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Abstract

We present a novel population-based local search algorithm for the
median genome problem. The primary result of this article is that this
probabilistic approach significantly improves the performance of an-
cestral genome reconstruction compared to existing methods, making
it possible to tackle problems where the contemporary genomes may
contain many hundreds of markers. Moreover, our method is not lim-
ited to triples of genomes, and thus solves the median genome problem
in its generality. We show that in real application cases the computa-
tional results are highly robust, suggesting that we can interpret the
computed median genomes as candidates carrying the semantics of
ancestral architectures.

1 Introduction

The increasing availability of fully sequenced genomes has fuelled efforts in
understanding the history and function of genomes through comparison of
related species and analyses in computational biology. Identifying ancestral
genomes architectures is one important question that can now be addressed
thanks to recent advances in combinatorial methods and to recent acquisi-
tion of large-scale genome datasets. Constructing plausible hypotheses about
these ancestral architectures is a computational task whose results may pro-
vide deep insight both into the past histories of particular genomes and the
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general mechanisms of their formation. This task is frustrated by the com-
putational complexity of the problem as well as by the difficulty of integrat-
ing biological constrains in the algorithms without altering completely their
mathematical foundations.

Mathematically, genome architectures are encoded as signed permuta-
tions of common markers. The goal of this encoding is not to align one
genome against the other, but rather to compare the order of gene markers.
Two main approaches to compare marker orders exist: counting the differ-
ences between two genomes in terms of breakpoints [12, 15|, and counting
the minimal number of edit operations that transform one genome into an-
other [8]. Both of these approaches define a distance function on the space
of signed permutations. In this paper we will follow the Hannenhalli and
Pevzner approach [8] where the allowed edit operations are fusion, fission,
reciprocal translocation and reversal. It was originally established that this
rearrangement distance can be computed in polynomial time [8], 10]. Later
work has improved these results establishing a linear-time algorithm for the
rearrangement distance computation [I]. Minimizing this distance is a fun-
damental step in computing plausible ancestors.

Two computational approaches for construction of ancestral genome ar-
chitectures were proposed. They were formulated as the Median Genome
Problem (MGP) and the Multiple Genome Rearrangement Problem (MGRP).
Given a set of genomes {II;}, the former consists in computing a permuta-
tion IT minimizing the sum of distances to {Il;}, while the latter aims at
computing the Steiner tree thus minimizing the sum of distances along its
edges. The Median Genome Problem has been shown to be NP-hard for
both of distance functions even in the case of only 3 genomes (see [4], 4]
for breakpoint distance and [5] [6] for rearrangement distance). Nevertheless,
exact resolution of MGP have been attempted, yielding optimal solutions for
very small instances [17].

Approximate algorithms for MGP have been proposed for both distances.
In the breakpoint case, Sankoff and Blanchette formulated the solution through
a reduction to the Travelling Salesman Problem [I5]. These authors proposed
an algorithm that guarantees a reasonable lower bound on the sum of dis-
tances.

In the case of rearrangement distance, MGP and MGRP have been tightly
linked since for real-sized cases the proposed solutions for the latter rely on
successive triangulations, and thus on the solving of the former in the 3-
genome case. Two existing software packages MGR [3| and rEvoluzer [2]
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implement partial solutions of MGP. Indeed, MGR solves the problem for
triples of multichromosomal genomes, while rEvoluzer can treat more than
3 genomes, but only in the unichromosomal case. Both of the proposed
solutions are heuristics based on the detection of “good” reversals, opera-
tions that are guaranteed to improve the solution. The genomes {II;} are
re-written step by step by applying reversals until two (or three) of them
become equal. There are two differences in the proposed solutions. First,
the definition of what constitutes a good reversal is not exactly the same.
Second, when no good reversals remain, MGR performs a k-depth search to
find a best reversal, while rEvoluzer allows for backtracking.

