
HAL Id: hal-00341748
https://hal.science/hal-00341748

Submitted on 25 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cooperative Component-Based Software Deployment in
Wireless Ad Hoc Networks

Hervé Roussain, Frédéric Guidec

To cite this version:
Hervé Roussain, Frédéric Guidec. Cooperative Component-Based Software Deployment in Wireless
Ad Hoc Networks. CD’05, Nov 2005, Grenoble, France. pp.1-16. �hal-00341748�

https://hal.science/hal-00341748
https://hal.archives-ouvertes.fr


Cooperative Component-Based Software Deployment
in Wireless Ad Hoc Networks

Hervé Roussain and Frédéric Guidec

University of South Brittany, France
{Herve.Roussain|Frederic.Guidec}@univ-ubs.fr

Abstract. This paper presents a middleware platform we designed in order to al-
low the deployment of component-based software applications on mobile devices
(such as laptops or personal digital assistants) capable ofad hoc communication.
This platform makes it possible to disseminate components based on peer-to-peer
interactions between neighboring devices, without relying on any kind of infras-
tructure network. It implements a cooperative deployment scheme. Each device
runs a deployment manager, which maintains a local component repository, and
which strives to fill this repository with software components it is missing in
order to satisfy the deployment requests expressed by the user. To achieve this
goal the deployment manager continuously interacts in the background with peer
managers located on neighboring devices, providing its neighbors with copies of
software components it owns locally, while obtaining itself from these neighbors
copies of the components it is looking for.

1 Introduction

The number and variety of lightweight mobile devices capable of wireless communica-
tion is growing significantly. Such devices include laptops, tablet PCs, personal digital
assistants (PDAs), many of which are now shipped with built-in IEEE 802.11 (a.k.a.
Wi-Fi [1]) network interfaces. With such interfaces, the devices can occasionally be
connected to an infrastructure network, using so-called access points that play the role
of gateways. But the 802.11 standard also makes it possible for mobile devices to com-
municate directly in ad hoc mode, that is, without relying onany kind of infrastructure
network. An ad hoc network is thus a network that can appear and evolve spontaneously
as mobile devices themselves appear, move and disappear dynamically in and from the
network [9].

For the users of laptops or PDAs, the prospect of deploying software applications
on these devices as and when needed obviously appears as an attractive one, no matter
if these devices communicate in infrastructure or in ad hoc mode. Yet, solutions for
component-based software deployment have been proposed mostly for infrastructure-
based environments so far, while very little effort has beendevoted to software deploy-
ment in purely ad hoc networks.

In this paper we describe a model we devised in order to allow the deployment
of component-based software applications on mobile devices participating in an ad
hoc network. In Section 2 we motivate our approach by showinghow infrastructure-
based networks and ad hoc networks constitute radically different environments as far
as software deployment is concerned, and we show that solutions that prove efficient



in infrastructure environments are hardly applicable in adhoc environments. In Sec-
tion 3 we present CODEWAN (COmponent DEployment in Wireless Ad hoc Networks),
a middleware platform that implements our model. The main characteristics of this plat-
form are discussed in Section 4, which also lists some directions we plan to work along
in the future. In Section 5 we compare CODEWAN with other works that also address
the problem of software deployment, either in infrastructure environments, or in ad hoc
environments. Section 6 concludes the paper.

2 Motivations

In this section we show that deploying software components in an ad hoc network raises
issues that usually do not appear in infrastructure networks. As a reminder, we first
describe how software component provision and delivery arecommonly performed in
an infrastructure-based environment. We then show that an ad hoc network presents
additional constraints that need to be addressed specifically.

2.1 Software deployment in an infrastructure network

Figure 1 illustrates a typical infrastructure network, including stable and mobile hosts—
typically, workstations and laptops—interconnected through gateways (such as routers
and switches). In such an environment some of the stable hosts can be in charge of
storing components in so-calledcomponent repositories, and of implementing server
programs capable of delivering these components on demand.Other hosts in the net-
work can then behave as simple clients with respect to these servers. Whenever the
owner—or the administrator—of one of the client hosts initiates the deployment of a
new component-based software application on this device, the problem mostly comes
down to locating the server—or servers—capable of providing the components required
by this application, and downloading these components so they can be installed locally.

