N

N

Cooperative Component-Based Software Deployment in
Wireless Ad Hoc Networks

Hervé Roussain, Frédéric Guidec

» To cite this version:

Hervé Roussain, Frédéric Guidec. Cooperative Component-Based Software Deployment in Wireless
Ad Hoc Networks. CD’05, Nov 2005, Grenoble, France. pp.1-16. hal-00341748

HAL Id: hal-00341748
https://hal.science/hal-00341748
Submitted on 25 Nov 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00341748
https://hal.archives-ouvertes.fr

Cooperative Component-Based Software Deployment
in Wireless Ad Hoc Networks

Hervé Roussain and Frédéric Guidec

University of South Brittany, France
{Herve. Roussai n| Frederi c. Gui dec} @ni v-ubs. fr

Abstract. This paper presents a middleware platform we designed ir dochl-
low the deployment of component-based software applicatim mobile devices
(such as laptops or personal digital assistants) capalalé béc communication.
This platform makes it possible to disseminate componeagedon peer-to-peer
interactions between neighboring devices, without rgyan any kind of infras-
tructure network. It implements a cooperative deploymeheme. Each device
runs a deployment manager, which maintains a local compaeensitory, and
which strives to fill this repository with software compoteiit is missing in
order to satisfy the deployment requests expressed by tire Tes achieve this
goal the deployment manager continuously interacts in #iogdround with peer
managers located on neighboring devices, providing itghtmirs with copies of
software components it owns locally, while obtaining it$eim these neighbors
copies of the components it is looking for.

1 Introduction

The number and variety of lightweight mobile devices capalbwireless communica-
tion is growing significantly. Such devices include laptaablet PCs, personal digital
assistants (PDAs), many of which are now shipped with boiteee 802.11 (a.k.a.
Wi-Fi [1]) network interfaces. With such interfaces, thevides can occasionally be
connected to an infrastructure network, using so-callegss points that play the role
of gateways. But the 802.11 standard also makes it possibtadbile devices to com-
municate directly in ad hoc mode, that is, without relyingamy kind of infrastructure
network. An ad hoc network is thus a network that can appeheaolve spontaneously
as mobile devices themselves appear, move and disappeamibally in and from the
network [9].

For the users of laptops or PDAs, the prospect of deployiftyvace applications
on these devices as and when needed obviously appears &sativatone, no matter
if these devices communicate in infrastructure or in ad hoclen Yet, solutions for
component-based software deployment have been propossty fuy infrastructure-
based environments so far, while very little effort has beéevoted to software deploy-
ment in purely ad hoc networks.

In this paper we describe a model we devised in order to all@vdeployment
of component-based software applications on mobile devi@eticipating in an ad
hoc network. In Section 2 we motivate our approach by showimg infrastructure-
based networks and ad hoc networks constitute radicaligrdifit environments as far
as software deployment is concerned, and we show that eofuthat prove efficient

in infrastructure environments are hardly applicable inhad environments. In Sec-
tion 3 we present GDEWAN (COmponent DEployment in Wireless Ad hoc Networks),
a middleware platform that implements our model. The maaratteristics of this plat-
form are discussed in Section 4, which also lists some dinestve plan to work along
in the future. In Section 5 we compared6EWAN with other works that also address
the problem of software deployment, either in infrastroenvironments, or in ad hoc
environments. Section 6 concludes the paper.

2 Motivations

In this section we show that deploying software componerasiad hoc network raises
issues that usually do not appear in infrastructure netsvolls a reminder, we first
describe how software component provision and deliverycaremonly performed in

an infrastructure-based environment. We then show thadamoa network presents
additional constraints that need to be addressed spelsifical

2.1 Software deployment in an infrastructure network

Figure 1 illustrates a typical infrastructure network lirding stable and mobile hosts—
typically, workstations and laptops—interconnected tigiogateways (such as routers
and switches). In such an environment some of the stables lvast be in charge of
storing components in so-call@dmponent repositorieand of implementing server
programs capable of delivering these components on den@thdr hosts in the net-
work can then behave as simple clients with respect to thesers. Whenever the
owner—or the administrator—of one of the client hosts atés the deployment of a
new component-based software application on this devieeptoblem mostly comes
down to locating the server—or servers—capable of progitiie components required
by this application, and downloading these componentsespdan be installed locally.