In this paper, we present FAUCILS, a new approximate algorithm for
MGP in the general case, that is, for an unrestricted number of multichro-
mosomal genomes, while improving performances of existing approaches on
restricted instances. The mainly originality of our approach is the definition
of a probabilistic neighborhood which evolve within a population-based local
search according to observations made on the population. This mechanism
allows us to greatly accelerate the search and ensures more convergence, es-
pecially for real or structured instances.

2 The Median Genome Problem

A chromosome ™ = (my,...,m,) is represented by a sequence of signed gene
markers whose sign indicates their relative direction on the chromosome.
A size-n multichromosomal genome 1l is defined as a set of chromosomes
{m!,..., 7"} such that Y, || = n. Markers take their value from the set of
ordinals 1,...,n; no given marker appears in more than one chromosome.

For example, {(5,—8), (1,2, —-10,6,4),(9), (—3,7)} is a genome of size 10.
In [3], concatenation of all chromosomes is represented as a signed permuta-
tion.

Given a set of size-n genomes {II;} and a genome distance function d, an
instance of the combinatorial minimization problem MG P is defined by two
elements (7, ¢):

1. a search space, 7,,, composed of the set of all possible size-n genomes,
and

2. an objective function ¢ : 7, — N (score) defined by ¢(IT) = >, d(II, II;).



A median genome for a given set of genomes {II;} is a genome II that
minimizes ¢(II). Every optimal solution to M GP is a median genome.

3 An original population-based local search for
MGP

For addressing NP-complete problems like MGP in the general case and
reaching acceptable solutions in reasonable time, approximate algorithms
provide the most practical approach. We present a population-based lo-
cal search algorithm using an original and evolutive neighborhood reduction
mechanism for the resolution of MGP in the case of rearrangement genome
distances. It gives excellent results in terms of the quality of the solutions it
obtains, the speed of the computation, its robustness, and its scalability.

3.1 A descent algorithm for MGP

Stochastic Local Search (SLS) [9] is a well-known class of metaheuristics, used
for the resolution of many difficult combinatorial optimization problems. SLS
algorithms are iterative methods which start from an initial configuration
(candidate solution of the search space) and improve it by successive local
modifications. In this section we define a simple descent algorithm to MGP,
where:

1. the initial configuration is taken from {II,},

2. the evaluation function is the same as the objective function ¢: the
rearrangement distance d,

3. the neighborhood relation we call R is a 1-step rearrangement: R'(II) =
{II" € 7., d(IT, IT") = 1},

4. the move strategy is a first-improve selection (FI) which accepts better
and equivalent configurations (side-walk mechanism, SW [16]), given a
specified number of iterations nbit.

The performance of a descent algorithm essentially depends on the neigh-
borhood relation used [I1]. In order to avoid slow processes and local optima
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Figure 1: Geometric analogy of MGP: median genomes are within the convex
hull of {II;} in the space of genomes. Starting the search from a II; on the
perimeter greatly reduces the search space.

difficulties, we use the FI+SW selection strategy combined with the large
and straightforward neighborhood R!.

Figure [Il shows that configurations taken from {II;} may be interesting
initial candidates for the beginning of the search. Considering the evaluation
function and the neighborhood relation R!, the descent will explore only
configurations from the schematic area delimited by the II;. If the II; are
close (for example in the case of real applications), then the resulting search
space is significantly reduced.

3.2 Probabilistic population-based local search

Traditionally, descent algorithms are sensitive to either stochastic factors or
initial configurations and consequently may not be sufficienty robust — that is,
different executions may diverge — although the SW mechanism and the use
of a large neighborhood can reduce this drawback. A commonly used solution
is to perform several descents from different initial configurations (different
replications in a multi-start descent process). In genetic local search algo-
rithms, local search processes and crossovers between elements (individuals)
of a set or multiset of current configurations (population) provide intensifi-
cation and diversification phases.

