Design (AID’02), Cambridge,
United Kingdom, 15-17 July 2002, pp. 571-592.

[3] Hölttä-Otto K. Modular product platform design. PhD, Helsinki University of Technology,
Espoo, Finland, ISBN 951-22-7766-2, 2005.

E.Bonjour, G.Harmel, M.Dulmet

[4] Jiao J., Simpson T., Siddique Z. Product family design and platform-based product
development: a state-of-the-art review. Journal of intelligent manufacturing, special issue on
Product family design and platform-based product development, 18(1), pp. 5-29, 2007..

[5] Browning T.R. Applying the design structure matrix to system decomposition and integration
problems. IEEE Trans. Eng. Mgt., 2001, 48, pp. 292-306.

[6] Sharman D., Yassine A. Characterizing Complex Product Architectures. Systems Engineering
Journal, 2004, 7(1), pp. 35 60.

[7] Ulrich K.T. and Eppinger S.D. Product Design & Development, 2000 (2nd Ed. McGraw-Hill,
New York).

[8] Stone R., Wood K. and Crawford R. A Heuristic Method for Identifying Modules for Product
Architectures. Design Studies, 21, 2000, pp.5-31.

[9] Kusiak A. and Huang C.C. Development of Modular Products. IEEE Transactions on
components, packaging and manufacturing technology – part A, 19(4), 1996, 523-538.

[10] Pimmler T. U. and Eppinger S.D. Integration Analysis of Product Decompositions. In Proc.
ASME Design Theory and Method Conference (DTM'94), Vol 68, 1994, pp. 343-351

[11] Sosa M., Eppinger S. and Rowles C. Identifying modular and integrative systems and their
impact on design team interactions. Transactions of the ASME, 125, June 2003, pp. 240-252

[12] Yu T., Yassine A. and Goldberg D. Genetic algorithm for developing modular product
architectures. In Proc ASME 15th Int Conf Des Theory Methodol, Chicago, September 2003.

[13] Liu Y., Chakrabarti A. and Bligh T. P. Transforming Functional Solutions into Physical
Solutions. Proceedings of the ASME Design Theory and Methodology Conference,
DETC/DTM-8768, Las Vegas, NV, 1999.

[14] Gu P., and Sosale S. Product modularization for life cycle engineering. Robotics and Computer
Integrated Manufacturing, 15, 1999, pp.387-401

[15] Clarkson P. J., Simons C., Eckert C. Predicting Change Propagation in Complex Design.
Proceedings ASME DETC 2001, Paper No DETC2001/DTM-21698, Pittsburgh, PA, USA.

[16] Suh N. P. Principles of Design, 1990 (Oxford University Press, Cambridge, UK).
[17] Akao Y. Quality Function Deployment, QFD - Integrating Customer Requirements into

Product Design, 1990 (Productivity Press, Portland, ON, USA).
[18] Strawbridge Z., McAdams D., and Stone R. A Computational approach to conceptual design.

Proc. of DETC 02, Montreal, Canada, September 29-October 2, 2002.
[19] Danilovic M., Browning T.R. Managing complex product development projects with design

structures matrices and domain mapping matrices. International Journal of Project
Management, 25, p300-314, 2007.

[20] Eppinger S.D., and Salminen V. Patterns of product development interactions. Int. Conf. on
Engineering Design, ICED 01, Vol. 1, Glasgow, August 21-23, 2001, pp.283-290

[21] Steward R. P. and Donald V. The Design Structure System: A Method for Managing the
Design of Complex Systems. IEEE Transactions on Engineering Management, 1981, 28(3), 71-
74.

[22] Pahl G., Beitz W. Engineering Design: a Systematic Approach, 1996 (2nd Ed., Springer-Verlag,
London).

[23] Dubois D., Prade H. Fuzzy sets and systems: Theory and applications. Academic Press 1980.
[24] Hartigan J. Clustering Algorithms, 1975 (Wiley & Sons, New York, NY).
[25] Thebeau R. Knowledge management of system interfaces and interactions for product

development processes. Master of Science Thesis, MIT, 2001.
[26] Idicula J. Planning for concurrent engineering. Thesis draft, Nanyang Technology University,

1995.

