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Abstract

The subject of this paper is a fragmentation equation with non-conservative solutions, some
mass being lost to a dust of zero-mass particles as a consequence of an intensive splitting.
Under some assumptions of regular variation on the fragmentation rate, we describe the large-
time behavior of solutions. Our approach is based on probabilistic tools: the solutions to the
fragmentation equation are constructed via non-increasing self-similar Markov processes that
reach continuously 0 in finite time. Our main probabilistic result describes the asymptotic
behavior of these processes conditioned on non-extinction and is then used for the solutions to
the fragmentation equation.

We notice that two parameters influence significantly these large-time behaviors: the rate
of formation of “nearly-1 relative masses” (this rate is related to the behavior near 0 of the
Lévy measure associated to the corresponding self-similar Markov process) and the distribution
of large initial particles. Correctly rescaled, the solutions then converge to a non-trivial limit
which is related to the quasi-stationary solutions to the equation. Besides, these quasi-stationary
solutions, or equivalently the quasi-stationary distributions of the self-similar Markov processes,
are entirely described.
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1 Introduction and main results

The fragmentation equation is commonly used to describe the evolution of a particles system where particles
break up as time passes. In this paper, we are interested in models in which particles with mass xy, 0 < y < 1,
are produced from the splitting of a particle with mass x at rate xαB(dy), where α ∈ R and B is a measure
on ]0, 1[ such that

∫ 1

0

y(1 − y)B(dy) <∞, and B (]0, 1[) > 0. (1)

The corresponding weak form of the fragmentation equation is then

∂t < µt, f > =

∫ ∞

0

xα

(
∫ 1

0

(f(yx) − f(x)y)B(dy)

)

µt(dx), (2)

where (µt, t ≥ 0) denotes a family of measures on ]0,∞[ and f any test function. The quantity µt(dx)
represents the average number per unit volume of particles having a mass in [x, x + dx[ at time t. The
term between parentheses on the right-hand side of the equation models the loss of particles of mass x and
the increase of particles of mass xy, 0 < y < 1, due to the fragmentation of particles of mass x. Note

that the overall rate at which a particle with mass x splits is xα
∫ 1

0
yB(dy), which may be infinite. When

B(dy) = b(y)dy and
∫ 1

0 yb(y)dy = 1, this equation is a weak form of the standard fragmentation equation
with fragmentation kernel

F (x, y) = xα−1b(y/x), x > y,
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which describes the evolution of the density per unit volume of particles with mass x at time t, say nt(x),
in the following way:

∂tnt(x) =

∫ ∞

x

F (y, x)nt(y)dy −

∫ x

0

y

x
F (x, y)nt(x)dy. (3)

This last equation was intensively studied both by physicists and mathematicians. Among the first papers
on the topic, we may cite e.g. [22, 23]. We also refer to the book [4] for a probabilistic approach of the
microscopic mechanism of fragmentation and to the papers [11] and [17] for discussions on the relations
between the probabilistic model and the above equations. Let us add that the physical interpretation of
the fragmentation equation imposes some constraints on the measure B. However other interpretations are
possible and in the following we will be concerned with all measures B satisfying (1).

In this paper, we focus on solutions to (2) with finite and non-zero initial total mass. The fragmentation
equation being linear, we suppose, without loss of generality, that

∫∞

0 xµ0(dx) = 1. To be precise, we call a
solution to (2) starting from µ0, any family of measures (µt, t ≥ 0) on ]0,∞[ starting from µ0 and such that

• (µt, t ≥ 0) satisfies (2) for any test functions f ∈ C1
c , the set of real-valued continuously differentiable

functions on ]0,∞[ with compact support

• the following natural “physical properties” are respected (id denotes the identity function)

m(t) :=< µt, id > ≤ m(0) = 1, ∀t ≥ 0, (4)

and
µ0([M,∞[) = 0 for some M > 0 ⇒ µt([M,∞[) = 0 ∀t ≥ 0. (5)

Note the self-similarity of solutions: if (µt, t ≥ 0) is a solution to (2), so is (γ−1µtγα ◦ (γid)−1), for all
γ > 0. Note also that if (µt, t ≥ 0) is a solution to the equation with parameters (α,B), then for all c > 0,
(µct, t ≥ 0) is a solution to the equation (2) with parameters (α, cB).

Many results on existence and uniqueness of solutions to (3) are available in the litterature. See e.g.
[1, 11, 21] and the references therein. With the definition above, we have the following result on existence
and uniqueness of solutions to (2), which is a generalization of Theorem 1 of [17] (see also [15] for a similar
approach). We recall that a subordinator is a non-decreasing Lévy process and that its distribution is
characterized by two parameters: a non-negative drift coefficient and a so-called Lévy measure on ]0,∞[
that governs the jumps of the process. See Section 2 for background on this topic.

Theorem 1.1. Let µ0 be a measure on ]0,∞[ such that
∫∞

0
xµ0(dx) = 1. Then

(i) there exists a solution to (2) starting from µ0 as soon as

α ≤ 0

or

α > 0 and either

∫ ∞

1

x ln(x)µ0(dx) <∞ or x ∈]0, 1[→ x|α|
∫ x

0

yB(dy) is bounded near 0.

More precisely, this solution can be constructed via a subordinator ξ with zero drift and a Lévy measure given
for any measurable function g :]0,∞[→ [0,∞[ by

∫ ∞

0

g(x)Π(dx) =

∫ 1

0

g(− ln(x))xB(dx), (6)

through the formula

∫ ∞

0

f(x)xµt(dx) :=

∫ ∞

0

E
[

f
(

x exp(−ξρ(xαt))
)]

xµ0(dx), for all measurable f :]0,∞[→ [0,∞[, (7)

where ρ is defined by

ρ(t) := inf

{

u ≥ 0 :

∫ u

0

exp(αξr)dr > t

}

.

(ii) This solution is unique as soon as µ0 has a compact support.
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When the family (µt, t ≥ 0) is constructed via subordinators by (7), some conditions on µ0 and B for the
existence of a density for µt, t > 0, can be settled expliticitly. See e.g. [16, Proposition 3.10]. We also recall
that there may be multiple solutions to the fragmentation equation when the assumption (4) is dropped.
We refer to [1] for some explicit examples.

The proof of Theorem 1.1, based on that of Theorem 1 in [17], is postponed to the Appendix at the end
of this paper.

The main purpose of this paper is to use the construction (7) of solutions to the fragmentation equation
to describe the long-time behavior of these solutions when α < 0. From another, but equivalent, point of
view, our main results describe the large-time behavior of time-changed subordinators, as defined in Theorem
1.1, conditioned on non-extinction. These processes belong to the family of so-called self-similar Markov
processes. We refer to Section 3 for a statement of our results in that context.

The study of large-time behavior of solutions to the fragmentation equation when α > 0 is investigated in
details in [11]. We point out that some results of [11] can be re-demonstrated using a probabilistic approach:
it mainly consists in combining the subordinator construction of solutions to the fragmentation equation
with the description of large-time behavior of time-changed subordinators when α > 0 investigated in [5].

From now on, we consider α < 0. It is well-known that in such case, small particles split so quickly that
they are reduced to a dust of zero-mass particles, so that the total mass of non-zero particles

m(t) =< µt, id >

decreases as time passes. This phenomenon, sometimes called “shattering”, was studied e.g. in [1, 3, 14, 17,
22, 27]. More precisely, one can check that the total mass m is strictly decreasing and strictly positive on
[0,∞[ and that m(t) → 0 as t→ ∞. See the forthcoming Proposition 3.3 for a proof in our framework.

In order to describe the behavior of m(t) as t→ ∞ more accurately, we introduce the following function
defined for all t ≥ 0 by

φ(t) :=

∫ 1

0

(

1 − xt
)

xB(dx). (8)

It is not hard to check that the function t → t/φ(t) is continuous, strictly increasing on ]0,∞[ and that its

range is ](
∫ 1

0
| ln(x)|xB(dx))−1 ,∞[. Note that the integral

∫ 1

0
| ln(x)|xB(dx) may be finite or infinite. Then

introduce
ϕ, the inverse of t→ t/φ(t), (9)

which is well defined in a neighborhood of ∞. This function will play a key-role in the description of the
long-time behavior of solutions to the fragmentation equation.

Most of our main results rely on the following hypothesis on the measure B:

the function u :]0, 1[→

∫ 1−u

0

xB(dx) varies regularly at 0 with an index − β ∈] − 1, 0], (H)

which, in particular, ensures that φ and ϕ are regularly varying functions at ∞, with respective indices β
and 1/(1 − β). See Section 2.2 for details and background on regular variation.

Last, we mention that the large-time behavior of solutions to the fragmentation equation will depend
strongly on the structure of the initial measure µ0, mainly on the manner it distributes weight near ∞. The
statements of our results are therefore split into two parts, according as to wether the initial measure has
compact support (Subsection 1.1) or not (Subsection 1.2). Subsection 1.3 deals with the quasi-stationary
solutions.

1.1 Initial measure µ0 with compact support

In this subsection, we adopt the following hypotheses and notations:

- α < 0

- the measure µ0 has a compact support, i.e. µ0([M,∞[) = 0 for some M > 0

- (µt, t ≥ 0) denotes the unique solution to the fragmentation equation (2) starting from µ0.

The supremum of the support of µ0 is the real s such that µ0(]s,∞[) = 0 and µ0(]s− ε, s]) > 0 for all ε < s.
Thanks to the self-similarity of solutions, we can, and will, always suppose that this supremum is equal to
1. In such frame, we have the following results.
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Proposition 1.2. For all λ < φ(∞) := limx→∞ φ(x), there exists a constant Cλ <∞ such that

m(t) ≤ Cλ exp(−λt), ∀t ≥ 0.

More precisely, under the hypothesis (H),

− ln(m(t)) ∼
t→∞

(1 − β)

|α|
ϕ(|α|t).

In particular, t→ − ln(m(t)) is regularly varying at ∞ with index 1/(1 − β).

Together with the following theorem, this gives a complete description of the large-time behavior of
(µt, t ≥ 0). Here, two positive functions g and h are said asymptotically equivalent if g(x)/h(x) → 1 as
x→ ∞.

Theorem 1.3. Suppose (H) and
∫

0 | ln(x)|xB(dx) < ∞. Then for all continuous bounded test functions
f :]0,∞[→ R,

1

m(t)

∫ ∞

0

f

(

(

ϕ(|α|t)

|α|t

)1/|α|

x

)

xµt(dx) →
t→∞

∫ ∞

0

f(x)xµ∞(dx),

where xµ∞(dx) is a probability distribution on ]0,∞[ that is characterized by its moments

∫ ∞

0

x|α|nxµ∞(dx) = φ(|α|)φ(2|α|)...φ(n|α|), n ≥ 1. (10)

The function t → ϕ(|α|t)/(|α|t) can be replaced by any asymptotically equivalent function.

It is interesting to compare this result with that obtained by Escobedo et al. [11] when the parameter α is
positive. As already mentioned, part of their result can be rediscovered and completed by using Bertoin and
Caballero’s paper [5]. With our notations and under the assumptions

∫

0 | ln(x)|xB(dx) <∞ and α > 0, the
asymptotic behavior of the solution (µt, t ≥ 0) to the fragmentation equation (α,B) starting from µ0 = δ1
can be described as follows:

∫ ∞

0

f
(

t1/αx
)

xµt(dx) →
t→∞

∫ ∞

0

f(x)xη∞(dx),

for all continuous bounded functions f :]0,∞[→ R. The measure xη∞(dx) is a probability measure on ]0,∞[.
Interestingly, the measure B is then only involved in the description of the limit measure η∞, not on the
“shape” of the speed of decrease of masses to 0.

We come back to the case α < 0. Note that when
∫ 1−u

0 xB(dx) ∼ u−β as u → 0 for some β ∈ [0, 1[,

we have φ(t) ∼ Γ(1 − β)tβ and therefore (ϕ(|α|t)/|α|t)1/|α| ∼ Cα,βt
β/((1−β)|α|) as t → ∞, where Cα,β =

(|α|βΓ(1 − β))1/((1−β)|α|). When moreover
∫

0 | ln(x)|xB(dx) <∞, the Theorem 1.3 then reads

1

m(t)

∫ ∞

0

f
(

Cα,βt
β/((1−β)|α|)x

)

xµt(dx) →
t→∞

∫ ∞

0

f(x)xµ∞(dx)

for all continuous bounded test functions f :]0,∞[→ R.

The existence and uniqueness of a measure µ∞ on ]0,∞[ satisfying (10) actually hold without any
assumption of regular variation on the measure B or on its behavior near 0. See the discussion near formula
(14) in Section 3 for details. Some properties of the measure µ∞ (tail behavior near 0, near ∞) are given
in Section 5. In Subsection 1.3, we discuss its links with the quasi-stationary solutions to the fragmentation
equation.

The proof of Theorem 1.3 consists in describing the behavior of the mass of a random typical non-dust
particle, which is defined as follows: at each time t, choose a particle at random among the particles with
a strictly positive mass, with a probability proportional to its mass. I.e. if M(t) denotes the mass of this
random particle, the distribution of M(t) is given by

M(t)
d
∼
xµt(dx)

m(t)
.
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Otherwise said, in terms of the subordinator ξ related to the equation by (7), M(t) is distributed as
M(0) exp(−ξρ(M(0)αt)) conditioned to be strictly positive, with M(0) independent of ξ. In terms of M ,
the statement of Theorem 1.3 rephrases as follows

(

ϕ(|α|t)

|α|t

)1/|α|

M(t)
d
→M∞,

where M∞ is a random variable with distribution xµ∞(dx). Note the special case
∫ 1

0 xB(dx) < ∞, where

ϕ(t)/t →
∫ 1

0 xB(dx) < ∞. Then we have that M(t) converges in distribution to a non-trivial limit. In the

other cases satisfying the assumptions of Theorem 1.3, ϕ(t)/t → ∞ and therefore M(t)
P
→ 0.