A local search process applied to many independant replications is some-
times called a population-based local search even though there are no interac-



tion between individuals [13]. Here we do not use any crossover operations,
but simulate an alternative evolutionary process in order to accelerate the
searches and to make multi-start descents more convergent.

We introduce a probabilistic population-based local search algorithm which
favours, at each step of the search, the selection of most pertinent neighbors
[7] in respect to the population. Structural information about each individ-
ual is used to estimate a selection probability at each step of the search. In
this process, all replications are dependant, while the descents are carried
out simultaneously.

In this section we present a multi-start descent for MGP. We use the de-
scent mechanism presented in section [3.1l adding to each neighbor a selection
probability.

Let P be the population of our population-based descent, which initially
contains individuals taken from {II;}. Now let us consider a probabilistic
function p : 7, X 7, X 7T — 0, 1], such that p(IL, I, P\ {II}) gives a selec-
tion probability of IT' € R!(II). Such a probabilistic function is quite similar
to the one used for simulated annealing move strategy. The difference here is
that only better or equivalent neighbors are accepted by the move strategy,
whereas neighbors are generated by a probability distribution (probabilistic
neighborhood [11]). The aim is not to escape to local optima, but to favour
neighbors which share properties with other individuals in P.

This probabilistic function is connected to the notion of adjacencies, that
we define in the way analogous to Nadeau and Taylor [12]:

Definition 1 Two consecutive elements m; and w11 of a chromosome m € 11
are said to be adjacent in II. We note this adjacency by (m;.mi11)-

We consider additional adjacencies at the extremities of each chromo-
some by introducing marker 0. For a chromosome (7, ...,m,,), two adja-
cencies are added: (0.m;) and (7,,,.0). Notice that (m;.7;) = (—7;. — m;) and
(0.m;) = (—m;.0). Finally, we note A(II) the set of all adjacencies in II. We
have |A(IT)] = n + N (n is the number of markers and N the number of
chromosomes).

Each move (rearrangement) breaks one (fission) or two (reversal, fusion,
reciprocal translocation) adjacencies. The probabilistic neighborhood en-
courages adjacencies which are not, or are less, represented in the population
to be broken. The probabilistic neighbor selection operates as follows: let



I € RYID); if ¢(II') < ¢(II), then IT' replaces IT in P in function of the
proportional representation of the broken adjacencies in P\ {II}:

_ H{I" e PAAIT}, (AQT) \ AT)) N AIT) # 03

p(anlvp\{H}): 1 I'P‘_l

Algorithm [] provides an overall view of our probabilistic population-based
descent we called FAUCILS for Fast Ancestor (inference) Using Convergent
and Intelligent Local Search.

Algorithm 1
Require: {II;,...1I}: a set of & multichromosomal genomes of size n; l.k:
the size of the population; nbit: the number of descent iterations.
Ensure: an approximate median genome set P
let P be the multiset of the current genomes population, which initially
contains [ copies of each II;.
let numit < 0 be the number of performed local search iterations
while numit < nbit do
for all IT € P do
loop
randomly select IT' € R (IT)
break with probability p(IL, I, P \ {II})
end loop
if ¢(II') < ¢(I1) then
IT 1T
end if
end for
numsit «— numit + 1
end while
return P = argmingp o(I1)

4 Experiments

For experiments we use different kinds of instances: real and random ones,
with different numbers of genes and chromosomes by genome.