Fig. 1. Illustration of software component deployment in an infrastructure network

Consider the example shown in Figure 1, and assume that the owner of deviceA
decides to initiate the installation on this device of an application that requires compo-
nentsc1, c2andc3. The deployment middleware running on deviceA must first identify



one or several servers capable of delivering these components. A component may ac-
tually be provided by several servers, for example in order to balance the workload in
the network, or to allow fault tolerance. In any case, once a client has identified a server
that can provide a component, obtaining this component simply requires its download
between the server and the client. Note that in such a contextthe deployment of a com-
ponent on a given host can usually be considered as a “real time” operation: once a user
has ordered the deployment middleware to locate and download a component, this oper-
ation can usually be performed immediately. In the remaining of this section, we show
that deploying components in an ad hoc environment can in contrast require a more
lengthy process, which requires some middleware capable ofenforcing a deployment
strategy in the background on behalf of the user.

2.2 Software deployment in a dynamic ad hoc network

Figure 2 shows a typical dynamic ad hoc network, which consists of a collection of
portable communicating devices. The devices in such a network are usually highly mo-
bile and volatile. Device mobility results from the fact that each device is carried by
a user, and users themselves move quite a lot. Device volatility is the consequence of
the fact that, since the devices usually have a limited power-budget, they are frequently
switched on and off by their owners.

Fig. 2. Illustration of software component deployment in a dynamicad hoc network

A major characteristic of wireless ad hoc networks is that communication interfaces
have a limited transmission range. Consequently any devicecan only communicate
directly with neighboring devices. Multi-hop transmissions can sometimes be obtained
by implementing a dynamic routing algorithm on each device [10,12], but it is worth
observing that even with dynamic routing, a realistic ad hocnetwork often presents
itself as a fragmented network. Such a network appears as a—possibly changing—
collection of so-called “islands” (also referred to as “clouds” or “cells” in the literature).
Mobile devices that belong to the same island can communicate together, using either



multi-hop or single-hop transmissions depending on whether dynamic routing is used or
not in the network. However, devices that belong to distinctislands cannot communicate
together, because no transmission is possible between islands.

In such a context, a traditional client-server deployment scheme such as that illus-
trated in Section 2.1 is hardly applicable, as no device is stable and accessible enough
to play the role of a server of components, maintaining a component repository and
allowing client devices to access this repository wheneverneeded.

In the remainder of this paper, we present a model we propose in order to allow for
these constraints. Basically, instead of being able to access a server whenever needed,
each device must maintain a local component repository. A peer-to-peer interaction
model then makes it possible for a device to cooperate with its neighborhood, by al-
lowing its neighbors to obtain copies of the software components available on its local
repository, while itself benefiting from a similar service offered by its neighbors.

Consider the example shown in Figure 2, and assume again thatthe owner of de-
vice A wishes to install on this device an application that requires componentsc1, c2
and c3. In our example,A can obtain componentsc1 and c2 from deviceB. But as
devicesC andE—that both own a copy of componentc3—are (possibly temporarily)
unreachable,A cannot obtain a copy of componentc3 from any of these devices. YetA
could obtain componentc3 from deviceC if this device was switched on by its user. It
could also obtain this component from deviceE if A’s user happened to walk towards
E, or if E’s user happened to walk towardA. A roaming device such asD may even
serve as a benevolent carrier betweenE andA, transporting component c3—and possi-
bly other components as well—between separate islands, andthus contributing to the
dissemination of software components and applications allover the network.

This example shows that when the owner of a mobile device participating in an ad
hoc network requests the deployment of a component-based application on this device,
there is no guarantee that this request can be satisfied immediately, as there is no guar-
antee that the components required for this deployment are readily accessible in the
neighborhood. Yet, since the topology of an ad hoc network can change continuously
and unpredictably as devices move and are switched on or off,the fact that a given
component cannot be obtained at a given time does not involvethat this component will
remain inaccessible in the future. There is thus a need for some deployment middleware
capable of ensuring the collection of missing components inthe background in order to
satisfy the user’s needs.

3 Towards software component deployment on mobile devices

In this section, we present an overview of CODEWAN (COmponent DEployment in
Wireless Ad hoc Networks), a platform we designed in order to support the deployment
of component-based software applications on mobile devices communicating in ad hoc
mode. CODEWAN implements a cooperative model, where neighboring devicesinter-
act in order to discover and exchange software components. Each device implements a
local component repository, and a deployment manager is responsible for maintaining
this repository on behalf of the user. Any component stored in the repository can be
used to assemble and start an application locally. Copies ofthis component can also be
sent on demand to neighboring devices.



3.1 Overview of the CODEWAN platform

The platform is built as a three-layer model, as shown in Figure 3. The upper and lower
layers in this model have been described in details in [7] and[3] respectively. They
are thus only described briefly below, and the paper then continues with a detailed
description of the model’s central layer, which implementsthe component repository
and the deployment manager that maintains this repository.