Using this random approach, we can also specify the behavior of masses that decrease at different speeds
to 0, as follows.

Proposition 1.4. Assume (H) and κ :=
∫ 1

0 | ln(x)|xB(dx) <∞.

(i) Suppose moreover that the support of B is not included in a set of the form {an, n ∈ N} for some a ∈]0, 1[.
Then for all measurable functions g : [0,∞[→]0,∞[ converging to 0 at ∞,

g(t)α

m(t)

∫ g(t)(ϕ(|α|t)/|α|t)1/α

0

xµt(dx) →
t→∞

1

|α|κ
;

(ii) For all measurable functions g : [0,∞[→]0,∞[ converging to ∞ at ∞,

- if g|α|(t)t/ϕ(t) converges to ∞ at ∞,

∫ ∞

g(t)(ϕ(|α|t)/|α|t)1/α

xµt(dx) = 0

for all t sufficiently large

- if g|α|(t)t/ϕ(t) converges to 0 at ∞ and 0 < β < 1 :

lim sup
t→∞

1

φ−1(g(t)|α|)
ln

(∫∞

g(t)(ϕ(|α|t)/|α|t)1/α xµt(dx)

m(t)

)

≤ −
β

|α|
,

where φ−1 denotes the inverse of φ.

Note that the first assertion of (ii) is obvious since g(t)(ϕ(|α|t)/|α|t)1/α → ∞ (which means that for t
sufficiently large, it is larger than 1, the supremum of the support of µt).

We finish this section with the following result on the remaining mass at time t of particles of mass 1
when µ0({1}) > 0. The measure µ∞ is that introduced in Theorem 1.3.

Proposition 1.5. Suppose µ0({1}) > 0 and set φ(∞) :=
∫ 1

0 xB(dx) ∈]0,∞]. Then for all t ≥ 0,

µt({1}) = exp (−tφ(∞))µ0({1}).

When moreover (H) is satisfied and
∫

0
| ln(x)|xB(dx) <∞ and φ(∞) <∞,

µt({1})

m(t)
→

t→∞
φ(∞)1/|α|µ∞

(

{φ(∞)1/|α|}
)

and this limit is non-zero if and only if
∫ 1 B(dx)

1−x <∞.

This means that under the assumptions of Proposition 1.5, for large times, the remaining total mass of

1-mass particles is proportional to the total mass of non-zero particles when
∫ 1

(1−x)−1B(dx) <∞, whereas

it is negligible compared to the total mass of non-zero particles when =
∫ 1

(1 − x)−1B(dx) = ∞. We point
out that the convergence of Proposition 1.5 is not necessarily true when µ0({1}) = 0 (since then µt({1}) = 0
for all t ≥ 0, whereas the term in the limit may be strictly positive).
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1.2 Initial measure µ0 with unbounded support

We still suppose that α < 0 and we denote by (µt, t ≥ 0) the solution to the fragmentation equation (2)
starting from µ0 and constructed via a subordinator by formula (7). The asymptotic behavior of the mass
m(t) is then strongly modified by the presence of large masses and depends on the behavior as t→ ∞ both
of φ(t) and µ0 ([t,∞[). We investigate two particular cases: exponential and power decreases of µ0 ([t,∞[)
as t→ ∞.

Theorem 1.6. Assume (H) and that µ0 possesses a density, say u0, in a neighborhood of ∞ such that

ln (u0(x)) ∼
∞

−Cxγ

for some γ > 0.

(i) Then,

− ln (m(t)) ∼
∞
Cα,β,γC

(1+(1−β)γ/|α|)−1

h(t)

where h is the inverse, well-defined in the neighborhood of ∞, of t→ t1+|α|/γ/φ(t) and

Cα,β,γ =
(

1 + |α|−1γ(1 − β)
)

(

|α|1/(1−β)

γ

)

γ(1−β)
γ(1−β)+|α|

.

In particular, − ln(m(t)) varies regularly at ∞ with index 1/(1 − β + |α|/γ).

(ii) Suppose moreover that
∫

0
| ln(x)|xB(dx) <∞, which ensures that the function ln(m) is differentiable on

]0,∞[. Then, if the derivative (ln(m))′ is regularly varying at ∞, one has, for all continuous bounded test
functions f :]0,∞[→ R,

1

m(t)

∫ ∞

0

f

(

(

h(t)

Cα,β,γ,Ct

)1/|α|

x

)

xµt(dx) →
t→∞

∫ ∞

0

f(x)xµ∞(dx),

where µ∞(dx) is the measure introduced in Theorem 1.3 and

Cα,β,γ,C =
Cα,β,γC

(1+(1−β)γ/|α|)−1

1 − β + |α|/γ
.

Assuming that the derivative (ln(m))′ is regularly varying at ∞ may seem demanding. Actually, this
assumption is also needed to get Theorem 1.3, but we are able to show it is always satisfied under the
hypotheses of this theorem (see Lemma 3.9). Unfortunately, it seems difficult to adapt this proof to the
case when the measure µ0 has an unbounded support. However, according to a classical result on regular
variation (the Monotone Density Theorem), (ln(m))′ varies regularly at ∞ as soon as ln(m) varies regularly
at ∞ and (ln(m))′ is monotone near ∞, which can be checked in some particular cases.

There is also the following result on the decrease of the mass m when the density u0 of µ0 has a power
decrease near ∞.

Proposition 1.7. Assume that µ0 possesses a density u0 in a neighborhood of ∞ such that

u0(x) ∼
∞
Cx−γ

for some γ > 2. Then,

m(t) ∼
∞
C′t

γ−2
α ,

with C′ = |α|−1C
∫∞

0 m(u)u
2−γ

α −1du <∞, where m denotes the total mass of the solution to fragmentation
equation with the same parameters α,B as that considered here, and with initial distribution δ1, the Dirac
mass at 1.
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1.3 Quasi-stationary solutions

A quasi-stationary solution to the fragmentation equation (2) is a solution (µt, t ≥ 0) such that

µt = m(t)µ0, ∀t ≥ 0,

with m(t) =< µt, id >. These quasi-stationary solutions are closely related to the measure µ∞ introduced
in the statement of Theorem 1.3. We have already mentioned that the existence and uniqueness of such a
measure µ∞ satisfying (10) hold without any assumption of regular variation on the measure B or on its
behavior near 0. The interesting fact is that, whatever the conditions on B, this measure and its self-similar
counterparts

µ(λ)
∞ := λ−1µ∞ ◦ (λid)−1,

λ > 0, are the only initial measures leading to quasi-stationary solutions to the fragmentation equation (2).

Theorem 1.8. For all λ > 0, let (µ
(λ)
∞,t, t ≥ 0) denote the solution to the fragmentation equation (2) starting

from µ
(λ)
∞ and constructed via a subordinator by (7). Then for all t ≥ 0,

µ
(λ)
∞,t = exp(−λαt)µ(λ)

∞ = m(t)µ(λ)
∞ .

Reciprocally, if (µt, t ≥ 0) is a quasi-stationary solution to the fragmentation equation, then there exists a

λ > 0 such that (µt, t ≥ 0) = (µ
(λ)
∞,t, t ≥ 0).

Organization of the paper. We start in Section 2 with some background on subordinators and regular
variation. Section 3 is the core of this paper: our main results on large-time behavior of self-similar Markov
processes conditioned on non-extinction are stated and proved there. Together with Theorem 1.1, these
results imply Theorems 1.3, 1.6 and 1.8, as well as Propositions 1.2 and 1.7. Section 4 is devoted to the
proof of Proposition 1.4. Some properties of the limit measure µ∞ are given in Section 5, and used to prove
Proposition 1.5. Last, some specific examples are discussed in Section 6 and the proof of Theorem 1.1 is
detailed in the Appendix.

2 Background on subordinators and regular variation

2.1 Subordinators

A subordinator is a non-decreasing Lévy process, i.e. a non-decreasing càdlàg process with stationary and
independent increments. We recall here the main properties we need in this paper and refer to the Chapter
3 of [2] for a more complete introduction to the subject.

The distribution of a subordinator (ξt, t ≥ 0) starting from ξ0 = 0 is characterized by its so-called Laplace
exponent φ : [0,∞[→ [0,∞[ through the identity

E [exp(−λξt)] = exp(−tφ(λ)), ∀λ, t ≥ 0.

According to the Lévy-Khintchine formula [2, Theorem 1, Chapter 1], there exists a real d ≥ 0 and a measure
Π on ]0,∞[,

∫∞

0
(1 ∧ x)Π(dx) <∞, such that

φ(λ) = dλ+

∫ ∞

0

(1 − exp(−λx))Π(dx), ∀λ ≥ 0.

The measure Π governs the jumps of the subordinator: the jumps process of ξ is a Poisson point process
with intensity Π.

We will need the strong Markov property of subordinators ([2, Proposition 6, Chapter 1]): given a
subordinator ξ and a stopping time T with respect to the filtration (Ft, t ≥ 0) generated by ξ, then,
conditionally on {T <∞}, the process (ξt+T − ξT , t ≥ 0) is independent of FT and is distributed as ξ. Last,
we recall that the semi-group of a subordinator possesses the Feller property ([2, Proposition 5, Chapter 1]).

From now on, all subordinators considered in this paper start from 0 and have a drift d = 0. Their
distribution is therefore completely determined by their Lévy measure Π. Note that when Π is related to a
measure B on ]0, 1[ through the formula (6), the above expression of φ coincides with that given by formula
(8), i.e.

φ(λ) =

∫ ∞

0

(1 − exp(−λx))Π(dx) =

∫ 1

0

(1 − xλ)xB(dx), ∀λ ≥ 0.
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2.2 Regular variation

A function f :]0,∞[→]0,∞[ is said to vary regularly at ∞ (resp. 0) with index γ ∈ R if for all a > 0

f(ax)

f(x)
→ aγ as x→ ∞ (resp. 0).

We refer to [7] for background on the topic. In particular, we have already implicitely used that the inverse,
when it exists, of a function regularly varying at ∞ with index γ > 0 is also regularly varying at ∞, with
index 1/γ (see Section 1.5.7 of [7]).

Note that when the Lévy measure Π is related to the fragmentation measure B by the formula (6), our
main assumption (H) reads “u ∈]0,∞[→

∫∞

u
Π(dx) varies regularly at 0 with index −β”. It is classical that

this is equivalent to the fact that the function

φ varies regularly at ∞ with index β.

This can be easily proved from Karamata Abelian-Tauberian Theorems (see in particular Chapters 1.6 and
1.7 of [7]). We will often use this form of the assumption (H).

To prove the forthcoming Theorem 3.1, which will then imply Theorems 1.3 and 1.6 (ii), we will need
the following technical lemma, which is taken from Chow and Cuzick [10].

Lemma 2.1. (Chow and Cuzick [10, Lemma 3]) Let f be regularly varying at infinity with index γ > 0, and
suppose that for all ε > 0 there exists some x(ε) such that

λγ−ε ≤
f(λx)

f(x)
≤ λγ+ε, ∀ λ ≥ 1, ∀x ≥ x(ε). (11)

Then for all θ > −1,

ef(t)

(

f(t)

t

)θ+1 ∫ ∞

t

(x− t)
θ
e−f(x)dx →

t→∞
γ−1−θΓ(1 + θ).

We point out that Chow and Cuzick state their result for all regularly varying functions with a positive
index, but that their proof strongly relies on the key point (11), which is not true for any regularly varying
function (easy counter-examples can be constructed). However, the functions we are interested in, i.e.
− ln(m), and to which we will apply this result, will in general satisfy (11). In particular, see the forthcoming
Lemma 3.6.

3 Asymptotic behavior of self-similar Markov processes

Given the construction (7) via subordinators of solutions to the fragmentation equation, the issue of charac-
terizing the large-time asymptotics of these solutions is equivalent to characterizing large-time behavior of
distributions of time-changed subordinators.

So, let ξ be a subordinator started from 0 with Lévy measure Π and no drift. We denote by φ its Laplace
exponent. Then consider α < 0 and let X(0) be a strictly positive random variable, independent of ξ. Our
goal is to specify the asymptotic behavior as t→ ∞ of the distributions of the random variables

X(t) := X(0) exp
(

−ξρ(X(0)αt)

)

, (12)

conditional on {X(t) > 0}, where ρ is given by

ρ(t) = inf

{

u ≥ 0 :

∫ u

0

exp(αξr)dr > t

}

.

Following Lamperti [20], the process X belongs to the so-called family of self-similar Markov processes. This
means that it is strongly Markovian and that for all x > 0, if Px denotes the distribution of X started from
x, then for all a > 0,

the distribution of (aX(aαt), t ≥ 0) under Px is Pax.

8



Moreover, X reaches 0 a.s. and it does it continuously. Conversely, Lamperti [20] also shows that any
non-increasing càdlàg self-similar Markov processes on [0,∞[ that reaches continuously 0 in finite time a.s.
can be constructed like this via a time-changed subordinator.