Instance | & n FAUCILS MGR MGR-H1 A
Db f bPm Pw o CPU [ CPU [ CPU

K135 5 135 | 281 7/20 281.7 | 282 | 0.5 | 42m - - - - -
K135-1 3 135 | 168 1/20 1706 | 172 | 1.1 15m 177 355m 178 44m -9
K135-2 3 135 | 115 5/20 116.1 | 117 | 0.8 | 14m 119 188m 120 6m -4
K135-3 3 135 | 150 1/20 151.9 | 153 | 0.7 | 15m 157 348m 160 60m -7
K135-4 3 135 | 132 | 14/20 | 1323 | 133 | 0.5 | 14m 135 377Tm 136 13m -3
K135-5 3 135 | 166 1/20 168.0 | 169 | 0.9 | 15m 173 400m 175 48m -7
K135-6 3 135 | 110 5/20 111.1 | 112 | 0.8 | 15m 112 148m 114 8m -2
K135-7 3 135 | 160 1/20 161.7 | 164 | 0.9 | 13m 162 300m 172 26m -2
K135-8 3 135 | 185 | 4/20 186.6 | 188 | 1.1 13m 193 527m 194 | 197m -8
K135-9 3 135 | 145 3/20 146.6 | 148 | 1.0 | 13m 154 296m 154 45m -9
K135-10 3 135 | 159 2/20 160.6 | 163 | 0.9 | 15m 167 355m 165 30m -6

K499 5 499 | 564 | 6/20 565.9 | 568 | 1.7 | 98m - - - - -
K499-1 3 499 | 407 | 5/20 408.1 | 410 | 0.9 | 44m / max 413 | 457Tm -6
K499-2 3 499 | 234 1/20 235.0 | 236 | 0.3 | 38m / max 233 | 105m | +1
K499-3 3 499 | 338 6/20 339.1 | 341 | 0.9 | 43m / max 339 | 297m -1
K499-4 3 499 | 263 4/20 263.9 | 265 | 0.6 | 39m / max 262 | 106m | +1
K499-5 3 499 | 372 2/20 373.7 | 375 | 1.0 | 43m / max 375 | 391m -3
K499-6 3 499 181 | 10/20 | 181.6 | 183 | 0.6 | 38m | 179 | 2 days | 179 74m +2
K499-7 3 499 | 375 1/20 377.1 | 379 | 1.0 | 37m / max 381 | 317m -6
K499-8 3 499 | 476 3/20 479.2 | 481 | 1.6 | 40m / max 484 | 823m -5
K499-9 3 499 | 307 | 2/20 310.3 | 310 | 0.9 | 35m / max 309 | 230m -2
K499-10 3 499 | 338 3/20 340.0 | 343 | 1.4 | 42m / max 338 | 251m =

HCM 3 114 48 20/20 48.0 48 0 <Ilm 48 10m 48 <Ilm 0

Table 1: Comparison between FAUCILS and MGR on real instances.¢; is
the best score returned by FAUCILS, f is its frequency, ¢,, is the mean
score, ¢, is the worst score, o is the standard deviation based on 20 different
executions.

4.1 Real instances

First we assess our algorithm FAUCILS on two sets of 10 triplets of yeast
genomes. The data, provided by Génolevures Consortiuml] (GDR CNRS
2354), consists in five sequenced yeasts from the Kluyveromyces clade: Kluyveromyces
lactis (Klla), Saccharomyces kluyveri (Sakl), Zygosaccharomyces rouzii (Zyro),
Ashbya gossypii (Ergo) and Kluyveromyces thermotolerans (Klth). From
these data, two sets of permutations have been computed: the first one with
135 markers (K135), and the second one with 499 markers (K499). For the
comparison with MGR, which calculates only 3-genomes medians (N = 3),
we separate in ten instances each possible triplet of genomes: Klla-Sakl-Zyro
is K135-1 and K499-1, Klla-Sakl-Ergo is K135-2 and K499-2, ... These five
genomes have respectively 6, 8, 7, 6 and 8 chromosomes.

Thttp://www.genolevures.org
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We add a real test instance composed by the genomes of Human, Cat and
Mouse, and available on the MGR web page@.