Fig. 3. Overview of the CODEWAN platform and screenshot of its GUI on a PDA

The upper layer in the platform is meant to provide a framework for assembling
and running applications. Instead of defining its own component-model, CODEWAN

was designed so as to rely on existing execution frameworks for component-oriented or
service-oriented applications. In its current implementation it interfaces with JAMUS,
a runtime framework that is primarily dedicated to hosting potentially malicious mo-
bile applications [7], as well as with JULIA , an execution framework for applications
designed using the Fractal component model [19].

The lower layer in our model was designed in order to support the asynchronous
dissemination of so-calledtransfer documentsin an ad hoc network. A transfer docu-
ment is an XML document whose external element’s attributesspecify the conditions
required for disseminating the document in the network. These attributes thus play ap-
proximately the same role as header fields in IP packets or in UDP datagrams. They in-
dicate typically the document’s source and destination, the expected propagation scope
for this document, etc.

The “payload” of a transfer document consists of the internal XML elements that
are embedded in the document. Any kind of structured information can be transported
in a transfer document. In CODEWAN, though, transfer documents are used to transport
software package descriptors in the network.

Figure 4 shows a typical transfer document. Attributes in this document indicate
that it was sent by deviceshiva, and that it was addressed to any device in the neigh-
borhood (notice that the communication layer CODEWAN relies on supports the use
of wildcard addresses). The payload in this transfer document consists of a package
descriptor, whose role and structure are detailed in Section 3.3.



< t rans fe r−document
document−i d = " fb54356fe468d9 "
source= " dev i ce : sh i va " d e s t i n a t i o n= " dev ice: ∗ "
hops−to−l i v e = " 3 " l i f e t i m e = " 01 :00:00 "
serv ice−type= " package−advert isement ">
<package−d e s c r i p t o r>

<general−i n f o rma t i on
type= " a p p l i c a t i o n / java " category = " communication / messaging "
name= " JMessager " vers ion = " 1.3 "
prov i de r= " Laborato i re V a l o r i a "
summary= " JMessager i s a P2P messager " / >

<java−a p p l i c a t i o n name= "masc . jmessager . JMessagerImpl " / >
<dependencies >

<requ i red−package name= " JMessengerUI " vers ion = " 1.2 " / >
<requ i red−package name= " P2PAsyncDissemination" / >
<op t i ona l−package name= " AddressBook " vers ion = " 2.0 " / >

< / dependencies >
< / package−d e s c r i p t o r>

< / t rans fe r−document>

Fig. 4.Example of an XML transfer document carrying a software package descriptor.

The communication layer in CODEWAN provides services for encapsulating trans-
fer documents in UDP datagrams. Large XML documents can be fragmented and then
transported in distinct, smaller transfer documents that each can fit in a single UDP
datagram. The communication layer of course supports the re-assembly of such frag-
ments after they have been received from the network. Documents can be transferred
either in unicast, broadcast, or multicast mode, and using either single-hop or multi-
hop transmissions. In the latter case, all mobile devices inthe network are expected
to behave as routers, using algorithms for dynamic routing and flooding such as those
described in [12,11,13].

Further details about CODEWAN’s communication layer can be found in [3]. In the
remainder of this paper we focus on the description of the central layer of the platform.
The deployment manager is implemented in this layer, together with the component
repository this manager is in charge of maintaining. The repository is a place where
software components can be stored locally on a mobile device. Components stored in
this repository are thus readily available for the execution framework that constitutes
the upper layer of the platform. The deployment manager takes orders from the user,
and interacts with peer managers that reside on neighboringdevices in order to fill the
local repository with components required by the user, while providing its peers with
components they need in order to satisfy their own users.

3.2 Installation steps in CODEWAN

The deployment manager can provide the user with information about all the applica-
tions it knows about. At any time a given application is either:

– installed locally(meaning that this application is either already running inthe local
execution framework, or ready to be loaded and started in this framework);

– installable(meaning that all the components required for running this application
are available in the local repository, so the application could be installed immedi-
ately if the user requested it);



– not installable yet(meaning that some of the components required by this applica-
tion are not present in the local repository).

Besides observing the status of each application, the user can modify this status, re-
questing for example that an application be started (which implies that this application
be already installed locally), or that an application be uninstalled (and all its compo-
nents removed from the repository). Additionally the user can initiate the deployment
of an application, thus instructing the deployment managerto try to obtain any missing
component for this application from neighboring devices.