G __
|

ey

E =g F
e |
el (=Y
[ﬁ/. Available components

=
Q‘\; \ .\‘—’ ‘\ L ‘0\\'& H“ {62,02,65,57}
]s, \.]sz ST

./
B Routera
@ — o 1 Compunent servers

e

" {e2, ¢S5, c6}

{cl, 2, ¢4, ¢5)}
Fig. 1. lllustration of software component deployment in an infinasture network

Consider the example shown in Figure 1, and assume that thera¥ deviceA
decides to initiate the installation on this device of anlimgtion that requires compo-
nentscl, c2andc3. The deployment middleware running on deviceust first identify

one or several servers capable of delivering these compgn&icomponent may ac-
tually be provided by several servers, for example in orddyaiance the workload in
the network, or to allow fault tolerance. In any case, oncéeathas identified a server
that can provide a component, obtaining this componentigingguires its download
between the server and the client. Note that in such a cotiitexteployment of a com-
ponent on a given host can usually be considered as a “regl tiperation: once a user
has ordered the deployment middleware to locate and dowaleamponent, this oper-
ation can usually be performed immediately. In the remagjmifithis section, we show
that deploying components in an ad hoc environment can itr&stnrequire a more
lengthy process, which requires some middleware capabdafofcing a deployment
strategy in the background on behalf of the user.

2.2 Software deployment in a dynamic ad hoc network

Figure 2 shows a typical dynamic ad hoc network, which ces%i$ a collection of
portable communicating devices. The devices in such a mktare usually highly mo-
bile and volatile. Device mobility results from the fact theach device is carried by
a user, and users themselves move quite a lot. Device viglagilthe consequence of
the fact that, since the devices usually have a limited pdwelget, they are frequently
switched on and off by their owners.

Exchange cell
- — - of 4, B, C

- [N
4 [1 @ N Exchange cell of E
/ A \ Suspended _1
o device k
/ ﬁ‘ .LL: - -
| > 1 A\ ~
\ ®- C | {c3} , N .
\ g / / ? .
\ / ‘. / @ @
B tel, 2} y & |
4, c5} E

\\ - 4 D \{CI, c3, ¢

Available Moving user (and device) AN

components

Fig. 2. lllustration of software component deployment in a dynaaddoc network

A major characteristic of wireless ad hoc networks is thatcmnication interfaces
have a limited transmission range. Consequently any desaceonly communicate
directly with neighboring devices. Multi-hop transmisséocan sometimes be obtained
by implementing a dynamic routing algorithm on each devid®12], but it is worth
observing that even with dynamic routing, a realistic ad hetwork often presents
itself as a fragmented network. Such a network appears assify changing—
collection of so-called “islands” (also referred to as ‘talis” or “cells” in the literature).
Mobile devices that belong to the same island can commuentogether, using either

multi-hop or single-hop transmissions depending on whretiileamic routing is used or
notin the network. However, devices that belong to distisiands cannot communicate
together, because no transmission is possible betweenlssla

In such a context, a traditional client-server deploymehese such as that illus-
trated in Section 2.1 is hardly applicable, as no deviceablstand accessible enough
to play the role of a server of components, maintaining a aorept repository and
allowing client devices to access this repository whenaeeded.

In the remainder of this paper, we present a model we proposeler to allow for
these constraints. Basically, instead of being able tosscaeserver whenever needed,
each device must maintain a local component repository. &-fiepeer interaction
model then makes it possible for a device to cooperate watihéighborhood, by al-
lowing its neighbors to obtain copies of the software congmts available on its local
repository, while itself benefiting from a similar servicéeved by its neighbors.

Consider the example shown in Figure 2, and assume agaiththatvner of de-
vice A wishes to install on this device an application that requaemponentsl, c2
and c3. In our exampleA can obtain componentsl and c2 from deviceB. But as
devicesC and E—that both own a copy of componet@—are (possibly temporarily)
unreachablef cannot obtain a copy of componer®from any of these devices. Yét
could obtain componemt3 from deviceC if this device was switched on by its user. It
could also obtain this component from devieéf A’'s user happened to walk towards
E, or if E's user happened to walk towad A roaming device such &3 may even
serve as a benevolent carrier betw&sndA, transporting component c3—and possi-
bly other components as well—between separate islandshaisccontributing to the
dissemination of software components and applicatiorsvalt the network.

This example shows that when the owner of a mobile devicécjzating in an ad
hoc network requests the deployment of a component-bagdidaon on this device,
there is no guarantee that this request can be satisfied iratalygas there is no guar-
antee that the components required for this deploymentesdily accessible in the
neighborhood. Yet, since the topology of an ad hoc networkateange continuously
and unpredictably as devices move and are switched on othefffact that a given
component cannot be obtained at a given time does not intlotehis component will
remain inaccessible in the future. There is thus a need foesteployment middleware
capable of ensuring the collection of missing componentisérbackground in order to
satisfy the user’s needs.