Table[Ilshow performances of FAUCILS and MGR on these real instances.
FAUCILS is a stochastic algorithm, and two executions may return different
results ; for each instance we perform executions. Table [I] indicates the
best results ¢, of 20 executions, their frequency f, the mean scores ¢,,, the
worst scores ¢,,, the standard deviations ¢ and the mean computation times
of one execution. FAUCILS was run with its default parameters: [ = 3
(i.e. a population size of 9 when k = 3), and one million LS iterations
(nbit); MGR was first run with its default parameters, and secondly with the
heuristic option H1 (MGR-H1) for speeding up the search. Each execution
was performed on a node of Grid’50007 and the computational time limit per
compute node was fixed to one week. In all tables, A gives the difference
between the best score returned by MGR and the best score returned by
FAUCILS.

From Table[dlone observes that FAUCILS computes better median genome
than MGR. For all the K135 instances, FAUCILS performs better MGR with
5.9 rearrangements less per instance for the bests runs, and 4.4 rearrange-
ments less in the mean for all the 200 runs (10 x 20) with low computation
times (about 15 minutes against hours for MGR). The MGR H1 heuristic
does speed up the program, but the returned solutions are less competi-
tive (except for K135-10 where MGR-H1 beats MGR with default settings).
When the number of markers is big (499), MGR needs to be used with its
speed resolution heuristic to complete the search, and for these instances
FAUCILS and MGR are more comparable in term of scores, although FAU-
CILS remains better in mean and faster.

Finally, FAUCILS is also robust with more than three genomes (instances
K135 and K499) since the returned solutions have very close scores. The
increase of the computation time mainly depends on the population size
parameter, which can be reduced.

4.2 Random instances

In order to assess the performance of our population-based local search al-
gorithm in respect of the structure and the size of the instance, we generate

Zhttp:/ /nbcr.sdsc.edu/ GRIMM /mgr.cgi
3https://www.grid5000.fr
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Instance | m N FAUCILS MGR MGR-HI | .

% i ¢m | dw | © [CPU| § | CPU | 4 | CPU
R50-1 | 50 i 79 | 2/20 | 80.6 | 82 |08 | 4m | 82 | 6m | 83 | 2m | -3
R50-2 | 50 | 19 | 80 | 1/20 | 81.5 | 82 | 0.6 | 6m | 87 | 5m | 8 | 2m | -7
R50-3 | 50 | 37 | 80 | 6/20 | 80.8 | 82 | 0.6 | 6m | 8 | 7m | 8 | 1m | -4
R50-4 | 50 | 55 | 79 |5/20| 802 | 81 |08 | 6m | 8 | 8m | 84 | 1m | -4
R100-1 | 100 | 1 | 171 | 1/20 | 178 | 1756 | 1.0 | 8m | 175 | 80im | 177 | 126m | -4
R100-2 | 100 | 2-10 | 166 | 1/20 | 168.8 | 170 | 1.1 | 10m | 176 | 250m | 178 | 226m | -10
R100-3 | 100 | 37 | 170 | 2/20 | 171.9 | 174 | 1.2 | 10m | 174 | 310m | 179 | 139m | -4
R100-4 | 100 | 55 | 166 | 1/20 | 169.8 | 172 | 1.5 | 10m | 169 | 464m | 171 | 170m | -3
R200-1 | 200 | 1 | 354 | 1/20 | 357.2 | 362 | 1.9 | 16m | / | max | / | max | -
R200-3 | 200 | 10 | 351 | 1/20 | 356.1 | 360 | 20 | 19m | / | max | / | max | -
R200-4 | 200 | 11-20 | 344 | 2/20 | 347 | 350 | 1.7 | 2im | / | max | 366 | 4 days | -22
R500-1 | 500 | 1 | 924 | 1/20 | 9282 | 932 | 21 | 37m | / | max | / | max | -
R500-2 | 500 | 10 | 942 | 2/20 | 9454 | 950 | 23 | 42m | / | max | / | max | -
R500-2 | 500 | 18-44 | 936 | 1/20 | 9427 | 947 | 3.1 | 40m | / | max | / | max | -
Table 2: Comparison between FAUCILS and MGR on random instances