CODEWAN implements a basic user interface that can run in console mode. Ad-
ditionally, graphical interfaces have been designed in order to facilitate the interaction
between the user and the deployment manager running on a mobile device. For example
Figure 3 shows an interface that was designed specifically for personal digital assistants.

3.3 Software components, applications, and packages

The deployment of component-based applications implies that components be trans-
mitted in the network, and stored in local repositories. Before they can be loaded and
executed in a runtime framework, software components are encapsulated in so-called
software packages, that can be considered as storage and transfer envelopes for these
components. Besides encapsulating the actual code of the components, software pack-
ages can additionally encapsulate some data required by a software component or ap-
plication. They can also encapsulate documents describingthe overall architecture of a
component-based application (such as CCM component assemblies [8], or architecture
descriptors in the Fractal model [19]).

Package descriptorsEach software package in CODEWAN is associated with a pack-
age descriptor. This descriptor provides information about the package’s identity, its
content, its category, etc. It can be embedded in the packageitself, but it can also be
processed separately. For example, the transfer document shown in Figure 4 encapsu-
lates a package descriptor as its payload. In a typical scenario such a document could
be broadcast by a device in order to inform its neighbors about a software package that
is available in its local repository.

The package descriptor shown in Figure 4 actually describesthe main component
of a Java messaging application (as specified by attributetype in the descriptor). It
provides general information about the application, such as its name, version number,
provider, etc. It also indicates that in order to be assembled the application requires com-
ponents that can themselves be found in three other softwarepackages. Two of these
packages are absolutely needed for assembling the application, while the third one can
be used optionally in order to improve the functionality of the application. This exam-
ple shows that when the components encapsulated in a particular package depend on
components that are encapsulated in other packages, this information is mentioned ex-
plicitly in package descriptors. Dependencies between packages can also appear when a
package contains only the description of the architecture of an application, while other
packages encapsulate components that are required for assembling this application, or
data that are needed for running this application.



Software packagesAs mentioned above, software packages can encapsulate software
components, as well as plain data or application architecture descriptions. A software
package usually encapsulates its own descriptor, but this descriptor can also be extracted
from the package and processed separately whenever needed.

In the current implementation of the CODEWAN platform, application data and the
code of software components are encoded using the Base64 standard. The result of this
encoding is then encapsulated as CDATA information in an XMLdocument.

3.4 Main functionalities of the deployment manager

The deployment manager running on a mobile device is notablyresponsible for main-
taining a local component repository on this device, while interacting with peer man-
agers located on neighboring devices. Among other things the deployment manager
can:

1. decide what packages and package descriptors should be stored in the local repos-
itory and, if necessary, what packages and descriptors should be removed from this
repository;
Notice that since mobile devices are usually resource-constrained, the deployment
manager might sometimes have to reclaim the space occupied by unused, yet po-
tentially interesting packages.

2. announce to its neighbors what packages are available locally, thus indicating that
these packages can be delivered on demand;
Announcing the availability of a package is performed by broadcasting a transfer
document that encapsulates the descriptor of this package,as shown in Figure 4.
Such an announcement can be broadcast periodically, or whena new device appears
in the neighborhood. It can also be broadcast after a requesthas been received from
a neighbor, as described in the next three items.

3. search the neighborhood for specific packages, or for packages that satisfy precise
criteria;
Package searching is performed by broadcasting a transfer document that encapsu-
lates a “request for descriptors”. Such a request compares with a standard package
descriptor, except that each attribute in the request defines a regular expression. Any
deployment manager receiving a request can thus match this request against the de-
scriptors of the packages stored on its local repository. Ifone or several of these
descriptors match the request, then the deployment manageranswers this request
by announcing the availability of the matching packages, asdescribed in item 2.

4. discover what packages are available in the neighborhood;
This is performed by broadcasting a “request for descriptors” as explained in the
former item, except that this request is not selective at all: it actually calls for the
announcement of all the packages available in the neighborhood.

5. ask a neighbor for the transmission of one—or several—particular package(s);
This is performed by sending the targeted neighbor a “request for packages”, which
is similar to a “request for descriptors” except that the neighbor is expected to return
the desired packages, rather than simply announce that it owns these packages. The
actual transmission of software packages can be performed either in unicast, multi-
cast, or broadcast mode, depending on the configuration of the sending deployment
manager.



6. receive packages from a neighbor, and decide for each package if it should be stored
on the local repository.
The deployment manager can be expected to accept and store packages it has itself
requested before. But since packages can sometimes be broadcast—as explained
above—the deployment manager may also receive packages it has never requested.
In such a case the deployment manager can be configured so as toimplement a
hoarding policy, storing packages that may prove interesting in the future.