3 Towards software component deployment on mobile devices

In this section, we present an overview obGEWAN (COmponent DEployment in
Wireless Ad hoc Networksa platform we designed in order to support the deployment
of component-based software applications on mobile dexdoenmunicating in ad hoc
mode. WDEWAN implements a cooperative model, where neighboring devides

act in order to discover and exchange software componeath &evice implements a
local component repository, and a deployment manager jnsible for maintaining
this repository on behalf of the user. Any component storethé repository can be
used to assemble and start an application locally. Copits®€omponent can also be
sent on demand to neighboring devices.

3.1 Overview of the GODEWAN platform

The platform is built as a three-layer model, as shown in 6@ The upper and lower
layers in this model have been described in details in [7] @pdespectively. They

are thus only described briefly below, and the paper thenirooeg with a detailed

description of the model’s central layer, which implemethis component repository
and the deployment manager that maintains this repository.

o

0 | Brenda

, S App1 g]
R App2
oEOonRkEn

o B \ Execution platform
| h [

Component
Deployment || repository

Manager H 0 O DD

5| ¢ 5 e ‘ Communication service ‘

Fig. 3. Overview of the @DEWAN platform and screenshot of its GUI on a PDA

The upper layer in the platform is meant to provide a framéwor assembling
and running applications. Instead of defining its own congmttmodel, @ DEWAN
was designed so as to rely on existing execution frameworksdmponent-oriented or
service-oriented applications. In its current implem#atait interfaces with AMuUs,

a runtime framework that is primarily dedicated to hostirggmtially malicious mo-
bile applications [7], as well as withuliA, an execution framework for applications
designed using the Fractal component model [19].

The lower layer in our model was designed in order to suppartasynchronous
dissemination of so-calletlansfer documentis an ad hoc network. A transfer docu-
ment is an XML document whose external element’s attribgpesify the conditions
required for disseminating the document in the network s€hadtributes thus play ap-
proximately the same role as header fields in IP packets obiR tatagrams. They in-
dicate typically the document’s source and destinatiomgttpected propagation scope
for this document, etc.

The “payload” of a transfer document consists of the inteXML elements that
are embedded in the document. Any kind of structured inféionacan be transported
in a transfer document. In@bEWAN, though, transfer documents are used to transport
software package descriptors in the network.

Figure 4 shows a typical transfer document. Attributes is ttocument indicate
that it was sent by devicghivg and that it was addressed to any device in the neigh-
borhood (notice that the communication layeb@EWAN relies on supports the use
of wildcard addresses). The payload in this transfer docuroensists of a package
descriptor, whose role and structure are detailed in Se&tid.

<transfer —document
document—id="fb54356fe468d9"
source="device:shiva" destination="device:*"
hops—to—live="3" lifetime="01:00:00"
service—type="package—advertisement ">
<package—descriptor>
<general—information
type="application/java" category="communication/messaging"
name="JMessager" version="1.3"
provider="Laboratoire Valoria"
summary="JMessager is a P2P messager"/>
<java—application name="masc.jmessager.JMessagerimpl" />
<dependencies>
<required—package name="JMessengerUl" version="1.2"/>
<required—package name="P2PAsyncDissemination"/>
<optional—package name="AddressBook" version="2.0"/>
</dependencies>
</package—descriptor>
</transfer —document>

Fig. 4. Example of an XML transfer document carrying a software pgekdescriptor.

The communication layer in @EWAN provides services for encapsulating trans-
fer documents in UDP datagrams. Large XML documents candggfented and then
transported in distinct, smaller transfer documents thaahecan fit in a single UDP
datagram. The communication layer of course supports tHasgembly of such frag-
ments after they have been received from the network. Dootsvean be transferred
either in unicast, broadcast, or multicast mode, and usihgresingle-hop or multi-
hop transmissions. In the latter case, all mobile devicaténnetwork are expected
to behave as routers, using algorithms for dynamic routiryflooding such as those
described in [12,11,13].

Further details about @EWAN’s communication layer can be found in [3]. In the
remainder of this paper we focus on the description of théraklayer of the platform.
The deployment manager is implemented in this layer, tagethth the component
repository this manager is in charge of maintaining. Thesépry is a place where
software components can be stored locally on a mobile de@omponents stored in
this repository are thus readily available for the execuframework that constitutes
the upper layer of the platform. The deployment managerstakders from the user,
and interacts with peer managers that reside on neighbdeviges in order to fill the
local repository with components required by the user, evpiloviding its peers with
components they need in order to satisfy their own users.

3.2 Installation steps in GODEWAN

The deployment manager can provide the user with informatkmut all the applica-
tions it knows about. At any time a given application is eithe

— installed locally(meaning that this application is either already runninthpalocal
execution framework, or ready to be loaded and started gfthimework);

— installable(meaning that all the components required for running thjgieation
are available in the local repository, so the applicationldde installed immedi-
ately if the user requested it);

— not installable ye{meaning that some of the components required by this applic
tion are not present in the local repository).