Note that the moment at which X reaches 0 is X(0)|α|I where I is the exponential functional defined
by

I :=

∫ ∞

0

exp(αξr)dr (13)

which is clearly a.s. finite. The distribution of the random variable I was first studied in details in [9]. In
particular, it is well known that for all integers n ≥ 1,

E[In] =
n!

φ(|α|)φ(2|α|)...φ(n|α|)

and that the distribution of I is characterized by these moments ([9, Prop. 3.3]). It will also be essential for
us (see [6, Propositions 1 and 2]) that there exists a unique probability measure µR on ]0,∞[ whose entire
positive moments are given by

∫ ∞

0

xnµR(dx) = φ(|α|)φ(2|α|)...φ(n|α|), n ≥ 1 (14)

and that, moreover, if R denotes a r.v. with distribution µR independent of I, then

RI
d
= e(1) (15)

where e(1) has an exponential distribution with parameter 1.

We now have the material to state the main result of this section. To be consistent with the notations
used for the fragmentation equation, we denote by xµ0(dx), x > 0, the distribution of X(0). We recall also
the definition of the function ϕ as the inverse, well-defined in a neighborhood of ∞, of t→ t/φ(t).

Theorem 3.1. Suppose that
∫∞

u Π(dx) varies regularly at 0 with index −β, β ∈ [0, 1[ and
∫∞

xΠ(dx) <∞.

(i) If the support of µ0 is compact with a supremum equal to 1, then for all bounded continuous functions
f :]0,∞[→ R,

E

[

f

(

(

ϕ(|α|t)

|α|t

)1/|α|

X(t)

)

∣

∣

∣X(t) > 0

]

→
t→∞

E

[

f(R1/|α|)
]

where R is the random variable with distribution µR defined by (14).

(ii) If µ0 possesses a density u0 in a neighborhood of ∞ such that

ln (u0(x)) ∼
∞

−Cxγ

for some γ > 0, then the function t ∈]0,∞[→ P(X(t) > 0) is continuously differentiable. If moreover the
derivative of t→ ln(P(X(t) > 0)) is regularly varying at ∞ – which e.g. is true as soon as this derivative is
monotone near ∞ – then, for all bounded continuous functions f :]0,∞[→ R, as t→ ∞,

E

[

f

(

(

h(t)

Cα,β,γ,Ct

)1/|α|

X(t)

)

∣

∣

∣
X(t) > 0

]

→
t→∞

E

[

f(R1/|α|)
]

where the function h is the inverse, defined in the neighborhood of ∞, of t → t1+|α|/γ/φ(t) and Cα,β,γ,C is
the constant defined in the statement of Theorem 1.6.

We will see in the proof of this result that the function t→ ϕ(|α|t)/|α|t in assertion (i) can be replaced
by any asymptotically equivalent function. Likewise for h in the second assertion.

Now, let B be the fragmentation measure related to Π by (6). If (µt, t ≥ 0) refers to the solution to the
(α,B)-fragmentation equation contructed from ξ by the formula (7), we have

m(t) =

∫ ∞

0

xµt(dx) = P (X(t) > 0)

9



and the distribution of X(t) conditional on X(t) > 0 is xµt(dx)/m(t). The above theorem then leads
directly to the statements of Theorem 1.3 and Theorem 1.6 (ii) (note that

∫∞
xΠ(dx) < ∞ is equivalent

to
∫

0 | ln(x)|xB(dx) < ∞). The limit distribution xµ∞(dx) mentioned in these theorems is therefore the

distribution of R1/|α|. The large-time behavior of m(t) = P(X(t) > 0) is studied in Subsection 3.1 below,
whereas Theorem 3.1 is established in Subsection 3.2.

Last, we finish with the following result on the quasi-stationary distributions of X , which will be proved
in Subsection 3.3, and which, in terms of the fragmentation equation, will lead to Theorem 1.8. We recall
that the quasi-stationary distributions of X are the distributions ς on ]0,∞[ such that

X(0)
d
∼ ς ⇒ E[f(X(t))|X(t) > 0] = E[f(X(0))], for all t ≥ 0 and all test-functions f defined on ]0,∞[.

Theorem 3.2. Let µ
(λ)
R denote the law of λR1/|α|, λ > 0. Then, a probability measure ς on ]0,∞[ is a

quasi-stationary distributions of X if and only if ς = µ
(λ)
R for some λ > 0. Moreover, if X(0)

d
∼ µ

(λ)
R ,

P(X(t) > 0) = exp(−λαt), ∀t ≥ 0.

We point out that this theorem does not directly lead to the reciprocal assertion of Theorem 1.8. However,
easy manipulations of the fragmentation equation will lead to it. See Subsection 3.3 for details.

3.1 Total mass behavior

This section is devoted to the description of the behavior of the total mass

m(t) =

∫ ∞

0

xµt(dx) = P (X(t) > 0) = P (I > X(0)αt) .

The notations are those introduced above in the introduction of Section 3. We start with the following result,
which holds for all fragmentation equations with parameters α < 0, B and all initial measure µ0 such that
∫∞

0 xµ0(dx) = 1.

Proposition 3.3. The total mass m is strictly positive and strictly decreasing on [0,∞[. Moroever m(t) → 0
as t→ ∞.

Proof. Since

m(t) =

∫ ∞

0

P(I > xαt)xµ0(dx),

it is sufficient to show that the function t ∈ [0,∞[→ P(I > t) is strictly positive, strictly decreasing and
converges to 0 as t → ∞. This last point is obvious since I < ∞ a.s.. Next, suppose that P(I ≤ t) = 1 for
some t > 0. This would imply that for all n ≥ 1

n!

φ(|α|)φ(2|α|)...φ(n|α|)
= E[In] ≤ tn.

But we have seen in the Introduction that x/φ(x) → ∞ as x → ∞. In particular, 2t ≤ n/φ(n|α|) for large
enough n, say n > n0. Hence we would have

n0!

φ(|α|)φ(2|α|)...φ(n0 |α|)
(2t)n−n0 ≤ tn

for all n > n0, which is impossible. So, P(I > t) > 0 for all t > 0.
Last, for all t > 0, using the Markov property of subordinators, we get

I =

∫ t

0

exp(αξr)dr + exp(αξt)

∫ ∞

0

exp(α(ξr+t − ξt))dr

≤ t+ exp(αξt)Ĩ ,

where Ĩ is distributed as I and independent of ξt. Consider a such that P(I ≤ a) > 0 and note, using the
Poisson point process construction of the subordinator, that P(exp(αξt) ≤ t/a) > 0 for all t > 0. Then

0 < P

(

exp(αξt) ≤ t/a, Ĩ ≤ a
)

≤ P(I ≤ 2t), ∀t > 0.

10



This leads to the fact that P(t ≥ I > s) > 0 for all 0 ≤ s < t. Indeed, the event {I > s} coincides with
{ρ(s) <∞} and when I > s,

I = s+ exp(αξρ(s))

∫ ∞

0

exp
(

α(ξr+ρ(s) − ξρ(s)

)

dr.

Using the strong Markov property of the subordinator at the stopping time ρ(s), we get, with probability
one,

(I − s)+ = exp(αξρ(s))Ĩ ,

with Ĩ independent of ξρ(s) and distributed as I. Hence, for all 0 ≤ s < t,

P(I > s) − P(I > t) = P(s < I ≤ t) = P

(

exp(αξρ(s)) > 0, Ĩ ≤ (t− s) exp(|α|ξρ(s))
)

and this last probability is strictly positive since P(exp(αξρ(s)) > 0) = P(I > s) > 0 and P(Ĩ ≤ a) > 0 for all
a > 0. �

Now we turn to the proofs of the more precise descriptions of the behavior of m stated in Proposition
1.2, Theorem 1.6 (i) and Proposition 1.7. The crucial point is the following lemma, which is basically a
consequence of Rivero [26, Prop. 2] and König and Mörters [19, Lemma 2.3].

Lemma 3.4. Assume (H), or, equivalently, that φ varies regularly at ∞ with index β ∈ [0, 1[. Then

− ln (P(I > t)) ∼
∞

(1 − β)

|α|
ϕ(|α|t) ∼

∞
(1 − β)|α|

β
1−βϕ(t)

where ϕ is the inverse of t → t/φ(t), which is well defined in the neighborhood of ∞. In particular,
− ln (P(I > t)) is regularly varying at ∞ with index 1/(1 − β).

Proof. Note that the Laplace exponent of the subordinator |α|ξ is φ(|α|·) and that the inverse of t →
t/φ(|α|t) is ϕ(|α|·)/|α|. Using this remark, we can restrict our proof to the case |α| = 1, which is supposed
in the following.

When β ∈]0, 1[, the statement of the lemma is exactly Proposition 2 of Rivero [26]. When β = 0 and
φ(∞) <∞,

1

n
ln

(

E(In)

n!

)

= −
1

n

n
∑

i=1

ln(φ(i)) −−−−→
n→∞

− lnφ(∞).

Then by Lemma 2.3. of König and Mörters [19]

lim
t→∞

1

t
ln (P(I > t)) = −φ(∞).

Last, when β = 0 and φ(∞) = ∞, we can adapt König and Mörters’ proof of [19, Lemma 2.3] to get the
expected result. Indeed, first note that

1

n
ln

(

E

[

Inφ(n)n

nn

])

=
1

n
ln

(

n!

nn

)

+ ln(φ(n)) −
1

n

n
∑

i=1

ln(φ(i)) →
n→∞

−1, (16)

as a consequence of Stirling’s formula and of the fact that

ln(φ(n)) −
1

n

n
∑

i=1

ln(φ(i)) →
n→∞

0

since φ is a slowly varying function (see Section 3.2 of Rivero [26] for a proof of this last point). Then, it is
easy, using Markov’s inequality, that

lim sup
n→∞

1

n
ln (P (I > n/φ(n))) ≤ −1.

To get a lower bound for the limit inferior, set Yn := ln(Iφ(n)/n). For every ε > 0 and every integer m, we
have that

1

E[In]
E
[

In1{Yn≥ε}

]

≤ exp(−εm)
E[In+m]φ(n)m

E[In]nm
→

n→∞
exp(−εm).

11



Letting m→ ∞, this gives
1

E[In]
E
[

In1{Yn≥ε}

]

→
n→∞

0. (17)

Besides, for all ε > 0 and all n ≥ 1,

1

n
ln (P(I > n exp(−ε)/φ(n))) ≥

1

n
ln (P(|Yn| < ε)) .

But I−n > exp(−nε)n−nφ(n)n on {|Yn| < ε}, which gives

1

n
ln (P(|Yn| < ε)) =

1

n
ln

(

E[I−nIn1{|Yn|<ε}]

E[In]
E[In]

)

≥
1

n
ln

(

exp(−nε)
E[In1{|Yn|<ε}]

E[In]
n−nφ(n)n

E[In]

)

.

By (16) and (17), the last line of this inequality converges to −ε − 1 as n → ∞. Thus, since the function
t→ t/φ(t) is increasing and ϕ(t) → ∞ as t→ ∞, we have proved that

lim sup
t→∞

1

ϕ(t)
ln (P (I > t)) ≤ −1

lim inf
t→∞

1

ϕ(t exp(ε))
ln (P (I > t)) ≥ −ε− 1.

Using the regular variation of ϕ, we get the expected

lim
t→∞

1

ϕ(t)
ln (P(I > t)) = −1.

�

3.1.1 µ0 with compact support: proof of Proposition 1.2

We recall that with no loss of generality, the supremum of the support of µ0 is supposed to be equal to 1.
Then,

m(t) =

∫ 1

0

P (I > txα)xµ0(dx) ≤ P (I > t)

∫ 1

0

xµ0(dx) = P (I > t) .

According to Proposition 3.3 in [9], Cλ := E[exp(λI)] <∞ as soon as λ < φ(∞). Hence for such λ’s,

m(t) ≤ P (I > t) ≤ Cλ exp(−λt), ∀t ≥ 0,

which gives the first part of the statement.
Now, assume (H). Then, on the one hand, since m(t) ≤ P(I > t), we get by Lemma 3.4,

lim inf
t→∞

− ln (m(t))

ϕ(|α|t)
≥

1 − β

|α|
.

On the other hand, for all 0 < ε < 1,

m(t) ≥ P (I > t(1 − ε)α)

∫ 1

1−ε

xµ0(dx).

By assumption,
∫ 1

1−ε xµ0(dx) > 0, hence

lim sup
t→∞

− ln (m(t))

ϕ(|α|t)
≤ lim sup

t→∞

− ln (P(I > t(1 − ε)α))

ϕ(|α|t)
=

1 − β

|α|
(1 − ε)

α
1−β .

Then, let ε ↓ 0 to get the expected result.
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3.1.2 µ0 with unbounded support: proofs of Theorem 1.6 (i) and Proposition 1.7

Proof of Theorem 1.6 (i) 1. Suppose first that µ0(dx) = exp(−Cxγ)dx, γ > 0. We have

m(t) =

∫ ∞

0

P (I > txα)x exp(−Cxγ)dx =
t−2/α

γ

∫ ∞

0

P

(

I > uα/γ
)

u2/γ−1 exp
(

−Cut−γ/α
)

du, (18)

using the change of variable u = (xt1/α)γ . Then use Lemma 3.4 and Theorem 4.12.10 (iii) of [7] to get

− ln

(
∫ x

0

P

(

I > uα/γ
)

u2/γ−1du

)

∼
x→0

− ln
(

P

(

I > xα/γ
))

∼
x→0

(1 − β)|α|β/(1−β)ϕ(xα/γ)

which varies regularly at 0 with index α/(γ(1 − β)). Note that in a neighborhood of 0, x → 1/ϕ(xα/γ) is
the inverse of

x→

(

xφ

(

1

x

))−γ/α

.