The basic operations mentioned in the above list make it possible to devise and imple-
ment a number of different strategies for cooperative component deployment. Actually,
while designing the CODEWAN platform we intentionally defined a comprehensive set
of functionalities so as to allow a large number of interaction patterns between neigh-
boring deployment managers. Several alternative deployment strategies can thus be im-
plemented based on these functionalities. Part of our current work is now devoted to
devising such strategies, and observing how they perform inrealistic conditions.

Although a large number of deployment scenarios can be considered, the next sec-
tion describes the major steps these scenarios can be based on.

3.5 Major steps in a deployment scenario

Learning about new applications At any time the deployment manager running on a
mobile device maintains in the local repository a collection of application descriptors.
As explained in Section 3.2 some of these descriptors correspond to applications that
are not installable yet, meaning that some of the packages required for assembling these
applications are not available locally. The deployment manager can thus “know” about
the existence of an application (because it owns a descriptor of this application), even
though this application is not yet installed locally.

A basic approach for a deployment manager to learn about new applications is sim-
ply to listen to the network in order to collect transfer documents that contain applica-
tion descriptors, while broadcasting itself the descriptors of the applications stored in
its repository. Neighboring deployment managers thus spontaneously inform each other
about existing applications.

Initiation of a new application deployment In order to initiate the deployment of a
new application on a mobile device, the user can rely on the interface of the deployment
manager, and select with this interface an application thatis not installed yet. This
scenario however implies that the local deployment managermust already know about
the existence of this application.

Alternatively a user may know about an application the deployment manager itself
has never heard about. In such a case the user can inform the deployment manager about
the name of this application, and the deployment manager will then start looking for the
corresponding descriptor in the neighborhood.

Identification of missing packagesOnce the descriptor of the desired application is
available, the deployment manager can examine the dependencies described in this de-
scriptor in order to determine what other packages are needed for assembling this ap-
plication.



Remember that several applications may be assembled out of the same set of compo-
nents. The packages needed to assemble a new application maythus be already available
locally, as they may have been collected before in order to assemble and start another
application. Note also that the deployment manager may implement a hoarding policy,
storing unused packages “just in case” in the local repository. Consequently, in the best
circumstances, when determining what packages are needed for assembling an applica-
tion the deployment manager may actually discover that all these packages are already
present in the local repository. In such a case the deployment of the application can be
considered as complete.

In most cases, though, when the user asks for the deployment of a new application
the deployment manager is likely to discover that a number ofrequired packages are
missing in the local repository. For each application whosedeployment is in progress
the deployment manager maintains a list of desired packages(some kind of a “shopping
list”, actually). Once the packages required for a given application have been identified,
their identity is appended to the corresponding “shopping list”.

The deployment manager runs a background process that aims at collecting any
package whose identity appears in at least one of the “shopping lists” it maintains.

Search for missing packagesSearching for packages is a proactive operation that
consists in broadcasting “requests for descriptors”. Thisoperation can be performed
either periodically, or it can be triggered by an event, suchas the detection of a new
device in the neighborhood.

A request is a transfer document that contains a list of desired packages. Neighbor-
ing devices that own some of these packages are expected to reply by announcing the
availability of these packages.

Note that since announcements are broadcast in the network,a deployment manager
can sometimes discover passively that a number of packages it is looking for are avail-
able in the neighborhood. Packages can thus be located simply by listening to broadcast
announcements. CODEWAN makes it possible to combine both forms of package dis-
covery (proactive and reactive) in a single deployment strategy.

Download of missing packagesWhenever the deployment manager discovers that
some of the packages it is looking for are available on a neighbor device, it can react by
sending a “request for packages”, thus asking that the desired packages be transmitted
in the network.

After receiving one of the packages it has requested, the deployment manager stores
this package in the local repository, and removes its name from its “shopping lists”.
The descriptor of the package must also be analyzed in order to check if this package
depends on other packages that are not available locally. Ifso, then these packages
must also be considered as requested packages, and their names be appended to the
deployment manager’s “shopping lists”.

Completion or termination of an application’s deployment The deployment of an
application is complete when the corresponding “shopping list” is empty, which means
that all the packages required for assembling this application have been collected and



are now available in the local repository. The application can then be considered as
installable, and be presented as such to the user through theuser interface.