Besides observing the status of each application, the @semodify this status, re-
questing for example that an application be started (whigtiies that this application
be already installed locally), or that an application benstalled (and all its compo-
nents removed from the repository). Additionally the usam mitiate the deployment
of an application, thus instructing the deployment mansgéy to obtain any missing
component for this application from neighboring devices.

CoDEWAN implements a basic user interface that can run in consoleembd-
ditionally, graphical interfaces have been designed ireotd facilitate the interaction
between the user and the deployment manager running on dendelice. For example
Figure 3 shows an interface that was designed specificalpeisonal digital assistants.

3.3 Software components, applications, and packages

The deployment of component-based applications implies tbmponents be trans-
mitted in the network, and stored in local repositories.dBefthey can be loaded and
executed in a runtime framework, software components acapsulated in so-called
software packageshat can be considered as storage and transfer envelopine$e
components. Besides encapsulating the actual code of thpartents, software pack-
ages can additionally encapsulate some data required bfgvease component or ap-
plication. They can also encapsulate documents describengverall architecture of a
component-based application (such as CCM component afiesrfdj, or architecture
descriptors in the Fractal model [19]).

Package descriptorEEach software package indDEWAN is associated with a pack-
age descriptor. This descriptor provides information dlibe package’s identity, its
content, its category, etc. It can be embedded in the padksgg but it can also be
processed separately. For example, the transfer docuimewnhsn Figure 4 encapsu-
lates a package descriptor as its payload. In a typical sicesiach a document could
be broadcast by a device in order to inform its neighbors tbgoftware package that
is available in its local repository.

The package descriptor shown in Figure 4 actually desctheesnain component
of a Java messaging application (as specified by attritytein the descriptor). It
provides general information about the application, suchisaname, version number,
provider, etc. It also indicates that in order to be assedible application requires com-
ponents that can themselves be found in three other sofpeanieages. Two of these
packages are absolutely needed for assembling the apghicaile the third one can
be used optionally in order to improve the functionality loé tapplication. This exam-
ple shows that when the components encapsulated in a partgackage depend on
components that are encapsulated in other packages, fimimation is mentioned ex-
plicitly in package descriptors. Dependencies betweekggges can also appear when a
package contains only the description of the architectfiem@pplication, while other
packages encapsulate components that are required fonlalgsg this application, or
data that are needed for running this application.

Software package#\s mentioned above, software packages can encapsulataseft
components, as well as plain data or application architeatascriptions. A software
package usually encapsulates its own descriptor, butéisisribtor can also be extracted
from the package and processed separately whenever needed.

In the current implementation of thedDEWAN platform, application data and the
code of software components are encoded using the Basetihstia The result of this
encoding is then encapsulated as CDATA information in an Xddcument.

3.4 Main functionalities of the deployment manager

The deployment manager running on a mobile device is notaisiyonsible for main-
taining a local component repository on this device, whilieiacting with peer man-
agers located on neighboring devices. Among other thingd#ployment manager
can:

1. decide what packages and package descriptors should bedstothe local repos-
itory and, if necessary, what packages and descriptorsishtmiremoved from this
repository;

Notice that since mobile devices are usually resourcetcaingd, the deployment
manager might sometimes have to reclaim the space occupiedused, yet po-
tentially interesting packages.

2. announce to its neighbors what packages are available lpdalus indicating that
these packages can be delivered on demand;

Announcing the availability of a package is performed bydglwasting a transfer
document that encapsulates the descriptor of this paclkagshown in Figure 4.

Such an announcement can be broadcast periodically, orahew device appears
in the neighborhood. It can also be broadcast after a reassieen received from
a neighbor, as described in the next three items.

3. search the neighborhood for specific packages, or for paekégat satisfy precise
criteria;

Package searching is performed by broadcasting a transfentent that encapsu-
lates a “request for descriptors8uch a request compares with a standard package
descriptor, exceptthat each attribute in the request dedinegular expression. Any
deployment manager receiving a request can thus matcletiuest against the de-
scriptors of the packages stored on its local repositorgné or several of these
descriptors match the request, then the deployment maaagerers this request

by announcing the availability of the matching packagesiessribed in item 2.

4. discover what packages are available in the neighborhood;

This is performed by broadcasting a “request for descriitas explained in the
former item, except that this request is not selective aitaictually calls for the
announcement of all the packages available in the neigloooih

5. ask a neighbor for the transmission of one—or several—palgr package(s);
This is performed by sending the targeted neighbor a “reédaepackages”, which
is similar to a “request for descriptors” except that theghebr is expected to return
the desired packages, rather than simply announce thah# tvese packages. The
actual transmission of software packages can be perforitiest & unicast, multi-
cast, or broadcast mode, depending on the configuratioraihding deployment
managetr.