Hence, by de Bruijn’s Tauberian Theorem [7, Th. 4.12.9], we have

− ln

(∫ ∞

0

P

(

I > uα/γ
)

u2/γ−1 exp (−ut) du

)

∼
t→∞

Cα,β,γ/h0(t),

where h0 is the inverse, well-defined in the neighborhood of ∞, of x → x−1 (xφ(1/x))γ/α and Cα,β,γ is the
constant defined in the statement of Theorem 1.6 (i). Together with (18), this leads to

− ln (m(t)) ∼
∞
Cα,β,γC

(1+(1−β)γ/|α|)−1

/h0(t
γ/|α|).

Otherwise said,

− ln (m(t)) ∼
∞
Cα,β,γC

(1+(1−β)γ/|α|)−1

h(t)

where h is the inverse of t1+|α|/γ/φ(t).

2. Now, suppose that µ0 possesses a density u0 in a neighborhood of ∞ such that ln (u0(x)) ∼
∞

−Cxγ ,

γ > 0. Fix ε > 0 and let Cε be such that u0(x) exists for x ≥ Cε and

exp(−(1 + ε)Cxγ) ≤ u0(x) ≤ exp(−(1 − ε)Cxγ), ∀x ≥ Cε. (19)

Then write

m(t) =

∫ Cε

0

P (I > txα)xµ0(dx) +

∫ ∞

Cε

P (I > txα)xu0(x)dx.

On the one hand, following the argument developed in Section 3.1.1, we get

lim sup
t→∞

ln
(

∫ Cε

0 P (I > txα)xµ0(dx)
)

ϕ(t)
≤ −(1 − β)|α|β/(1−β)Cα/(1−β)

ε ,

which actually holds for any initial measure µ0. Note that ϕ(t)/h(t) → ∞ as t→ ∞, where h is the function
defined above, in the first part of this proof.

On the other hand, the inequalities (19) and the results of the first part of this proof imply that

lim sup
t→∞

− ln
(

∫∞

Cε
P (I > txα)xu0(x)dx

)

h(t)
≤ Cα,β,γ((1 + ε)C)(1+(1−β)γ/|α|)−1

and

lim inf
t→∞

− ln
(

∫∞

Cε
P (I > txα)xu0(x)dx

)

h(t)
≥ Cα,β,γ((1 − ε)C)(1+(1−β)γ/|α|)−1

.

We have therefore proved that

Cα,β,γ((1− ε)C)(1+(1−β)γ/|α|)−1

≤ lim inf
t→∞

− ln(m(t))

h(t)
≤ lim sup

t→∞

− ln(m(t))

h(t)
≤ Cα,β,γ((1 + ε)C(1+(1−β)γ/|α|)−1
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for all ε > 0. The result follows by letting ε ↓ 0. �

Proof of Proposition 1.7. Suppose that u0(x) = Cx−γ on [a,∞[ for some a > 0 and γ > 2. Then,

m(t) = C

∫ ∞

a

P(I > xαt)x1−γdx+

∫ a

0

P(I > xαt)xµ0(dx).

With the change of variables u = xαt,

∫ ∞

a

P(I > xαt)x1−γdx =
t

γ−2
α

|α|

∫ aαt

0

P(I > u)u
2−γ

α −1du

and this last integral converges to a finite limit as t → ∞ since P(I > u) ≤ Cλ exp(−λu) for all u ≥ 0 and
some λ > 0 sufficiently small (see the proof of Proposition 1.2 for this last point). Using the same upper
bound for P(I > xαt), we get that

∫ a

0

P(I > xαt)xµ0(dx) ≤ Cλ exp(−λaαt)

∫ a

0

xµ0(dx).

Thus,

m(t) ∼
t→∞

C

|α|
t

γ−2
α

∫ ∞

0

P(I > u)u
2−γ

α −1du.

It is not hard to extend this proof to the cases when u0(x) ∼
∞
Cx−γ , for some γ > 2, which is left to the

reader. �

3.2 Proof of Theorem 3.1

We start with the following lemma.

Lemma 3.5. Suppose that − ln(m) varies regularly at ∞ with a positive index γ and satisfies (11). Then,
for any function g : [0,∞[→]0,∞[ such that g(t)/(− ln(m(t))) → 1 as t→ ∞, we have

E

[

f

(

(

γg(t)

t

)1/|α|

X(t)

)

∣

∣

∣X(t) > 0

]

→
t→∞

E

[

f(R1/|α|)
]

,

for all continuous bounded test functions f on ]0,∞[.

Proof. First note that when X(0)|α|I > t,

X(0)|α|I

= X(0)|α|
∫ ρ(X(0)αt)

0

exp(αξr)dr +X(0)|α| exp(αξρ(X(0)αt))

∫ ∞

0

exp(α(ξr+ρ(X(0)αt) − ξρ(X(0)αt)))dr

= t+X(0)|α| exp(αξρ(X(0)αt))

∫ ∞

0

exp(α(ξr+ρ(X(0)αt) − ξρ(X(0)αt)))dr.

Then use the strong Markov property of ξ at the (randomized) stopping time ρ(X(0)αt) to get

(X(0)|α|I − t)+ = X(0)|α| exp(αξρ(X(0)αt))Ĩ = X(t)|α|Ĩ , (20)

where Ĩ is distributed as I and is independent of X(t). This gives, for all n ∈ N
∗,

m(t)−1
E





(

(

γg(t)

t

)1/|α|

X(t)

)|α|n


E[In] = m(t)−1

(

γg(t)

t

)n

E

[

X(t)|α|n
]

E[In]

= m(t)−1

(

γg(t)

t

)n

E

[(

(X(0)|α|I − t)+
)n]

.

Then recall that
m(t) = P(X(0)|α|I > t), t ≥ 0.
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Integrating by parts,

m(t)−1

(

γg(t)

t

)n

E

[(

(X(0)|α|I − t)+
)n]

= nm(t)−1

(

γg(t)

t

)n ∫ ∞

t

(x− t)n−1m(x)dx,

which, according to Lemma 2.1 and the assumptions we have made on − ln(m) and g, converges as t → ∞
to n!. Next note that E[Rn]E[In] = n!, using the factorization property (15) of the exponential random
variable with parameter 1. Putting all the pieces together, we have proved that for all integers n ≥ 1,

E





(

(

γg(t)

t

)1/|α|

X(t)

)|α|n
∣

∣

∣X(t) > 0



 →
t→∞

E[Rn].

To sum up: let νt denote the distribution of γt−1g(t)X(t)|α| conditional on X(t) > 0 (νt is a probability
measure on ]0,∞[). We have shown that for all n ≥ 1,

∫ ∞

0

xnνt(dx) →

∫ ∞

0

xnµR(dx),

where µR is the distribution of R. Of course this still holds for n = 0. But the distribution of R is
characterized by its moments. It is then well-known ([13, Chapter VIII, p.269]) that this implies that νt

converges in distribution to µR. �

3.2.1 Proof of Theorem 3.1 (i)

By Proposition 1.2, under the hypothesis (H), − ln(m) varies regularly at ∞ with index 1/(1− β) and more
precisely

− ln(m(t)) ∼
t→∞

(1 − β)

|α|
ϕ(|α|t).

Together with Lemma 3.5, this implies the statement of Theorem 3.1, provided − ln(m) satisfies (11). The
goal of this section is to proof this last point when µ0 has a compact support.

Lemma 3.6. Let
f(x) = − ln(m(x)), x ≥ 0,

and assume (H), that
∫∞

xΠ(dx) < ∞ and that µ0 has a compact support. Then for all ε > 0, there exists
some x(ε) such that

λ
1

1−β−ε ≤
f(λx)

f(x)
≤ λ

1
1−β +ε, ∀λ ≥ 1 and ∀x ≥ x(ε).

This lemma is a direct consequence of the forthcoming Lemmas 3.7 and 3.10.

Lemma 3.7. Let g :]0,∞[→]0,∞[ be a continuously differentiable function such that

xg′(x)

g(x)
→ c > 0 as x→ ∞.

Then for all ε > 0 there exists some x(ε) such that

λc−ε ≤
g(λx)

g(x)
≤ λc+ε, ∀λ ≥ 1 and ∀x ≥ x(ε).

Proof. For ε > 0, let x(ε) be such that

c− ε ≤
xg′(x)

g(x)
≤ c+ ε for all x ≥ x(ε).

For such xs, and all λ ≥ 1

(c− ε) ln(λ) = (c− ε)

∫ λx

x

y−1dy ≤

∫ λx

x

g′(y)

g(y)
dy ≤ (c+ ε)

∫ λx

x

y−1dy = (c+ ε) ln(λ).

Since
∫ λx

x
g′(y)
g(y) dy = ln(g(λx)) − ln(g(x)), the result is proved. �
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Lemma 3.8. Suppose that φ is regularly varying at ∞ with index β ∈ [0, 1[ and that φ(x) → ∞ as x→ ∞.
Let β′ ∈]β, 1[. Then there exists some x1(β

′) such that for x ≥ x1(β
′) and all λ ≥ 1,

1 ≤ φ(x) ≤ φ(λx) ≤ λβ′

φ(x)

and
φ(x) ≤ xβ′

.

Proof. Note that φ is infinitely differentiable on ]0,∞[, with derivative

φ′(x) =

∫ ∞

0

v exp(−xv)Π(dv),

which is non-increasing. It is then a classical result on regular variation (see the Monotone Density Theorem,
[7, Th.1.7.2]) that φ′ is regularly varying with index β − 1 and

xφ′(x)

φ(x)
→

x→∞
β.

The first part of the lemma is then a consequence of the above Lemma 3.7 and of the fact that φ is
increasing and converges to ∞. We also have that φ(x)/xβ′

converges to 0 at ∞ (since β′ > β), hence the
second assertion holds for x large enough. �

Lemma 3.9. Let
f(x) = − ln (P(I > x)) , x ≥ 0,

which, as proved in Lemma 3.4 is regularly varying with index 1/(1−β), under the assumption (H). Suppose
moreover that

∫∞
xΠ(dx) <∞. Then f is infinitely differentiable and

xf ′(x)

f(x)
→

1

1 − β
as x→ ∞.

Proof. According to [9, Prop. 2.1], when
∫∞

xΠ(dx) <∞, there exists an infinitely differentiable function
k :]0,∞[→ [0,∞[ such that k(x)dx is the distribution of I. Moreover,

k(x) =

∫ ∞

x

Π
(

|α|−1 ln(u/x)
)

k(u)du

=

∫ ∞

0

(

∫ xev|α|

x

k(u)du

)

Π(dv).

To simplify notations, we suppose in the following that |α| = 1. The proof is identical for |α| 6= 1. In
particular, we have,

P(I > x) =

∫ ∞

x

k(u)du,

and

f ′(x) =
k(x)

P(I > x)
=

∫ ∞

0

(1 − exp (f(x) − f(xev)))Π(dv), x > 0. (21)

Note that since f is regularly varying with a positive index, we have that f(x) → ∞ as x→ ∞, and therefore,
for all v > 0,

f(x) − f(xev) = f(x)

(

1 −
f(xev)

f(x)

)

∼
∞
f(x)

(

1 − ev/(1−β)
)

→
x→∞

−∞.

• When Π(]0,∞[) <∞, this implies the expected result, since, by dominated convergence,

f ′(x) →
x→∞

Π(]0,∞[) = lim
x→∞

f(x)

x
.

• The proof is much more technical when Π(]0,∞[) = ∞, which is supposed for the rest of this proof. We
proceed in two steps.
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Step 1. The goal of this step is to prove that

lim inf
x→∞

xf ′(x)

f(x)
≥

1

1 − β
.

To start with, suppose there exists some x0 and some non-decreasing positive function g such that f ′(x) ≥
g(x) for all x ≥ x0. Then for x ≥ x0 and v > 0

f(xev) − f(x) =

∫ xev

x

f ′(u)du ≥ g(x)x(ev − 1) ≥ g(x)xv.

Using (21), this gives
f ′(x) ≥ φ(g(x)x), x ≥ x0. (22)

Now, note that f ′(x) → ∞ as x→ ∞ since for all a > 0

lim inf
x→∞

f ′(x) ≥ lim inf
x→∞

∫ ∞

a

(1 − exp (f(x) − f(xev)))Π(dv) =

∫ ∞

a

Π(dv)

(by dominated convergence) and this right-hand side converges to ∞ as a → 0. In particular, f ′(x) ≥ 1 for
x sufficiently large (say x ≥ x0). Replacing g by 1 in (22), we get

f ′(x) ≥ φ(x), ∀x ≥ x0.

Recall that φ is non-decreasing and then iterate the procedure to get, for all n ≥ 0

f ′(x) ≥ hn(x), ∀x ≥ x0, (23)

where the functions hn :]0,∞[→ ]0,∞[ are defined by induction by

h0(x) = 1, for all x ≥ 0

hn(x) = φ(hn−1(x)x), for all x ≥ 0.