The user can also decide to cancel the deployment of a particular application at any
time. In that case the “shopping list” maintained by the deployment manager for this
application is discarded, and the packages that have already been collected and stored
in the local repository are marked as unused (unless they areindeed used by another
locally installed application, and unless their names appear in another local “shopping
list”). Unused packages can be maintained by the deploymentmanager in the local
repository as long as there remains enough space to receive and store other desired
packages. Otherwise the deployment manager is entitled to remove unused packages
whenever there is a need to free storage space in the repository.

4 Discussion and future work

4.1 Efficiency considerations

The model we propose for cooperative software deployment onmobile devices is inher-
ently a probabilistic one. Indeed, when a user requests thata given application be de-
ployed on a mobile device, there is no absolute guarantee that the deployment manager
on this device will ever manage to collect the required packages. It is worth mentioning
that this lack of guarantee is a consequence of the characteristics inherent to dynamic
ad hoc networking, rather than a limitation of the model itself. However the model can
be adapted in order to account for these constraints.

For example, in order to increase the chance that the requests of the user can be
satisfied, the deployment manager in the CODEWAN platform was designed so as to
exhibit a persistent behavior. Whenever it cannot obtain a number of packages from its
current set of neighbors, the deployment manager simply persists and tries to obtain
these packages later, after its neighborhood has changed. Device mobility and volatility
thus become advantages in this process, as the neighborhoodof a device is not limited
to a fixed set of neighbors. Whenever a package cannot be foundat a given time in the
neighborhood, there is always a chance that it can be found inthe future.

The actual efficiency of our model in realistic conditions depends on a large num-
ber of factors, such as the geographical distribution of mobile devices, their speed, the
frequency at which devices are switched on and off by their users, data transmission
rates, the amount of storage space available in each device’s local repository, the size
of software packages, the number of packages required to assemble an application, etc.
Work is now in progress in order to evaluate the average efficiency of our model in
different conditions, based on simulations, and based on actual experimentation with
CODEWAN-enabled mobile devices.

4.2 Towards adaptive software deployment

In the current implementation of the CODEWAN platform, the deployment manager
running on a mobile device must be configured manually by the user of this device.
For example it can be configured so as to announce periodically the packages it owns
locally, and to broadcast periodically a request indicating the packages it is looking for.



In both cases, though, the user is responsible for choosing the appropriate periodicity
for these transmissions.

The user must likewise determine how much storage space mustbe assigned to the
local repository (which can be implemented either in memoryor in the filesystem), and
whether the deployment manager should implement a hoardingpolicy (storing in its
local repository any package it receives from the network, even if this package is not
mentioned in a local “shopping list”).

Future work will notably focus on the development of a strategy manager capable
of adjusting the behavior of a deployment manager transparently and continuously on
behalf of the user. For example the periodicity for announcing local packages and re-
questing desired packages could be adjusted dynamically based on the mobility of a
device, on observations of its neighborhood, or on internalevents (such as the local
device being suspended or resumed). The hoarding policy implemented by a deploy-
ment manager may likewise be guided by statistics about the requests received from the
neighborhood: a deployment manager that frequently receives requests for a package it
does not own locally may decide to try to collect this packageso as to help multiply its
copies—and thus its overall availability—in the ad hoc network.

4.3 Security considerations

The approach we propose for deploying software applications on mobile devices re-
lies on the assumption that the owners of these devices may find it convenient to share
software components with each other using ad hoc communication. This approach ob-
viously raises a number of legitimate concerns regarding security, as the owner of a
mobile device may for example be reluctant to run on this device pieces of software
obtained from unidentified sources. We believe that this problem may be solved satis-
factorily by using digital signatures so as to ascertain theorigin of a software compo-
nent, as well as ciphering in order to limit the use of a given component to a particular
community of users. These are directions we plan to investigate in the near future.

4.4 Compatibility with standard component models and frameworks

CODEWAN is not strongly dependent on a specific execution framework,or on a partic-
ular component model. Actually the focus in this platform isput on the dissemination
of software components rather than on the assembly and execution of component-based
applications per se. In our opinion CODEWAN should quite easily accommodate almost
any component model and any execution framework. The only condition is that com-
ponents in the model considered can be transmitted and stored in packages, and that the
execution framework can be adapted so as to take components from the local repository
maintained by the platform’s deployment manager, rather than from a legacy repository.

CODEWAN currently interfaces with two execution frameworks calledJAMUS and
JULIA . JAMUS is a security-oriented execution framework we designed, which pro-
vides a resource-constrained environment for untrusted Java applications [7]. JULIA is
a framework that implements the Fractal component model [19]. Ongoing work aims
at interfacing CODEWAN with OSCAR, a service-oriented framework for OSGibun-
dles[4].