6. receive packages from a neighbor, and decide for each padkdaghould be stored
on the local repository.
The deployment manager can be expected to accept and stiagpes it has itself
requested before. But since packages can sometimes bechsbaehs explained
above—the deployment manager may also receive packagesiigver requested.
In such a case the deployment manager can be configured sdrmaplément a
hoarding policy, storing packages that may prove intengsti the future.

The basic operations mentioned in the above list make itilples® devise and imple-
ment a number of different strategies for cooperative camepodeployment. Actually,
while designing the GDEWAN platform we intentionally defined a comprehensive set
of functionalities so as to allow a large number of inter@ttpatterns between neigh-
boring deployment managers. Several alternative deplaysteategies can thus be im-
plemented based on these functionalities. Part of our otwerk is now devoted to
devising such strategies, and observing how they perfomedlistic conditions.

Although a large number of deployment scenarios can be deresi, the next sec-
tion describes the major steps these scenarios can be hased o

3.5 Major steps in a deployment scenario

Learning about new applications At any time the deployment manager running on a
mobile device maintains in the local repository a collettid application descriptors.
As explained in Section 3.2 some of these descriptors quoresto applications that
are not installable yet, meaning that some of the packagesresl for assembling these
applications are not available locally. The deployment aggm can thus “know” about
the existence of an application (because it owns a desciopthis application), even
though this application is not yet installed locally.

A basic approach for a deployment manager to learn about pplications is sim-
ply to listen to the network in order to collect transfer domnts that contain applica-
tion descriptors, while broadcasting itself the descripiaf the applications stored in
its repository. Neighboring deployment managers thustsp@ously inform each other
about existing applications.

Initiation of a new application deployment In order to initiate the deployment of a
new application on a mobile device, the user can rely on tteeface of the deployment
manager, and select with this interface an application ighaot installed yet. This
scenario however implies that the local deployment manamest already know about
the existence of this application.

Alternatively a user may know about an application the dgplent manager itself
has never heard about. In such a case the user can informgloyaent manager about
the name of this application, and the deployment managétheih start looking for the
corresponding descriptor in the neighborhood.

Identification of missing packages Once the descriptor of the desired application is
available, the deployment manager can examine the depeiedetescribed in this de-
scriptor in order to determine what other packages are mefide@ssembling this ap-
plication.

Remember that several applications may be assembled dw#t sdine set of compo-
nents. The packages needed to assemble a new applicatidhusde already available
locally, as they may have been collected before in orderderable and start another
application. Note also that the deployment manager mayameht a hoarding policy,
storing unused packages “just in case” in the local reponsi@onsequently, in the best
circumstances, when determining what packages are needassembling an applica-
tion the deployment manager may actually discover thahabe packages are already
present in the local repository. In such a case the deployofehe application can be
considered as complete.

In most cases, though, when the user asks for the deployrhamew application
the deployment manager is likely to discover that a numbeeqtired packages are
missing in the local repository. For each application whdsgloyment is in progress
the deployment manager maintains a list of desired package® kind of a “shopping
list”, actually). Once the packages required for a giveriappion have been identified,
their identity is appended to the corresponding “shoppistt |

The deployment manager runs a background process that aicodlecting any
package whose identity appears in at least one of the “shgpigts” it maintains.

Search for missing packagesSearching for packages is a proactive operation that
consists in broadcasting “requests for descriptors”. Disration can be performed
either periodically, or it can be triggered by an event, sashihe detection of a new
device in the neighborhood.

A request is a transfer document that contains a list of dégiackages. Neighbor-
ing devices that own some of these packages are expecteplydseannouncing the
availability of these packages.

Note that since announcements are broadcast in the netavdeiployment manager
can sometimes discover passively that a number of packagdeaking for are avail-
able in the neighborhood. Packages can thus be locatedydippistening to broadcast
announcements. @EWAN makes it possible to combine both forms of package dis-
covery (proactive and reactive) in a single deploymentetya

Download of missing packagesWhenever the deployment manager discovers that
some of the packages it is looking for are available on a fmigtevice, it can react by
sending a “request for packages”, thus asking that theatkpckages be transmitted
in the network.

After receiving one of the packages it has requested, theyg®ent manager stores
this package in the local repository, and removes its nawom fts “shopping lists”.
The descriptor of the package must also be analyzed in codghrdck if this package
depends on other packages that are not available local§p,then these packages
must also be considered as requested packages, and theis h@mappended to the
deployment manager’s “shopping lists”.

Completion or termination of an application’s deployment The deployment of an
application is complete when the corresponding “shoppsigjis empty, which means
that all the packages required for assembling this appdicdtave been collected and

are now available in the local repository. The applicatian then be considered as
installable, and be presented as such to the user througiséhénterface.