Now the interesting fact is that for x large enough, hn(x) → ϕ(x)/x as n→ ∞. Indeed, let β′ ∈]β, 1[. With
the notations of Lemma 3.8 we have for x ≥ x1(β

′), 1 ≤ φ(x) ≤ xβ′

, i.e. h0(x) ≤ h1(x) ≤ xβ′

. Using that φ
is non-decreasing, we easily have, by induction, that

1 ≤ hn(x) ≤ hn+1(x) ≤ xβ′+....+β′n+1

≤ xβ′/(1−β′) <∞,

for all n ≥ 1. Let l(x) := limn→∞ hn(x). We have shown that 0 < l(x) < ∞. Then necessarily l(x) =
φ(l(x)x), otherwise said l(x)x/φ(l(x)x) = x and finally, l(x)x = ϕ(x), ∀x ≥ x1(β

′). To conclude, for x large
enough, letting n→ ∞ in (23), we get f ′(x) ≥ ϕ(x)/x, which, combined with Lemma 3.4, gives the expected
liminf.

Step 2. The proof of the limsup is similar, but more technical. To start with, note that for all ε > 0 and
all a < ln(1 + ε), a > 0,

lim inf
x→∞

∫ ln(1+ε)

0

(1 − exp (f(x) − f(xev)))Π(dv) ≥ lim inf
x→∞

∫ ln(1+ε)

a

(1 − exp (f(x) − f(xev)))Π(dv)

=

∫ ln(1+ε)

a

Π(dv) (by dominated convergence)

→
a→0

∞,

whereas

lim
n→∞

∫ ∞

ln(1+ε)

(1 − exp (f(x) − f(xev)))Π(dv) =

∫ ∞

ln(1+ε)

Π(dv) <∞.

Hence, there exists some x1(ε) such that for x ≥ x1(ε)

f ′(x) ≤ (1 + ε)

∫ ln(1+ε)

0

(1 − exp (f(x) − f(xev)))Π(dv). (24)
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Next, fix some β′ ∈]β, 1[ and consider some δ > 0 and ε > 0 such that (1 + δ)(1 + ε)1/(β−1)β′ < 1. Since f
is regularly varying with index 1/(1 − β), there exists some x2(δ, ε) such that

f(x(1 + ε)) ≤ (1 + δ)(1 + ε)1/(1−β)f(x), ∀x ≥ x2(δ, ε). (25)

We will need this later. For the moment, let x0 = max(x1(β
′), x1(ε), x2(δ, ε)), with x1(β

′) as introduced in
Lemma 3.8. Next, suppose that for all x ≥ x0

f ′(x) ≤ g(x)

for some non-decreasing function g s.t. g(x) ≥ 1 for all x ≥ x0. Note that this implies that

f(xev) − f(x) =

∫ xev

x

f ′(u)du ≤ g(xev)x(ev − 1).

The function v → v−1(ev − 1) is increasing on [0,∞[, hence ev − 1 ≤ vγ(ε) for all v ≤ ln(1 + ε), where
γ(ε) = ε/(ln(1 + ε)). Together with (24) this leads to

f ′(x) ≤ (1 + ε)

∫ ln(1+ε)

0

(1 − exp (−g(x(1 + ε))xvγ(ε)))Π(dv)

≤ (1 + ε)φ (g(x(1 + ε))xγ(ε)) (26)

for all x ≥ x0.
Then we claim that for all n ≥ 1 and all x ≥ x0

f ′(x) ≤ (1 + ε)1+β′+2β′2+...+nβ′n

γ(ε)β′+β′2+...+β′n

g (x(1 + ε)n)
β′n

hn(x), (27)

where the sequence of functions hn is that introduced in the step 1 of this proof. We will prove this by
induction on n. Before doing this, let us just mention that, by an easy induction, using Lemma 3.8,

hn(x(1 + ε)) ≤ (1 + ε)β′+...+β′n

hn(x), for all x ≥ x0 and n ≥ 1.

We now turn to the proof of (27). For n = 1, use (26) and Lemma 3.8 to get (note that γ(ε) ≥ 1, hence
γ(ε)g ≥ 1)

f ′(x) ≤ (1 + ε)g(x(1 + ε))β′

γ(ε)β′

φ(x), x ≥ x0,

which leads to (27) for n = 1. Now assume (27) is true for some integer n. Note that the function in the
right-hand side of this inequality, which we call g1, is larger than 1 for all x ≥ x0. Note also that it is
non-decreasing. Hence we get, replacing g by g1 in (26), for x ≥ x0,

f ′(x) ≤ (1 + ε)φ
(

(1 + ε)1+β′+2β′2+...+nβ′n

γ(ε)β′+β′2+...+β′n

g
(

x(1 + ε)n+1
)β′n

hn(x(1 + ε))xγ(ε)
)

≤ (1 + ε)φ
(

(1 + ε)1+2β′+3β′2+...+(n+1)β′n

γ(ε)1+β′+β′2+...+β′n

g
(

x(1 + ε)n+1
)β′n

hn(x)x
)

≤ (1 + ε)1+β′+2β′2+...+(n+1)β′n+1

γ(ε)β′+β′2+...+β′n+1

g
(

x(1 + ε)n+1
)β′n+1

φ (hn(x)x) ,

where for the last inequality, we have used Lemma 3.8. Hence we have (27) for all n ≥ 1.
Now, thanks to the assumptions (H) and

∫∞
xΠ(dx) < ∞ and to Lemma 1 in [18], we know that the

function k is bounded from above on ]0,∞[, say by some constant C ≥ 1. Hence f ′(x) = k(x)/P(I > x) ≤
C exp(f(x)) for all x > 0. Since f is non-decreasing and non-negative, the function x → C exp(f(x)) is
non-decreasing, greater than 1 hence we can replace g by this function in (27) to get for all n ≥ 1 and all
x ≥ x0

f ′(x) ≤ (1 + ε)1+β′+2β′2+...+nβ′n

γ(ε)β′+β′2+...+β′n

Cβ′n

exp (β′nf(x(1 + ε)n))hn(x). (28)

Our goal now, is to let n → ∞ in this inequality. Iterating inequality (25), we get for x ≥ x0 and for all
n ≥ 1

f(x(1 + ε)n) ≤ (1 + δ)n(1 + ε)n/(1−β)f(x).

Since
(1 + δ)(1 + ε)1/(β−1)β′ < 1,

18



this leads, for x ≥ x0, to
exp (β′nf(x(1 + ε)n)) →

n→∞
1.

As n→ ∞, we also have

Cβ′n

→ 1 and (1 + ε)1+β′+2β′2+...+nβ′n

→ (1 + ε)1+β′/(1−β′)2 and γ(ε)β′+β′2+...+β′n

→ γ(ε)β′/(1−β′).

Last, recall that for x large enough, hn(x) → ϕ(x)/x as n → ∞. Letting n → ∞ in (28), we therefore have
for x large enough

f ′(x) ≤ Cεϕ(x)/x,

where Cε → 1 as ε→ 0. This gives

lim sup
x→∞

xf ′(x)

f(x)
≤

1

1 − β
.

�

Lemma 3.10. Let
f(x) := − ln (m(x)) , x ≥ 0,

and suppose (H), that
∫∞

xΠ(dx) <∞ and that µ0 has a compact support. Then f is differentiable on ]0,∞[
and

xf ′(x)

f(x)
= −

xm′(x)

m(x)f(x)
→

1

1 − β
as x→ ∞.

Proof. With no loss of generality, we suppose that the supremum of the support of µ0 is equal to 1. Under the
assumptions of the lemma, we know (see the proof of the previous lemma) that x→ P(I > x) is differentiable
on ]0,∞[, with derivative −k. By Lemma 1 in [18], we also know that the function x ∈]0,∞[→ xk(x) is
bounded. Let M denotes an upper bound. Recall then that

m(x) =

∫ 1

0

P(I > xyα)yµ0(dy)

and note that for all x > a > 0 and all y ∈]0, 1[,

∣

∣∂x (P(I > xyα))
∣

∣ = k(xyα)yα ≤
M

a
.

Hence, by dominated convergence, m is continuously differentiable on ]0,∞[, with derivative

m′(x) = −

∫ 1

0

k(xyα)yαyµ0(dy), x > 0.

Now, fix δ > 0. By Lemma 3.9, there exists some x(δ) such that for x ≥ x(δ),

1 − δ

1 − β
≤

−xk(x)

P(I > x) ln (P(I > x))
≤

1 + δ

1 − β
.

Then for x ≥ x(δ),

1 − δ

(1 − β)x

∫ 1

0

P(I > xyα) ln (P(I > xyα)) yµ0(dy) ≤ m′(x) ≤
1 + δ

(1 − β)x

∫ 1

0

P(I > xyα) ln (P(I > xyα)) yµ0(dy).

(29)
Now, let ε > 0. On the one hand, we claim that

∫ 1

1−ε

P(I > xyα) ln (P(I > xyα)) yµ0(dy) ∼
x→∞

∫ 1

0

P(I > xyα) ln (P(I > xyα)) yµ0(dy). (30)

Indeed, for all 0 < y < 1 − ε,

P(I > xyα) ln (P(I > xyα))

P(I > x(1 − ε)α) ln (P(I > x(1 − ε)α))
→ 0 as x→ ∞
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since x → − ln (P(I > x)) is regularly varying at ∞ with a positive index and α < 0. It is then not hard to
see, using Lemmas 3.7 and 3.9 that for x large enough this function is bounded from above by

exp



1 −

(

y

1 − ε

)

α(1−ε)
1−β





(

y

1 − ε

)

α(1+ε)
1−β

which, in turn, is bounded for y ∈]0, 1 − ε[. Hence, by dominated convergence, we see that

∣

∣

∣

∫ 1−ε

0

P(I > xyα) ln (P(I > xyα)) yµ0(dy)
∣

∣

∣ ≪
x→∞

∣

∣

∣P(I > x(1 − ε)α) ln (P(I > x(1 − ε)α))
∣

∣

∣

≤
1

ε

∣

∣

∣

∫ 1

1−ε

P(I > xyα) ln (P(I > xyα)) yµ0(dy)
∣

∣

∣,

where we have used for the last inequality that the function x → −x ln(x) is increasing in a neighborhood
of 0. Hence (30). A similar, but simpler, argument leads to

∫ 1

1−ε

P(I > xyα)yµ0(dy) ∼
x→∞

∫ 1

0

P(I > xyα)yµ0(dy). (31)

On the other hand, using that x → ln (P(I > x)) is regularly varying with index 1/(1 − β), we have for
1 − ε ≤ y ≤ 1 and x sufficiently large (say x ≥ x(ε))

(1 + ε)(1 − ε)α/(1−β) ln (P(I > x)) ≤ ln (P(I > x(1 − ε)α)) ≤ ln (P(I > xyα)) ≤ ln (P(I > x)) .

Thus

∫ 1

1−ε

P(I > xyα)yµ0(dy) ≤

∫ 1

1−ε P(I > xyα) ln (P(I > xyα)) yµ0(dy)

ln (P(I > x))
≤ (1+ε)(1−ε)α/(1−β)

∫ 1

1−ε

P(I > xyα)yµ0(dy).

Which, taking x(ε) larger if necessary and using (30) and (31), gives for x ≥ x(ε)

(1 − δ)m(x) ≤

∫ 1

0 P(I > xyα) ln (P(I > xyα)) yµ0(dy)

ln (P(I > x))
≤ (1 + δ)(1 + ε)(1 − ε)α/(1−β)m(x).

Plugging this in (29) and letting first ε → 0 and then δ → 0, we get the expected convergence, since
f(x) ∼ − ln(P(I > x)) as x→ ∞. �

3.2.2 Proof of Theorem 3.1 (ii)

The fact that the function

x ∈]0,∞[→ f(x) := − ln(m(x)) = − ln (P(X(x) > 0))

is continuously differentiable on ]0,∞[ can be proved exactly as when the support of µ0 is compact. See
the beginning of the proof of Lemma 3.10. Next, by Karamata’s Theorem (Th. 1.5.11 of [7]), if f varies
regularly at ∞ with index λ > 0 and if its derivative is also regularly varying at ∞, then

xf ′(x)

f(x)
→ λ as x→ ∞.

Together with Theorem 1.6 (i), Lemma 3.7 and Lemma 3.5, this implies Theorem 3.1 (ii).

3.3 Quasi-stationary distributions

Proof of Theorem 3.3. When X(0) ∼ µ
(λ)
R , the distribution of X(0)|α|I is that of λ|α|RI, with R

independent of I, i.e. that of an exponential random variable with parameter λα. We then immediately have
that for n ≥ 1 and t ≥ 0,

E

[(

(X(0)|α|I − t)+
)n]

= λ|α|nn! exp(−λαt),
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and
P(X(t) > 0) = P(X(0)|α|I > t) = exp(−λαt).

Following the beginning of the proof of Lemma 3.5 this gives

E

[

(X(t))
|α|n
]

E[In] = E

[(

(X(0)|α|I − t)+
)n]

= λ|α|nn! exp(−λαt)

and then
E

[

(X(t))|α|n |X(t) > 0
]

= E[λ|α|nRn] = E

[

X(0)|α|n
]

.

Hence µ
(λ)
R is a quasi-stationary distribution, since the distribution of R is characterized by its entire positive

moments. Note there is no other quasi-stationary distribution. Indeed, let ς be a quasi-sationary distribution
and suppose X(0) ∼ ς. Then necessarily, by the Markov property of X , P(X(t + s) > 0) = P(X(t) >
0)P(X(s) > 0) which implies that X(0)|α|I has an exponential distribution. Say with parameter ℓ, i.e.
ℓX(0)|α|I has a exponential distribution with parameter 1. Since the factorization (15) characterizes the

distribution of R, we get that ς = µ
(ℓ1/α)
R . �

Proof of Theorem 1.8. The first part of this theorem is an obvious consequence of Theorem 3.3. The
reverse cannot be directly deduced from Theorem 3.3, since we do not know if uniqueness holds for the
fragmentation equation when the initial measure has an unbounded support.