5 Related work

Java Web Start [16] and Apache Maven [17] both support the deployment and the update
of Java-based application programs. They are primarily meant to be used on stable, fully
connected, infrastructure networks, though. They rely on aclient-server model: a server
(or a collection of servers in Maven) maintains a repositorywhere applications can be
stored, and clients can download new applications—or new versions of applications
they have already downloaded—from this server.

A number of papers have proposed to apply the client-server model for software
deployment in ad hoc networks. For example, JDRUMS [2] implements a content de-
livery system for software components. It relies on dedicated devices that host server
programs called “JSTOREs”. These server programs must register with a JINI lookup
service in order to be located by the devices on which some software is to be deployed.
Although mobile, pervasive devices are targeted in this work, the JSTOREs and the
lookup service are assumed to be stable at any time, and available whenever needed.

As explained in Section 2 we believe that the traditional client-server model is
hardly applicable for deploying and updating software in anautonomous ad hoc net-
work, although it usually performs most satisfactorily in an infrastructure network. As
an alternative to the client-server model we propose to relyon cooperative, peer-to-peer
interactions between neighboring mobile devices. To our knowledge, this approach has
not really been investigated so far, although cooperative software deployment has been
considered in infrastructure-based environments, and proposals have been made to sup-
port code mobility or information dissemination in ad hoc networks.

SoftwareDock is a framework for distributed software deployment that uses mobile
agents to support the transfer of software applications between so-called producers and
consumers [5]. This approach thus compares with the client-server model. Moreover
SoftwareDock is primarily meant to be used in infrastructure networks, as the prime
motivation in this work is to allow load balancing and fault tolerance between software
producers. Tacoma [15] is another system that relies on mobile agents to deploy com-
ponents. Like SoftwareDock, though, it does not specifically address the problem of
component deployment in ad hoc networks.

CORBA-LC defines the notion of CORBA Lightweight Component, and a number
of design and implementation requirements for deploying such components are iden-
tified in [14]. This paper notably suggests that components should be deployed using
a “peer network” model, where the whole network acts as a repository for managing
and assigning resources (including components). However,although [14] observes that
spurious node failures and node disconnections should be supported, our understanding
of this paper is that it too considers the deployment of components in a quasi-stable,
infrastructure-based environment.

Component deployment in ad hoc networks is specifically addressed in [6], which
describes a framework for service-oriented computing. Thecomponents considered in
this framework are actually proxy components, which must bedeployed locally in order
to allow local clients to access remote services. Service directories and implementation
repositories are constructed and maintained using a distributed approach that implies
the opportunistic collaboration of neighboring hosts in the ad hoc network.

SATIN provides support for component-based, self organized systems on mobile
devices [18]. It supports the storage and the execution of components on a device, as



well as component advertisement, discovery and transfer between devices. SATIN is
meant to serve as a generic platform that offers self organization through logical mobil-
ity and componentization. As such it does not readily compare with CODEWAN, which
addresses specifically the problem of software deployment on mobile devices. Yet we
believe that SATIN could serve as a framework for developing a deployment system sim-
ilar to CODEWAN. This system would be dedicated to SATIN components, though (as
SATIN defines its own component model), just like CORBA-LC only considers the de-
ployment of CORBA components. In contrast CODEWAN is somehow more versatile.
It processes software packages (that can encapsulate any kind of components) rather
than the components themselves, and it delegates the problems of locally assembling
and running components to an associate execution framework.

6 Conclusion

In this paper we presented the CODEWAN platform, which is dedicated to the deploy-
ment of component-based software applications on mobile devices participating in an
ad hoc network. CODEWAN implements a peer-to-peer, cooperative model for software
deployment. With this model, each mobile device maintains alocal repository that can
host a number of software components. The components storedin this repository are
available for the execution framework that constitutes theupper layer of the platform.
Neighboring devices can also exchange copies of the software components they own
based on a peer-to-peer interaction scheme. A deployment manager is responsible for
maintaining the local repository on a device, for interacting with peer deployment man-
agers that run on neighbor devices, and for collecting software components in order to
satisfy the requests of the owner of the local device.

The CODEWAN platform was implemented in Java and is now fully operational.
It currently interfaces with the execution frameworks JAMUS and JULIA , and it thus
supports the deployment and the execution of untrusted Javaapplications [7], as well
as that of applications designed using the Fractal component model [19]. CODEWAN

should also be able to support the deployment of OSGi bundlesin the near future, using
the service-oriented framework OSCAR [4].