The user can also decide to cancel the deployment of a partegpplication at any
time. In that case the “shopping list” maintained by the dgplent manager for this
application is discarded, and the packages that have glieeh collected and stored
in the local repository are marked as unused (unless theindeed used by another
locally installed application, and unless their names appeanother local “shopping
list"). Unused packages can be maintained by the deploymamtager in the local
repository as long as there remains enough space to reaaivetare other desired
packages. Otherwise the deployment manager is entitlednove unused packages
whenever there is a need to free storage space in the reposito

4 Discussion and future work

4.1 Efficiency considerations

The model we propose for cooperative software deploymentaiile devices is inher-
ently a probabilistic one. Indeed, when a user requestsatigaten application be de-
ployed on a mobile device, there is no absolute guarant¢&thaeployment manager
on this device will ever manage to collect the required pgekalt is worth mentioning
that this lack of guarantee is a consequence of the chaisidginherent to dynamic
ad hoc networking, rather than a limitation of the modellitdéowever the model can
be adapted in order to account for these constraints.

For example, in order to increase the chance that the rexjaésite user can be
satisfied, the deployment manager in theodEwAN platform was designed so as to
exhibit a persistent behavior. Whenever it cannot obtainralver of packages from its
current set of neighbors, the deployment manager simplgigisrand tries to obtain
these packages later, after its neighborhood has changeatedmobility and volatility
thus become advantages in this process, as the neighbashadatkvice is not limited
to a fixed set of neighbors. Whenever a package cannot be ftumdiven time in the
neighborhood, there is always a chance that it can be foutieifuture.

The actual efficiency of our model in realistic conditiongededs on a large num-
ber of factors, such as the geographical distribution ofiteatevices, their speed, the
frequency at which devices are switched on and off by thegrgjgata transmission
rates, the amount of storage space available in each devwwsll repository, the size
of software packages, the number of packages requiredéméads an application, etc.
Work is now in progress in order to evaluate the average effigi of our model in
different conditions, based on simulations, and based trabexperimentation with
CoDEWAN-enabled mobile devices.

4.2 Towards adaptive software deployment

In the current implementation of thedDEwAN platform, the deployment manager
running on a mobile device must be configured manually by ger of this device.

For example it can be configured so as to announce periogitalpackages it owns
locally, and to broadcast periodically a request indigathre packages it is looking for.

In both cases, though, the user is responsible for chookm@ppropriate periodicity
for these transmissions.

The user must likewise determine how much storage spacebaussigned to the
local repository (which can be implemented either in menuoriy the filesystem), and
whether the deployment manager should implement a hoaptitigy (storing in its
local repository any package it receives from the netwovkndf this package is not
mentioned in a local “shopping list”).

Future work will notably focus on the development of a sggtmanager capable
of adjusting the behavior of a deployment manager tranggigrand continuously on
behalf of the user. For example the periodicity for annongdocal packages and re-
guesting desired packages could be adjusted dynamicagdban the mobility of a
device, on observations of its neighborhood, or on inteewehts (such as the local
device being suspended or resumed). The hoarding policieimgnted by a deploy-
ment manager may likewise be guided by statistics aboutiipeasts received from the
neighborhood: a deployment manager that frequently rese®guests for a package it
does not own locally may decide to try to collect this packsgas to help multiply its
copies—and thus its overall availability—in the ad hoc ratw

4.3 Security considerations

The approach we propose for deploying software applicatmmmobile devices re-
lies on the assumption that the owners of these devices nit fionvenient to share
software components with each other using ad hoc commimnicathis approach ob-
viously raises a number of legitimate concerns regardingriy, as the owner of a
mobile device may for example be reluctant to run on this akeyieces of software
obtained from unidentified sources. We believe that thiblerma may be solved satis-
factorily by using digital signatures so as to ascertaindtigin of a software compo-
nent, as well as ciphering in order to limit the use of a givemponent to a particular
community of users. These are directions we plan to invatgii the near future.

4.4 Compatibility with standard component models and frameavorks

CODEWAN is not strongly dependent on a specific execution framevasran a partic-
ular component model. Actually the focus in this platfornpig on the dissemination
of software components rather than on the assembly and tixeoficomponent-based
applications per se. In our opiniord®DEWAN should quite easily accommodate almost
any component model and any execution framework. The ontgition is that com-
ponents in the model considered can be transmitted anaistopackages, and that the
execution framework can be adapted so as to take compomemtsife local repository
maintained by the platform’s deployment manager, rathear from a legacy repository.
CoDEWAN currently interfaces with two execution frameworks callaghus and
JuLIA. JaMUS is a security-oriented execution framework we designedchvpro-
vides a resource-constrained environment for untrustea daplications [7]. ULIA is
a framework that implements the Fractal component modédl @8going work aims
at interfacing @DEWAN with OSCAR, a service-oriented framework for OSGin-
dles[4].