So, consider (µt, t ≥ 0) a quasi-stationary solution to the fragmentation equation (2). We want to

prove that this solution belongs to the family of solutions
(

(µ
(λ)
∞,t, t ≥ 0), λ > 0

)

as defined in Theorem 1.8.

Replacing µt by m(t)µ0 in equation (2), we get that

(1 −m(t)) < µ0, f >= −

∫ t

0

m(s)ds < µ0, G(f) >, ∀f ∈ C1
c ,

where G(f)(x) = xα
∫ 1

0
(f(xy) − f(x)y)B(dy). Otherwise said, there exists some constant C > 0 such that

m(t) = exp(−Ct), ∀t ≥ 0,

and
< µ0, f >= −C−1 < µ0, G(f) >, ∀f ∈ C1

c .

When f ∈ C1
c , the function x→ xf(x) is also in C1

c . Hence the above identity rewrites

< xµ0, f >= −C−1 < xµ0, Ã(f) >, ∀f ∈ C1
c , (32)

where Ã(f)(x) = xα
∫ 1

0
(f(xy) − f(x))yB(dy).

To show that this characterizes µ0, we need the following fact: for all β > 0, there exists a non-decreasing
sequence of functions fβ,n :]0,∞[→ [0,∞[ such that fβ,n(x) → xβ as n → ∞, ∀x > 0; and fβ,n ∈ C1

c and
|f ′β,n(x)| ≤ βxβ−1 for all x > 0 and all n ≥ 1. This sequence can, for example, be constructed by considering

first a non-decreasing sequence of continuous functions gβ,n :]0,∞[→ [0,∞[ such that gβ,n(x) ≤ βxβ−1,
∀x > 0, n ≥ 1, gβ,n(x) = βxβ−1 for x ∈ [n−1, n] and gβ,n(x) = 0 for x ∈]0, (2n)−1] ∪ [2n,∞[. Then
set fβ,n(x) :=

∫ x

0 gβ,n(u)du for x ∈]0, 2n] and extend these functions on ]2n,∞[ so that fβ,n ∈ C1
c and

|f ′β,n(x)| ≤ βxβ−1, for all x > 0 and all n ≥ 1, and the sequence (fβ,n, n ≥ 1) is non-decreasing. For all
β > 0, this implies that for all x > 0

Ã(fβ,n)(x) →
n→∞

xα+β

∫ 1

0

(yβ − 1)yB(dy) = −xα+βφ(β), (33)

together with

|Ã(fβ,n)(x)| ≤ (2 + β)xα+β

∫ 1

0

(1 − y)yB(dy). (34)

Indeed, this is obvious when β ≥ 1: we just need that

|fβ,n(xy) − fβ,n(x)| ≤ sup
z∈[xy,x]

|f ′β,n(z)|x(1 − y) ≤ βxβ(1 − y), for y ∈]0, 1[, x > 0,
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and then use the dominated convergence theorem. The case 0 < β < 1 needs more care. Using the above
mentioned properties of fβ,n and also that fβ,n(x) ≤ xβ we obtain, for x > 0 and y ∈]0, 1[

x|fβ,n(xy) − fβ,n(x)| ≤ xfβ,n(xy)(1 − y) + |xyfβ,n(xy) − xfβ,n(x)|

≤ x1+β(1 − y) + sup
z∈[xy,x]

|(idfβ,n)′(z)|x(1 − y)

≤ x1+β(1 − y) + (1 + β)x1+β(1 − y),

which leads to (33) and (34).
Now, take β = |α|. Then use (33), (34) and the dominated convergence theorem in the right-hand side

of (32) (recall that xµ0(dx) is a probability measure), together with the monotone convergence theorem in
the left-hand side of (32) to get

∫ ∞

0

x|α|xµ0(dx) = C−1φ(|α|) <∞.

Then, by an obvious induction, taking successively β = 2|α|, β = 3|α|, etc., we get for all n ≥ 1

∫ ∞

0

xn|α|xµ0(dx) = C−1φ(n|α|)

∫ ∞

0

x(n−1)|α|xµ0(dx) = C−nφ(n|α|)...φ(|α|).

We recognize the moments formula (14). Hence xµ0(dx) = µ
(C1/α)
R (dx) = xµ

(C1/α)
∞ (dx) and for all t ≥ 0,

µt = m(t)µ0 = exp(−Ct)µ
(C1/α)
∞ = µ

(C1/α)
∞,t . �

4 Different speeds of decrease: proof of Proposition 1.4

4.1 Proof of Proposition 1.4 (i)

Recall that the support of µ0 is supposed compact with supremum 1. The goal of this section is to prove the
forthcoming Corollory 4.3, which is the statement of Proposition 1.4 (i) translated in terms of the process
X defined by (12), provided the Lévy measure Π of the subordinator ξ involved in the construction of X is
related to the fragmentation measure B by (6) and X(0) is distributed according to xµ0(dx). We recall that
the distribution of X(t) conditional on X(t) > 0 is then xµt(dx)/m(t), t ≥ 0, where (µt, t ≥ 0) denotes the
solution to the fragmentation equation starting from µ0. We start with some preliminary lemmas.

Lemma 4.1. Suppose (H) and that
∫

0
| ln(x)|xB(dx) < ∞. Consider some r.v. I independent of X, with

distribution that of
∫∞

0 exp(αξr)dr. Then

(i) there exists some t0 > 0 such that

sup
t≥t0,a>0

aα
P

(

(

ϕ(|α|t)

|α|t

)1/|α|

X(t)I1/|α| ≤ a
∣

∣

∣
X(t) > 0

)

<∞

(ii) for all positive function g : [0,∞[→]0,∞[ converging to → 0 at ∞, we have, as t→ ∞,

g(t)α
P

(

(

ϕ(|α|t)

|α|t

)1/|α|

X(t)I1/|α| ≤ g(t)
∣

∣

∣ X(t) > 0

)

→ 1.

Proof. To simplify notations, suppose α = −1 (the proof is identical for all α < 0). Recall then the key
equality in law (20), which leads to the following identities for all a > 0

a−1
P

(

ϕ(t)

t
X(t)I ≤ a

∣

∣

∣ X(t) > 0

)

=
1

am(t)
P

(

0 < X(0)I − t ≤
at

ϕ(t)

)

=
m(t) −m(t+ at/ϕ(t))

am(t)
(35)

=
1

a

(

1 − exp

(

− ln(m(t))

(

1 −
ln (m(t(1 + a/ϕ(t))))

ln(m(t))

)))

.
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Use then the regular variation of − ln (m) with index 1/(1 − β) (Prop. 1.2) and Lemma 3.6 to see that for
all ε > 0, there exists a real t(ε) such that for all t ≥ t(ε) and all a > 0,

1 − (1 + a/ϕ(t))
1

1−β +ε ≤ 1 −
ln (m(t(1 + a/ϕ(t))))

ln(m(t))
≤ 1 − (1 + a/ϕ(t))

1
1−β−ε . (36)

Now, let 0 < ε < 1 − β. Since

1 − (1 + x)
1

1−β +ε ≥ −x

(

1

1 − β
+ 2ε

)

for all x > 0 sufficiently small, since moreover ϕ(t) → ∞ as t → ∞ and − ln(m) ∼
∞

(1 − β)ϕ, we have that

for all 0 < a ≤ 1 and all t ≥ t′(ε) (for some t′(ε) depending on ε but not on 0 < a ≤ 1),

− ln(m(t))
(

1 − (1 + a/ϕ(t))
1

1−β +ε
)

≥
ln(m(t))

ϕ(t)
a

(

1

1 − β
+ 2ε

)

≥ −a(1 − β + ε)

(

1

1 − β
+ 2ε

)

.

Together with the identities (35) and inequalities (36) this implies that for all t ≥ max(t(ε), t′(ε))

sup
0<a≤1

a−1
P

(

ϕ(t)

t
X(t)I ≤ a

∣

∣

∣ X(t) > 0

)

<∞.

This is enough to get (i), since for a ≥ 1, a−1 times a probability is bounded by 1.
The proof of (ii) relies on the same idea. Since g(t)/ϕ(t) → 0 as t→ ∞,

− ln(m(t))
(

1 − (1 + g(t)/ϕ(t))
1

1−β +ε
)

∼
∞

−g(t)(1 − β)

(

1

1 − β
+ ε

)

,

and a similar result holds by replacing ε by −ε. Together with the inequalities (36) and the identities (35)
(replacing there a by g(t)), using also that g(t) → 0 as t→ ∞, we get (ii). �

Lemma 4.2. Suppose κ :=
∫ 1

0 | ln(x)|xB(dx) <∞. Then,

(i) I possesses a density k ∈ C∞(]0,∞[),

(ii) E[I−1] = κ|α| <∞,

(iii) if moreover the support of B is not included in a set of the form {an, n ∈ N} for some a ∈]0, 1[, then
the function

x ∈ R → E[Iix−1] =

∫ ∞

0

yix−1k(y)dy

is well-defined and non-zero for all real x.

Proof. If Π is the Lévy measure associated with the fragmentation equation, the assumption κ < ∞ is
equivalent to

∫∞

0
xΠ(dx) < ∞, which, by Propositions 3.1 and 2.1 of [9] implies (i) and (ii). Next, it was

proved in the proof of Theorem 2 of [18] that E[Iix−1] 6= 0 for all x ∈ R under the additional assumption
that the support of Π is not included in a set of the form {rn, n ≥ 0} for some r > 0. �

Corollary 4.3. Suppose (H), that κ =
∫ 1

0 | ln(x)|xB(dx) < ∞ and that the support of B is not included
in a set of the form {an, n ∈ N} for some a ∈]0, 1[. Then, for all measurable functions g : [0,∞[→]0,∞[
converging to → 0 at ∞,

g(t)α
P

(

(

ϕ(|α|t)

|α|t

)1/|α|
X(t)

g(t)
≤ 1

∣

∣

∣ X(t) > 0

)

→
1

|α|κ
.

Proof. Set for x ≥ 0

Ut(x) := g(t)α
P

(

(

ϕ(|α|t)

|α|t

)1/|α|

X(t) ≤ xg(t)
∣

∣

∣ X(t) > 0

)
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and note this quantity increases in x when t is fixed. Then consider some r.v. I independent of X , with
distribution that of

∫∞

0 exp(αξr)dr. Consider b such that P(I ≤ b) > 0. Then

Ut(x)P(I ≤ b) ≤ g(t)α
P

(

(

ϕ(|α|t)

|α|t

)1/|α|

X(t)I1/|α| ≤ b1/|α|xg(t)
∣

∣

∣ X(t) > 0

)

,

which, according to Lemma 4.1 (i), is bounded from above by some constant (independent of t and x) times
bx|α| for all x ≥ 0 and t ≥ t0. I.e., there exists some finite constant C such that for all t sufficiently large
and all x ≥ 0,

xαUt(x) ≤ C. (37)

Now, consider an increasing function l : N → N. For all x ≥ 0, the sequence (Ul(n)(x), n ≥ 0) is bounded.
Hence there exist some non-decreasing right-continuous function U : [0,∞[→ [0,∞[, with U(0) = 0, and a
subsequence (Ul̃(n), n ≥ 0) of (Ul(n), n ≥ 0) such that Ul̃(n)(x) → U(x) for a.e. x > 0. See e.g. [Theorem 2,

Section VIII.7][13]. Hence if we prove that the limit U is given by

U(x) =
x|α|

|α|κ
, ∀x ≥ 0, (38)

for all sequences (l(n), n ≥ 0), (l̃(n), n ≥ 0) as defined above, we will have the expected result (note that the
continuity of the function involved in (38) implies that the convergence will hold for every x ≥ 0).

To prove (38), recall that by Lemma 4.2 (ii),
∫∞

0 x−1k(x)dx <∞. Hence by dominated convergence, for

all a > 0,
∫∞

0
Ul(n)(ax

1/α)k(x)dx →
∫∞

0
U(ax1/α)k(x)dx. By Lemma 4.1 (ii), we therefore have

∫ ∞

0

U(ax1/α)k(x)dx = a|α|, ∀a > 0. (39)

We claim that this equation characterizes U under the additional assumption that the support of B is not
included in a set of the form {an, n ∈ N} for some a ∈]0, 1[. Indeed, note first that by setting V (x) :=
exp(x)U(exp(x/α)) and k(x) := k(exp(−x)) for all x ∈ R, the above equation rewrites

∫ ∞

−∞

V (x) k (y − x) dx = 1, ∀y ∈ R.