Ongoing work implies using this platform in realistic conditions in order to assess
its efficiency, and in order to compare the results obtained with alternative deployment
scenarios. Future work should aim at augmenting the platform’s functionality, for ex-
ample by integrating support for digitally signed and encrypted software components.

Acknowledgements

This work is supported by the “Conseil Régional de Bretagne”under contract
B/1042/2002/012/MASC.

References

1. Information Technology, Telecommunications and Information Exchange between Systems,
Local and Metropolitan Area Networks, Specific Requirements Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications. ANSI/IEEE Std
802.11, 1999.



2. Jesper Andersson. A Deployment System for Pervasive Computing. In Proceedings of the
International Conference on Software Maintenance (ICSM’2000), pages 262–270, San Jose,
October 2000.

3. Frédéric Guidec and Hervé Roussain. Asynchronous Document Dissemination in Dynamic
Ad Hoc Networks. InSecond International Symposium on Parallel and Distributed Process-
ing and Applications (ISPA’04), pages 44–48, Hong-Kong, China, December 2004.

4. Richard S. Hall and Humberto Cervantes. An OSGi Implementation and Experience Report.
In IEEE Consumer Communications and Networking Conference, Las-Vegas, USA, January
2004.

5. Richard S. Hall, Dennis Heimbigner, and Alexander L. Wolf. A Cooperative Approach to
Support Software Deployment Using the Software Dock. InInternational Conference on
Software Engineering, pages 174–183, 1999.

6. Radu Handorean, Rohan Sen, Gregory Hackmann, and Gruia-Catalin Roman. A Compo-
nent Deployment Mechanism Supporting Service Oriented Computing in Ad Hoc Networks.
Technical Report WUCSE-04-02, Washington University, Department of Computer Science,
St. Louis, Missouri, 2004.

7. Nicolas Le Sommer and Frédéric Guidec. JAMUS: Java Accommodation of Mobile Un-
trusted Software. In4th Nord EurOpen/Usenix Conference (NordU 2002), Helsinki, Finland,
February 2002. Best Paper.

8. OMG. Corba components, version 3.0, June 2002.
9. Charles Perkins.Ad Hoc Networking, pages 2–3. Addison-Wesley, 2001.

10. Pavel Poupyrev, Masakatsu Kosuga, and Peter Davis. Analysis of Wireless Message Broad-
cast in Large Ad Hoc Networks of PDAs. InProceedings of the Fourth IEEE conference on
Mobile and Wireless Communications Networks, pages 299–303, 2002.

11. Pavel Poupyrev, Masakatsu Kosuga, and Peter Davis. Analysis of Wireless Message Broad-
cast in Large Ad Hoc Networks of PDAs. InProceedings of the Fourth IEEE conference on
Mobile and Wireless Communications Networks, pages 299–303, 2002.

12. Elizabeth M. Royer and Chai-Keong Toh. A Review of Current Routing Protocols for Ad-
Hoc Mobile Wireless Networks.IEEE Personal Communications Magazine, pages 46–55,
April 1999.

13. Yoav Sasson, David Cavin, and André Schiper. Probabilistic Broadcast for Flooding in Mo-
bile Ad Hoc Networks. Technical Report IC/2002/54, Swiss Federal Institute of Technology
(EPFL), 2002.

14. Diego Sevilla, José M. García, and Antonio Gómez. Designand Implementation Require-
ments for CORBA Lightweight Components. InProceedings of International Conference
on Parallel Processing. Workshop on Metacomputing Systemsand Applications., pages 213–
218, sep 2001.

15. Nils P. Sudmann and Dag Johansen. Software Deployment Using Mobile Agents. In Ju-
dith Bishop, editor,Proceedings of the IFIP/ACM Working Conference on Component De-
ployment (CD 2002), volume 2370 ofLNCS, pages 97–107, Berlin, Germany, June 2002.
Springer.

16. Sun Microsystems. Java Web Start 1.5.0 Documentation, 2004.
17. The Apache Software Foundation. Apache Maven. http://maven.apache.org/.
18. Stefanos Zachariadis, Cecilia Mascolo, and Wolfgang Emmerich. SATIN : A Component

Model for Mobile Self Organisation. InCoopIS/DOA/ODBASE (2), pages 1303–1321, 2004.
19. Éric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-Bernard Ste-

fani. An Open Component Model and Its Support in Java. In7th International Symposium
on Component-Based Software Engineering, pages 7–22. Springer-Verlag Heidelberg, 2004.