5 Related work

Java Web Start [16] and Apache Maven [17] both support thiogieent and the update
of Java-based application programs. They are primarilynttese used on stable, fully
connected, infrastructure networks, though. They rely oiieat-server model: a server
(or a collection of servers in Maven) maintains a repositehgre applications can be
stored, and clients can download new applications—or nawises of applications
they have already downloaded—from this server.

A number of papers have proposed to apply the client-senasteifor software
deployment in ad hoc networks. For example RS [2] implements a content de-
livery system for software components. It relies on dedidatevices that host server
programs called “JBORES". These server programs must register withna Jookup
service in order to be located by the devices on which someac is to be deployed.
Although mobile, pervasive devices are targeted in thiskwtre JSORES and the
lookup service are assumed to be stable at any time, andblaivhenever needed.

As explained in Section 2 we believe that the traditionaérdliserver model is
hardly applicable for deploying and updating software inaatonomous ad hoc net-
work, although it usually performs most satisfactorily miafrastructure network. As
an alternative to the client-server model we propose toarlgooperative, peer-to-peer
interactions between neighboring mobile devices. To oomkedge, this approach has
not really been investigated so far, although cooperatiftevare deployment has been
considered in infrastructure-based environments, anpigsals have been made to sup-
port code mobility or information dissemination in ad hotwarks.

SoftwareDock is a framework for distributed software dgpient that uses mobile
agents to support the transfer of software applicationséen so-called producers and
consumers [5]. This approach thus compares with the cienter model. Moreover
SoftwareDock is primarily meant to be used in infrastruetnetworks, as the prime
motivation in this work is to allow load balancing and fawltdrance between software
producers. Tacoma [15] is another system that relies onlmabents to deploy com-
ponents. Like SoftwareDock, though, it does not specificatidress the problem of
component deployment in ad hoc networks.

CORBA-LC defines the notion of CORBA Lightweight Component, and a neimb
of design and implementation requirements for deployinchstomponents are iden-
tified in [14]. This paper notably suggests that componembsisl be deployed using
a “peer network” model, where the whole network acts as asiegy for managing
and assigning resources (including components). Howalthgugh [14] observes that
spurious node failures and node disconnections shoulddposied, our understanding
of this paper is that it too considers the deployment of cameps in a quasi-stable,
infrastructure-based environment.

Component deployment in ad hoc networks is specifically eskird in [6], which
describes a framework for service-oriented computing. ddraponents considered in
this framework are actually proxy components, which mustdygdoyed locally in order
to allow local clients to access remote services. Serviettiries and implementation
repositories are constructed and maintained using alalistd approach that implies
the opportunistic collaboration of neighboring hosts ia #iul hoc network.

SATIN provides support for component-based, self organize@&sysbn mobile
devices [18]. It supports the storage and the execution wipoments on a device, as

well as component advertisement, discovery and transfevdem devices. &IN is
meant to serve as a generic platform that offers self org#ipiz through logical mobil-
ity and componentization. As such it does not readily corapéth CoDEWAN, which
addresses specifically the problem of software deploymemhabile devices. Yet we
believe that &TIN could serve as a framework for developing a deploymentsysim-
ilar to CoDEWAN. This system would be dedicated ta1$N components, though (as
SATIN defines its own component model), just like CORBE-only considers the de-
ployment of CORBA components. In contrasb@EWAN is somehow more versatile.
It processes software packages (that can encapsulate rshpktomponents) rather
than the components themselves, and it delegates the prsloielocally assembling
and running components to an associate execution framework

6 Conclusion

In this paper we presented thedGEwAN platform, which is dedicated to the deploy-
ment of component-based software applications on mobilede participating in an
ad hoc network. GDEWAN implements a peer-to-peer, cooperative model for software
deployment. With this model, each mobile device maintaiteal repository that can
host a number of software components. The components stotbt repository are
available for the execution framework that constitutesupper layer of the platform.
Neighboring devices can also exchange copies of the sate@mponents they own
based on a peer-to-peer interaction scheme. A deploymemdgeais responsible for
maintaining the local repository on a device, for intenagtivith peer deployment man-
agers that run on neighbor devices, and for collecting sofwomponents in order to
satisfy the requests of the owner of the local device.

The CobEwaN platform was implemented in Java and is now fully operationa
It currently interfaces with the execution frameworkswlis and ILIA, and it thus
supports the deployment and the execution of untrustedalapiications [7], as well
as that of applications designed using the Fractal compganedel [19]. GODEWAN
should also be able to support the deployment of OSGi buiites near future, using
the service-oriented framework3@AR [4].