: FAUCILS MGR MGR-H1
Instance n N div % f - bu > PO ? PO ¢ PO A
S100-10-1 | 100 | 1 | 10 | 10 | 20/20 | 10.0 | 10 | 0 | <im | 10 | <Im | 10 | <Im | =
$100-10-2 | 100 | 5 | 10 | 10 |20/20 | 100 | 10 | 0 | <Im | 10 | <lm | 10 | <Im | —
$100-10-3 | 100 | 10 | 10 | 10 | 20/20 | 100 | 10 | 0 | <lm | 10 | <lm | 10 | <lm | =
S100-50-1 | 100 | 1 | 50 | 50 | 20/20 | 50.0 | 50 | 0 | <im | 50 | 8m | 51 | <im | =
$100-50-2 | 100 | 5 | 50 | 49 | 20/20 | 49.0 | 49 | 0 | <Im | 49 | 8m | 49 | <Im | =
$100-50-3 | 100 | 10 | 50 | 49 | 20/20 | 49.0 | 49 | 0 | <im | 49 | 13m | 49 | 1m | =
S100-100-1 | 100 | 1 | 100 | 95 | 7/20 | 95.7 | 97 | 0.6 | <im | 97 | 190m | 98 | 2m | -2
$100-100-2 | 100 | 5 | 100 | 95 | 2/20 | 964 | 98 | 0.7 | <im | 96 | 55m | 98 | 2m | -1
$100-100-3 | 100 | 10 | 100 | 96 | 4/20 | 96.9 | 98 | 05 | <im | 99 | 7om | 99 | 4m | -3
S100-200-1 | 100 | 1 | 200 | 155 | 1/20 | 1586 | 160 | 1.4 | 5m | 163 | 978m | 166 | 65m | -8
$100-200-2 | 100 | 5 | 200 | 145 | 1/20 | 146.6 | 148 | 0.7 | 5m | 151 | 331m | 151 | 67m | -6
$100-200-3 | 100 | 10 | 200 | 143 | 1/20 | 145.7 | 154 | 2.2 | 5m | 150 | 114m | 154 | 78m | -7

Table 3: Comparison between FAUCILS and MGR on simulated instances

two types of random instances.

First, we use completely random instances (R) containing a specified num-
ber of markers, and a minimum and maximum number of chromosomes by
genome (V).

On these instances of size 50 and 100, FAUCILS obtains better results
than MGR systematically (see Table[2). For larger instances, only one MGR,
run ended, with an uncompetitive result (A = —22). These instances seem
to be difficult because of their structure: each genome is a random point of
Tn, and the MGR algorithm seems very dependant on the structure of each
instance (see the divergences between all computational times on tables[I] 2]
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and [3)).

In order to estimate the impact of the structure of the instance, we gener-
ate simulated instances (S), which distances between genomes are bounded.
An arbitrary ancestral genome is generated from which a specified number
of random rearrangements are applied to give three genomes. We specify the
number of genes (n) and chromosomes (N), and the number of rearrange-
ments done during the simulation (r); this parameter is an upper bound of
the optimal median genome score.

The results are given in table Bl We can see that, with » = 10 or r = 50,
instances are very easy to solve. But when the distances between genomes
increase (r = 100 and r = 200), FAUCILS is very competitive and can find in
short computation time solutions considerably better than MGR. Moreover,
the algorithm is robust as small values of o show. For these instances (S),
we have to reduce the number of local search iterations to 2000.r for an
equivalent efficiency.

The evolution of the ratio ¢/r gives an empirical indication of the struc-
ture of the search space. Indeed, for » = 200, the minimal number of re-
arrangements required for reconstructing an evolutionary scenario is about
25% lower than to the number of rearrangements made during the simula-
tion. Adding to the relative difficulty to find near-optimal genomes for these
instances, we can presume that this ratio represents the quantity of lost infor-
mation and can be a good indicator for comparing the difficulty of simulated
instances.