But the function V is bounded a.e. on R, by (37). Moreover, by Lemma 4.2 (ii), k ∈ L1(R) and by Lemma
4.2 (iii), the Fourier transform of k is non-zero on R. We conclude with the Wiener approximation Theorem
for L1(R) ([7, Th.4.8.4]) that the above equation in V has a unique bounded solution (in the sense that two
solutions are equal a.e.). This determines V , hence U , almost everywhere. Since U is right-continuous, it is
determined for all x ≥ 0. Last, it is not hard to check that the expression of U given by (38) indeed satisfies
equation (39). �

4.2 Proof of Proposition 1.4 (ii)

We just have to prove the second part of Proposition 1.4 (ii), the first one being obvious since µt(]1,∞[) = 0
for all t ≥ 0 and g(t)(ϕ(|α|t)/|α|t)1/α → ∞ as t→ ∞. We keep the notations of the previous section and we
recall that we work under the assumption (H). From the proof of Lemma 4.1, we get that

ln





m
(

t
(

1 + |α|h(t)|α|

ϕ(|α|t)

))

m(t)



 ∼
t→∞

−h(t)|α|,

for all positive functions h such that h(t)|α|/ϕ(t) → 0 as t→ ∞. Otherwise said, for such functions h,

ln

(

m(t)−1
P

(

(

ϕ(|α|t)

|α|t

)1/|α|

X(t)I1/|α| ≥ h(t)

))

∼
t→∞

−h(t)|α|.

Note that for all t ≥ 0 and all c > 0, since X is independent of I,

ln

(

m(t)−1
P

(

(

ϕ(|α|t)

|α|t

)1/|α|

X(t) ≥
(

cφ(h(t)|α|)
)1/|α|

))

+ ln

(

P

(

I1/|α| ≥ h(t)/
(

cφ(h(t)|α|)
)1/|α|

))

≤ ln

(

m(t)−1
P

(

(

ϕ(|α|t)

|α|t

)1/|α|

X(t)I1/|α| ≥ h(t)

))

.
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Suppose moreover that h(t) → ∞ as t→ ∞ and that β < 1, which implies that h(t)|α|/φ(h(t)|α|) → ∞. By
Lemma 3.4, we have, for all real c > 0,

− ln
(

P

(

I ≥ h(t)|α|/cφ(h(t)|α|)
))

∼
∞

1 − β

|α|
ϕ

(

|α|h(t)|α|

cφ(h(t)|α|)

)

∼
∞

(1 − β)|α|β/(1−β)

c1/(1−β)
h(t)|α|,

using both the regular variation of ϕ and the fact that ϕ is the inverse of t→ t/φ(t) near ∞. Now let ε ∈]0, 1[
and c be such that c1/(1−β) > (1 − β)|α|β/(1−β). We have proved that

ln

(

m(t)−1
P

(

(

ϕ(|α|t)

|α|t

)1/|α|

X(t) ≥
(

cφ(h(t)|α|)
)1/|α|

))

≤ −(1 − ε)

(

1 −
(1 − β)|α|β/(1−β)

c1/(1−β)

)

h(t)|α|

for t large enough. Next, let gh,c(t) =
(

cφ(h(t)|α|)
)1/|α|

, t ≥ 0, and suppose β > 0 (hence the existence of
the inverse of φ near ∞). We have for t large enough

ln

(

m(t)−1
P

(

(

ϕ(|α|t)

|α|t

)1/|α|

X(t) ≥ gh,c(t)

))

≤ −(1 − ε)

(

1 −
(1 − β)|α|β/(1−β)

c1/(1−β)

)

φ−1(gh,c(t)
|α|/c)

∼
∞

−(1 − ε)

(

1 −
(1 − β)|α|β/(1−β)

c1/(1−β)

)

c−1/βφ−1(gh,c(t)
|α|).

It is not hard to check that the maximum of

{(

1 −
(1 − β)|α|β/(1−β)

c1/(1−β)

)

c−1/β, c > (1 − β)1−β |α|β
}

is equal to β/|α| and is reached at c = |α|β . Finally, if gh = gh,|α|β , letting ε→ 0, we have proved that

lim sup
t→∞

1

φ−1(gh(t)|α|)
ln

(

m(t)−1
P

(

(

ϕ(|α|t)

|α|t

)1/|α|

X(t) ≥ gh(t)

))

≤ −
β

|α|
. (40)

To conclude, to get the second part of the statement of Proposition 1.4 (ii), suppose 0 < β < 1 and
consider some positive function g that converges to ∞ at ∞, such that g(t)|α|t/ϕ(t) → 0. Set h(t) =
(φ−1(g(t)|α|/|α|β)1/|α|, t ≥ 0. Then, h(t) converges to ∞ as t→ ∞ and it is easily seen that h(t)|α|/ϕ(t) → 0
as t→ ∞. Since g = gh with the notations above, the result follows from (40).

5 Some properties of the limit measure µ∞

Recall that the distribution xµ∞(dx) on ]0,∞[ is that of R1/|α|, where R denotes a random variable with
entire positive moments

E[Rn] = φ(|α|)....φ(n|α|), n ≥ 1, (41)

that characterize its distribution. Using this particular moments’ shape, wet get the following description of
the measure µ∞ near 0 and ∞. Some of these properties are then used at the end of this section to prove
Proposition 1.5.

Proposition 5.1. (Behavior at ∞)

(i) Suppose (H) for some β ∈]0, 1[. Then,

− ln

(∫ ∞

t

xµ∞(dx)

)

= − ln
(

P(R > t|α|)
)

∼
∞

β

|α|
φ−1(t|α|)

where φ−1 denotes the inverse of φ (and is therefore a function regularly varying at ∞ with index 1/β).

(ii) Suppose φ(∞) :=
∫ 1

0
xB(dx) <∞. Then µ∞ has a compact support with supremum φ(∞)1/|α| and

µ∞

(

{φ(∞)1/|α|}
)

> 0 ⇔

∫ 1 B(dx)

1 − x
<∞.
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Proposition 5.2. (Behavior at 0) Suppose that
∫ exp(−u)

0
xB(dx) varies regularly at ∞ with index −γ, γ ∈

[0, 1]. Then, as s→ 0

∫ ∞

s

x1+αµ∞(dx) = E[1{R>s|α|}R
−1] ∼

1

(|α|γΓ(1 + γ)φ(−1/ ln(s|α|)))

and
∫ s

0

xµ∞(dx) = P(R < s|α|) = ◦

(

s|α|

φ(−1/ ln(s|α|))

)

.

Proof. This is a direct consequence of Corollary 1 of Caballero-Rivero [8], which gives these results in terms
of the random variable R. �

Proof of Proposition 5.1. (i) Our proof strongly relies on the proof of Proposition 2 of Rivero [26]. Rivero
shows there that if a positive random variable Y has entire moments satisfying

E[Y n] =
n
∏

i=1

ψ(i)

for some function ψ regularly varying at ∞ with index γ ∈]0, 1[, then

− ln (P(Y > t)) ∼
∞
γψ←(t),

where ψ← is the right-inverse of ψ. Apply then this result to the r.v. R, by taking ψ = φ(|α|·) and γ = β.

(ii) Using (41) and that φ is increasing, we get for all n ≥ 0,

E

[(

R

φ(∞)

)n]

≤ 1. (42)

Besides, writing

E

[(

R

φ(∞)

)n]

= E

[(

R

φ(∞)

)n

1{R>φ(∞)}

]

+ E

[(

R

φ(∞)

)n

1{R<φ(∞)}

]

+ P (R = φ(∞)) ,

and using the monotone and dominated convergence theorems, we see that

E

[(

R

φ(∞)

)n]

→
n→∞

{

∞ if P(R > φ(∞)) > 0
P(R = φ(∞)) otherwise.

In particular, from (42), we see that P(R > φ(∞)) = 0. Similarly, it is easy to show, using (41), that for all
0 < ε < φ(∞),

E

[(

R

φ(∞) − ε

)n]

→ ∞,

which implies that P(R > φ(∞) − ε) > 0. Last, to get the remaining part of the statement, note that

ln

(

φ(n|α|)

φ(∞)

)

∼
n→∞

φ(n|α|)

φ(∞)
− 1 =

−1

φ(∞)

∫ 1

0

xn|α|+1B(dx).

Therefore

ln

(

E

[(

R

φ(∞)

)n])

=

n
∑

i=1

ln

(

φ(i|α|)

φ(∞)

)

converges to −∞ as n→ ∞ if and only if

∫ 1

0

∞
∑

i=1

xi|α|+1B(dx) =

∫ 1

0

x1+|α|

1 − x|α|
B(dx) = ∞.

Since
∫

0
xB(dx) <∞,

E

[(

R

φ(∞)

)n]

→
n→∞

0 i.i.f

∫ 1 1

1 − x
B(dx) = ∞,
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which ends the proof. �

Proof of Proposition 1.5. From the construction (7) of µt, we see that

µt({1}) = µ0({1})P (ξ(ρ(t)) = 0) = µ0({1})P (ξ(t) = 0) ,

and from the Poisson point process construction of a pure-jump subordinator with Lévy measure Π we have
that P (ξ(t) = 0) = exp(−tΠ(]0,∞[)) = exp (−tφ(∞)). Next, we get from the factorization (15), that

exp (−tφ(∞)) = P (RI > tφ(∞)) ≥ P(I > t)P(R ≥ φ(∞)).

On the one hand, from the proof of Proposition 5.1, we see that when φ(∞) < ∞, P(R ≥ φ(∞)) = P(R =

φ(∞)) and that this quantity is non-zero i.f.f.
∫ 1

(1 − x)−1B(dx) < ∞. On the other hand, under (H), we
get from the regular variation of − ln(P(I > t)) that P(I > xαt)/P(I > t) → 0 for all 0 < x < 1, as t → ∞;
and then, from the dominated convergence theorem that

m(t)

P(I > t)
=

∫ 1

0

P(I > xαt)

P(I > t)
xµ0(dx) → µ0({1}) as t→ ∞.

Otherwise said, we have proved that under the hypothesis (H), when µ0({1}) > 0 and φ(∞) <∞,

lim inf
t→∞

µt({1})

m(t)
≥ P(R = φ(∞)) = φ(∞)1/|α|µ∞({φ(∞)1/|α|}).

Next, suppose (H), that
∫

0 | ln(x)|xB(dx) < ∞ and that φ(∞) < ∞. According to Theorem 1.3, for all

ε ∈]0, 1[ such that (1 − ε)φ(∞)1/|α| is not an atom of µ∞,

µt({1})

m(t)
≤

∫ 1

1−ε
xµt(dx)

m(t)
→

t→∞

∫ φ(∞)1/|α|

(1−ε)φ(∞)1/|α|

xµ∞(dx).

Letting ε→ 0, we get

lim sup
t→∞

µt({1})

m(t)
≤ φ(∞)1/|α|µ∞({φ(∞)1/|α|}).

�

6 Examples

Below is a list of standard examples where the main quantities involved in our results can be computed
explicitly. More precisely, for each of these examples, we specify the distributions of I (defined in (13)) and

R (defined in (14)), which lead to explicit expressions of the limit measure µ∞ (since R1/|α| d
∼ xµ(dx)) and

of the mass
m1(t) = P(I > t), t ≥ 0,

which is the mass of the solution to the fragmentation equation starting from µ0 = δ1. We also specify the
behavior as t → ∞ of the quantity ϕ(|α|t)/|α|t, involved in the statement of Theorem 1.3. For all these
examples, we give the main tools to get the distributions of I and R, but we leave the calculation details
to the reader. We recall that β denotes the index of regular variation of hypothesis (H) and that when
(µt, t ≥ 0) is a solution to the equation with parameters (α,B), (µct, t ≥ 0) is a solution to the equation with
parameters (α, cB). For this reason, in the examples below, given a measure B we choose its “representative”
among the measures cB, c > 0, which is the most convenient for the statement of the results.

The first four examples concerns absolutely continuous measures B(du) = b(u)du, where b is a function
defined on ]0, 1[. The Lévy measure is therefore also absolutely continuous and we denote by π its density.
It turns out that the limit distribution µ∞ is also absolutely continuous. We denote by u∞ its density.

Ex.1. b(u) = bub−2, b > 0; α < 0.

• β = 0
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• ϕ(t) ∼ t as t→ ∞

• I
d
∼ Γ(b/|α| + 1, 1)

• m1(t) = 1
Γ(b/|α|+1)

∫∞

t xb/|α| exp(−x)dx, t ≥ 0

• R
d
∼ β(1, b/|α|)

• u∞(x) = bx|α|−2
(

1 − x|α|
)

b
|α|
−1

, 0 < x < 1

The notations Γ(x, y) (resp. β(x, y)) refer to the classical Gamma distribution with parameters x, y > 0 (resp.
Beta distribution). In these examples, the density of the Lévy measure associated to B is π(x) = b exp(−bx),
x > 0, hence the Lévy measure associated to the subordinator |α|ξ (where ξ has Lévy measure Π) has a
density given by b exp(−bx/|α|)/|α|, x > 0. According to the Example B, p.5 of [9], the density of I is
then proportional to xb/|α| exp(−x), x > 0. Last we refer to the formula (4), Section 3 of [6], to get the
distribution of R.

We point out that the solutions to the fragmentation equation with this measure B are studied in [22].
In particular, when α = −b/2 and µ0 = δ1 the solutions (µt, t ≥ 0) has the explicit expression

µt(dx) = exp(−t)

(

δ1(dx) + bxb−2

(

t−
1

2
t2(1 − x−b/2))

)

1{0<x<1}dx

)

,

which gives

m1(t) = exp(−t)

(

1 + t+
t2

2

)

and for all bounded test functions f :]0,∞[→ R

1

m1(t)

∫ 1

0

f(x)xµt(dx) →
t→∞

∫ 1

0

f(x)bxb−1(x−b/2 − 1)dx,

which is consistent with the above expressions of m1 and u∞.

Ex.2. b(u) = |α|Γ(1 − γ)−1u
|α|
γ −2(1 − u

|α|
γ )−γ−1; 0 < γ < 1; α < 0.