Ongoing work implies using this platform in realistic cotiolhs in order to assess
its efficiency, and in order to compare the results obtainitid alternative deployment
scenarios. Future work should aim at augmenting the platfofunctionality, for ex-
ample by integrating support for digitally signed and epteg software components.

Acknowledgements

This work is supported by the “Conseil Régional de Bretagmafer contract
B/1042/2002/012/MASC.

References

1. Information Technology, Telecommunications and Infation Exchange between Systems,
Local and Metropolitan Area Networks, Specific RequireraeRart 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Speaifions. ANSI/IEEE Std
802.11, 1999.

11.

12.

13.

14.

15.

16.
17.
18.

19.

. Jesper Andersson. A Deployment System for Pervasive Gangp In Proceedings of the

International Conference on Software Maintenance (ICSM®, pages 262—-270, San Jose,
October 2000.

. Frédéric Guidec and Hervé Roussain. Asynchronous DaguBigsemination in Dynamic

Ad Hoc Networks. InSecond International Symposium on Parallel and DistriduReocess-
ing and Applications (ISPA’04pages 44-48, Hong-Kong, China, December 2004.

. Richard S. Hall and Humberto Cervantes. An OSGi Impleat@nrt and Experience Report.

In IEEE Consumer Communications and Networking Conferdrae-Vegas, USA, January
2004.

. Richard S. Hall, Dennis Heimbigner, and Alexander L. \Wa¥ Cooperative Approach to

Support Software Deployment Using the Software Dock.Iniernational Conference on
Software Engineeringpages 174-183, 1999.

. Radu Handorean, Rohan Sen, Gregory Hackmann, and GatigditCRoman. A Compo-

nent Deployment Mechanism Supporting Service Orientedgaimg in Ad Hoc Networks.
Technical Report WUCSE-04-02, Washington University, &éipent of Computer Science,
St. Louis, Missouri, 2004.

. Nicolas Le Sommer and Frédéric Guidec. JAMUS: Java Accodation of Mobile Un-

trusted Software. 1dth Nord EurOpen/Usenix Conference (NordU 2Q@2Isinki, Finland,
February 2002. Best Paper.

. OMG. Corba components, version 3.0, June 2002.
. Charles PerkinsAd Hoc Networkingpages 2—3. Addison-Wesley, 2001.
. Pavel Poupyrev, Masakatsu Kosuga, and Peter Davisy#iaalf Wireless Message Broad-

cast in Large Ad Hoc Networks of PDAs. Rroceedings of the Fourth IEEE conference on
Mobile and Wireless Communications Netwoiages 299-303, 2002.

Pavel Poupyrev, Masakatsu Kosuga, and Peter Davisy#inalf Wireless Message Broad-
cast in Large Ad Hoc Networks of PDAs. Rroceedings of the Fourth IEEE conference on
Mobile and Wireless Communications Netwoiages 299—-303, 2002.

Elizabeth M. Royer and Chai-Keong Toh. A Review of CurfiRauting Protocols for Ad-
Hoc Mobile Wireless NetworkslEEE Personal Communications Magazimpages 46-55,
April 1999.

Yoav Sasson, David Cavin, and André Schiper. ProbébiBsoadcast for Flooding in Mo-
bile Ad Hoc Networks. Technical Report IC/2002/54, Swisdétal Institute of Technology
(EPFL), 2002.

Diego Sevilla, José M. Garcia, and Antonio Gomez. Deaighlmplementation Require-
ments for CORBA Lightweight Components. Rroceedings of International Conference
on Parallel Processing. Workshop on Metacomputing Sysésmg\pplications.pages 213—
218, sep 2001.

Nils P. Sudmann and Dag Johansen. Software Deployment) lobile Agents. In Ju-
dith Bishop, editorProceedings of the IFIP/ACM Working Conference on CompbBben
ployment (CD 2002)volume 2370 ofLNCS pages 97-107, Berlin, Germany, June 2002.
Springer.

Sun Microsystems. Java Web Start 1.5.0 Documentat@iy.2

The Apache Software Foundation. Apache Maven. httpvém.apache.org/.

Stefanos Zachariadis, Cecilia Mascolo, and Wolfgangngrncth. STIN: A Component
Model for Mobile Self Organisation. 1€00plS/DOA/ODBASE (2pages 1303-1321, 2004.
Eric Bruneton, Thierry Coupaye, Matthieu Leclercq,i®ivQuéma, and Jean-Bernard Ste-
fani. An Open Component Model and Its Support in Java7tminternational Symposium
on Component-Based Software Engineerjmges 7—-22. Springer-Verlag Heidelberg, 2004.