Finally, we have executed rEvoluzer [2] on each unichromosomal instance:
5100-10-1, S100-50-1, S100-100-1, S100-200-1, R50-1, R100-1, R200-1, R-500-
1. Except for the three first instances, where rEvolzer found in few seconds
or minutes the sames scores as FAUCILS (10, 50, 95), the program did not
returned any solution for the five other instances, even given one week of
computation.

4.3 Influence of the probabilistic neighborhood

One of the main originalities of FAUCILS is that neighbors are selected with
a non-uniform probability. The foremost aim is to select more pertinent
neighbors as a function of the similarities between individuals in the cur-
rent population. Since the population is initialized by the given genomes
(instance), the probabilistic selection will have a larger impact on structured
instances, that is when genomes shared adjacencies; it is notably the case of
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Figure 2: Influence of the probabilistic neighbor selection on real instances:
evolution of the minimum and average population score during the search

real data instances.

FigureRlshows the evolution of the minimum score (in the left) and the av-
erage score of all individuals (in the right) during the search for the complete
Kluyveromyces genomes instances (K135 at the top, K499 at the bottom).
We compare the probabilistic descent (algorithm/[I]) to the same search with-
out a probabilistic selection (in this case each p(II, IT', P\ {II}) = 1, the search
is a simple multi-start FI+SW descent). On both instances the probabilistic
selection, which one can view as a dynamic neighborhood reduction, allows
the population to converge very quickly without efficiency loss. While the

12



best individual entire population

T T T T T
with probabilistic selection with probabilistic selection

with uniform selection -------

evaluation
evaluation

with uniform selection ---

0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000
iterations iterations

Figure 3: Influence of the probabilistic neighbor selection on simulated in-
stances

classic search does not stabilize even after one million iterations, the proba-
bilistic one reaches a point of stagnancy after about 200 000 LS iterations.
The efficiency is more significant with the largest instance (499 markers). In-
deed the neighborhood is very large in this case, and such a reduction is more
effective. Moreover, the augmentation of the number of markers for the same
genomes significantly increases the shared adjacencies and consequently the
number of non-selected neighbors.

In Figure Bl one observes a similar convergence on a simulated multi-
genome instance: 10 genomes obtained after 500 random rearrangements
from an initial genome of size 100. On this easier instance, less than 10 000
LS iterations (a few seconds of computation) are necessary to converge to
supposed optimal solutions.

At the contrary, on completely random instances (figure (), both mech-
anisms have the same efficiency. Indeed, such instances have insignificant
numbers of shared adjacencies, and the probabilistic selection has no effect.
This random instance has the same size than the simulated one (used in fig-
ure [B). We show only the average scores evolution, because for this instance
the minimum scores can differ execution to execution independently from the
mechanism used.

This study show that this probabilistic population-based local search add
semantics to the search in order to reduce the neighborhood. It takes advan-
tage to the structure of the instance for a quick convergence of the population.

13
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5 Conclusion

In this paper we propose a new efficient algorithm for the resolution of the
Median Genome Problem (MGP) in the general case. We have notably intro-
duced an novel way for speeding up and making more convergent multi-start
descents for the resolution of MGP, especially for real structured instances.
The key idea is to use a probabilistic neighborhood which evolves during the
search according to the partial results of all descents performed simultane-
ously.

Experiments realized both on real and random instances show that our
software FAUCILS is able to find largely better solutions than MGR, the
current reference in the domain. Moreover, this local search approach is very
fast and scalable: contrary to other existing techniques, FAUCILS can treat
an unbounded number of multichromosomal genomes, which may contain
hundred or thousands of markers. Future work will involve finding ways to
evaluate the quality of solutions in the case of big instances, and to extend
this MGP algorithm for the resolution of MGRP. The Median Genome Rear-
rangement Problem is a very hard computational problem of which existing
algorithms calculate multiple median genomes for its resolution.
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