• β = γ

• ϕ(t) ∼
(

γ
|α|

)
γ

1−γ

t
1

1−γ as t→ ∞

• I
d
∼ τ−γ

γ

• m1(t) =
∫∞

t
gγ(x)dx, t > 0.

• R
d
∼ e(1)γ

• µ∞(x) = |α|γ−1x
|α|
γ −2 exp

(

−x|α|/γ
)

, x > 0

Here, e(1) denotes a r.v. with exponential distribution with parameter 1 and τγ a γ-stable random variable,
i.e. with Laplace transform t ∈ [0,∞[→ exp(−tγ). Hence τ−γ

γ has the so-called Mittag-Leffler distribution.
We recall that it possesses a density given by

gγ(x) =
1

πγ

∞
∑

i=0

(−x)i−1

i!
Γ(γi+ 1) sin(πγi), x > 0

and its entire positive moments are equal to n!/Γ(γn + 1), ∀n ≥ 1 (see e.g. [25, Section 0.3]). The Lévy
measure associated to B has a density given for x > 0 by

π(x) =
|α| exp(−|α|x/γ)

Γ(1 − γ)(1 − exp(−|α|x/γ))γ+1
.

Using formula (5) and the following discussion in [6], we get that I
d
∼ τ−γ

γ and R
d
∼ e(1)γ .

Ex.3. b(u) = |α|γ2 ((1 − γ)Γ(2 − γ))
−1
u

γ|α|
1−γ−2(1 − u|α|/(1−γ))−γ−1; 0 < γ < 1;α < 0.
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• β = γ

• ϕ(t) ∼ (1 − γ)−1|α|
γ

γ−1 t
1

1−γ as t→ ∞

• I
d
∼ e(1)1−γ

• m1(t) = exp(−t1/(1−γ)), t ≥ 0

• R
d
∼ τγ−1

1−γ

• µ∞(x) = |α|x|α|−2g1−γ(x|α|), x > 0,

where g1−γ is the Mittag-Leffler density given in the previous example. Note the duality with this previous
example. In the present example,

π(x) =
|α|γ2 exp(|α|x/(1 − γ))

(1 − γ)Γ(2 − γ)(exp(|α|x/(1 − γ)) − 1)1+γ
, x > 0,

and we again refer to the formula (5) and the following discussion in [6] to get the distributions of I and R.

Ex.4. b(u) = |α|Γ(2 + α)−1u|α|−2(1 − u)α−1; −1 < α < 0.

• β = |α|

• ϕ(t) ∼
(

t
1+α

)
1

1−|α|

as t→ ∞

• I/(1 +α) is a size-biased version of the Mittag-Leffler distribution with parameter |α|, i.e. for all test
functions f

E[f(I)] =
E

[

f
(

(1 + α)τ
−|α|
|α|

)

τ
−|α|
|α|

]

E

[

τ
−|α|
|α|

]

• m1(t) = Γ(|α| + 1)
∫∞

t/(1+α)
xg|α|(x)dx, t > 0

• ((1 + α)R)
1/|α| d

∼ Γ(|α|, 1)

• µ∞(x) = (1+α)
Γ(|α|)x

|α|−2 exp(−(1 + α)1/|α|x), x > 0.

Indeed, here

π(x) =
|α| exp(x)

Γ(2 + α)(exp(x) − 1)1−α
, x > 0.

Following the end of the proof of Lemma 4 of Miermont [24], we get that I has its moment of order k equal
to

k!(1 + α)kΓ(|α|)

Γ ((k + 1)|α|)
,

for all k ∈ N. Hence

E[Rk] =
k!

E[Ik]
=

Γ ((k + 1)|α|)

(1 + α)kΓ(|α|)
=

1

(1 + α)kΓ(|α|)

∫ ∞

0

x(k+1)|α|−1 exp(−x)dx.

Remark. Note that the Examples 2, 3 and 4 give, for all 0 < γ < 1,

- if b(u) = u−1(1 − u)−γ−1 and α = −γ,

xµ∞(dx)
d
∼ c1(γ)e(1)

- if b(u) = uγ−2(1 − u)−γ−1 and α = γ − 1,

xµ∞(dx)
d
∼ c2(γ)τ

−1
1−γ ,
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- if b(u) = uγ−2(1 − u)−γ−1 and α = −γ,

xµ∞(dx)
d
∼ c3(γ)Γ(γ, 1)

where c1(γ), c2(γ) and c3(γ) are reals that depend on γ. Hence, both α and the behavior of b near 0 play a
significant role on the shape of the limit measure µ∞.

Last we turn to the case where B is a Dirac measure.

Ex.5. B = a−1δa for some a ∈]0, 1[; α < 0.

• β = 0

• ϕ(t) ∼ t as t→ ∞

• I has a density k on ]0,∞[ given by

k(x) =
∑

i≥0

exp (α ln(a)i− x exp(α ln(a)i))
∏

p6=i

(1 − exp(α ln(a)(i− p)))
−1

• m1(t) =
∫∞

t
k(x)dx, t ≥ 0

In this case, Π = δ− ln(a), i.e. the associated subordinator is a Poisson process. We then refer to [9, Prop. 6.5
(ii)] for the expression of the density k. Note that φ(t) = (1−at) for all t ≥ 0, hence E[Rn] =

∏n
i=1(1−(|α|a)i)

for all n ≥ 1.

7 Appendix: Existence and uniqueness of solutions

This appendix is devoted to the proof of Theorem 1.3 on existence and uniqueness of solutions to the
fragmentation equation (2). So in this section, α ∈ R. The proof follows the main lines of that of Theorem 1
in [17], which states existence and uniqueness of solutions to a slightly restricted form of the fragmentation
equation (2), and which was concentrated on solutions starting from µ0 = δ1. We note that it was implicit
in the statement of this theorem that a solution should satisfy assumptions (4) and (5).

Let ξ denotes a subordinator with Lévy measure Π and zero drift, such that ξ0 = 0. We recall that
its semigroup possesses the Feller property and that the domain of its infinitesimal generator contains at
least all functions f that are continuously differentiable on R and such that f and f ′ tend to 0 at infinity.
See e.g. Chapter 1 of [2]. As a consequence, the domain of the infinitesimal generator of exp(−ξ) contains
continuously differentiable functions f on ]0,∞[ with compact support.

One can easily checked that when f :]0,∞[→ R is bounded and continuous, the function

x→ E
[

f(x exp(−ξρ(xαt)))
]

is also bounded and continuous on ]0,∞[. This mainly relies on the càdlàg and quasi-left-continuity ([2,
Prop.7, Chapter 1]) of subordinators.

Now, for every 0 < a < b, let Ca,b be the set of continuous functions f :]0, b] → R that are null on ]0, a],
and C1

a,b be the set of continuously differentiable functions f :]0, b] → R that are null on ]0, a]. It is clear

from the remark above that for all 0 < a < b, the linear operators Tt and T̃t, t ≥ 0, defined by

Tt(f)(x) = E [f(x exp(−ξt))]

and
T̃t(f)(x) = E

[

f(x exp(−ξρ(xαt)))
]

send Ca,b into Ca,b. Following the proof of Theorem 1 of [17] (see also [20]), we see that both family of oper-
ators define strongly continuous contraction semigroups on Ca,b, and that the domains of their infinitesimal
generators are identical and contain C1

a,b. These generators are respectively given, for f ∈ C1
a,b and x ∈]0, b],

by

A(f)(x) =

∫ ∞

0

(f(x exp(−y)) − f(x)) Π(dy)
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and
Ã(f)(x) = xαA(f)(x).

Note that when B is a measure on ]0, 1[ defined from Π by (6), we have

Ã(f)(x) = xα

∫ 1

0

(f(xy) − f(x)) yB(dy).

Existence of solutions to (2). With the above remarks, and Kolmogorov’s backward equation (see
Prop.15, p.9 of [12]), we have that

T̃t(f)(x) = f(x) +

∫ t

0

T̃s(Ã(f))(x)ds, (43)

∀x ∈]0, b], ∀f ∈ C1
a,b, ∀0 < a < b, ∀b > 0. Otherwise said: let f :]0,∞[→ R be null near 0 and continuously

differentiable. Then, considering its restriction to ]0, b] and x ≤ b, we have that f and x satisfy (43).
Now, consider ν0, a probability measure on ]0,∞[, and set

< νt, g >:=< ν0, T̃t(g) >

for all bounded, measurable functions g on ]0,∞[. Note that for all t ≥ 0, νt(]0,∞[) ≤ 1 and νt(x ≥M) = 0
as soon as ν0(x ≥ M) = 0 for some M > 0. Then let f be some continuously differentiable function on
]0,∞[ with compact support. It is clear that Ã(f) is null near 0 and it is easy to see, using Fubini’s theorem,
that there exists some constants b, c > 0 such that |Ã(f)|(x) ≤ cxαΠ(ln(x/b)) for large enough x (here
Π(y) =

∫∞

y
Π(dx)). In particular, Ã(f) is bounded on ]0,∞[ when xαΠ(ln(x)) is bounded near ∞ (hence

when α ≤ 0). It is then clear that in such case we can apply Fubini’s theorem when integrating (43) with
respect to ν0 to get

< νt, f >=< ν0, f > +

∫ t

0

< νs, Ã(f) > ds.

This holds for all continuously differentiable functions f on ]0,∞[ with compact support. Therefore, defining
the measures µt on ]0,∞[ by < µt, g >:=< νt, g̃ >, where g denotes any test-function on ]0,∞[ and g̃(x) =
g(x)/x, x > 0, we have proved that (µt, t ≥ 0) is a solution to the fragmentation equation, as defined
in the Introduction. To sum up: provided that the function x → xαΠ(ln(x)) is bounded near ∞, for all
measure µ0 on ]0,∞[ such that

∫∞

0 xµ0(dx) = 1, there exists a solution constructed via subordinators to the
fragmentation equation.

When α > 0, the function x → xαΠ(ln(x)) may not be bounded near ∞. Another way to tackle the
problem in this case is to use the definition of ρ to get that

∫ ∞

0

∫ t

0

T̃s(|Ã(f)|(x)dsν0(dx) =

∫ ∞

0

E

[

∫ ρ(xαt)

0

|A(f)|(x exp(−ξu))du

]

ν0(dx),

the function f being still supposed continuously differentiable on ]0,∞[ with compact support. For such f ,
the function A(f) is bounded on ]0,∞[. Hence the double integral involved in the identity above is bounded
by a constant times

∫∞

0
E [ρ(xαt)] ν0(dx), which is finite as soon as

∫∞
ln(x)ν0(dx) <∞: indeed, according

to Proposition 2 of [6], for all x ≥ 0, E[ρ(x)] =
∫ x

0
E[exp(−sR)]ds, where R is a random variable with

distribution µR defined by (14). Let then I be a random variable defined by (13), independent of R, and
consider a real a such that P(I ≤ a) > 0. Using the factorization property (15), we get

E[ρ(x)]P(I ≤ a) =

∫ x

0

E[exp(−sR)1{I≤a}]ds ≤

∫ x

0

E[exp(−sa−1e(1))]ds = a ln(1 + a−1x).

It this then possible to apply Fubini’s theorem when integrating (43) with respect to ν0 and we conclude as
above to the existence of a solution to (2).

Uniqueness of solutions to (2). Let ν0 be a probability measure with support included in ]0, b] for some
b > 0 and suppose that (νt, t ≥ 0) is a family of measures with support included in ]0, b] such that

< νt, f >=< ν0, f > +

∫ t

0

< νs, Ã(f) > ds, ∀f ∈ ∪0<a<bC
1
a,b.
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Suppose moreover that νt(]0,∞[) ≤ 1, ∀t ≥ 0. Our goal is to prove that (νt, t ≥ 0) is uniquely determined.
Using that the total weight of νt is less or equal to 1, we get that supt≥0 < νt, |f | >< ∞ and supt≥0 <
νt, |A(f)| >< ∞ for each f ∈ ∪0<a<bC

1
a,b. It is then possible to follow the proof of Proposition 18, Sect.

4.9 of [12] to deduce that uniqueness holds provided that, for all λ > 0, (λid − Ã(f))(C1
a,b) is dense (for the

uniform norm) in Ca,b, for all 0 < a < b. Following the proof of Theorem 1 in [17], we see that C1
a,b is a core

for the strongly contraction semi-group T̃t : Ca,b → Ca,b, t ≥ 0. Hence the result.
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[12] S. N. Ethier and T. G. Kurtz. Markov processes. Wiley Series in Probability and Mathematical Statistics:
Probability and Mathematical Statistics. John Wiley & Sons Inc., New York, 1986.

[13] W. Feller. An introduction to probability theory and its applications. Vol. II. Second edition. John Wiley
& Sons Inc., New York, 1971.

[14] A. Filippov. On the distribution of the sizes of particles which undergo splitting. Theory Probab. Appl.,
6:275–294, 1961.

[15] N. Fournier and J.-S. Giet. On small particles in coagulation-fragmentation equations. J. Statist. Phys.,
111(5-6):1299–1329, 2003.

[16] N. Fournier and J.-S. Giet. Existence of densities for jumping stochastic differential equations. Stochastic
Process. Appl., 116(4):643–661, 2006.

[17] B. Haas. Loss of mass in deterministic and random fragmentations. Stochastic Process. Appl.,
106(2):245–277, 2003.

32



[18] B. Haas. Regularity of formation of dust in self-similar fragmentations. Ann. Inst. H. Poincaré Probab.
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