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Thermophoresis in colloidal suspensions driven by Marangoni forces

Alois Würger
CPMOH, CNRS�Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France

In a hydrodynamic approach to thermophoretic transport in colloidal suspensions, the solute
velocity u and the solvent �ow v(r) are derived from Stokes�equation, with slip boundary conditions
imposed by thermal Marangoni forces. The resulting �uid velocity �eld v(r) signi�cantly di¤ers from
that induced by an externally driven particle. We �nd in particular that thermophoresis due to
surface forces is insensitive to hydrodynamic interactions. As a consequence, the thermal di¤usion
coe¢ cient DT of polymer solutions is independent of molecular weight and concentration.
PACS : 66.10.Cb; 82.70.Dd; 61.25.Hq

Thermophoresis describes the �ow induced by a ther-
mal gradient in a complex �uid. This �Soret e¤ect�has
been observed for polymer solutions and suspensions of
bubbles and colloidal particles [1�3]. Recent progress in
micro�uidics and optical detection techniques revealed
surprising dependencies on material parameters of solute
and solvent [4�15], and opened possible applications such
as thermally driven segregation of macromolecular solu-
tions [8, 10] and pattern formation [14].
Despite the many data available, the physcial mech-

anisms of thermophoresis in liquids are not well under-
stood, and there seems to be no generally accepted pic-
ture for the thermal driving forces. Particle motion in
non-uniform gases is well described by kinetic theory
[16, 17]. In liquids, however, surface forces are essential,
and thermophoresis may be viewed as a Marangoni e¤ect
requiring a hydrodynamic treatment [1, 18, 19]. Because
of the inhomogeneous temperature, equilibrium thermo-
dynamics do not apply, and the steady state has to be
characterized in terms of the mechanical equilibrium of
hydrodynamic stress and surface forces.
Weakly perturbed out-of-equilibrium systems are well

described by Onsager�s linear relations for the irreversible
�ows and the underlying forces [20]. In the case of ther-
mophoresis, the particle current is determined by the gra-
dients of number density n and temperature T ,

J = �Drn� nDTrT; (1)

where D and DT are translational and thermal di¤u-
sion coe¢ cients. In order to relate these quantities to the
physical properties of the solute and the solvent, we split
the current in two parts,

J = nu� �r�; (2)

where the phoretic velocity u arises from solute-solvent
interactions and the remainder accounts for the di¤u-
sive �ow due to a non-homogeneous osmotic pressure �
and mobility �. For non-interacting particles one has
u = 0 and � = nkBT ; comparing (1) and (2) one
�nds D = �kBT and DT = �kB , and the Soret coef-
�cient ST = DT =D = 1=T . As evidence for the impor-
tance of interactions, we note that measured values of
DT are much larger than �kB and may take both signs,
i.e., the solute migrates towards colder or warmer regions
[10, 11, 13].

Quite generally, phoretic transport occurs if physi-
cal parameters such as temperature or composition vary
along the particle surface and induce a tangential force
df on the area element dS. In a mesoscopic description,
the �uid is subject to an opposite stress �df=dS corre-
sponding to the gradient of the surface energy 
 at an
idealized phase boundary [21, 22]; in the case of a non-
uniform temperature one has

�df=dS =rk
 = 
TrkT; (3)

where rkT is the gradient parallel to the surface and

T = d
=dT .
Since heat propagation is much faster than particle mi-

gration, the temperature �eld may be taken as station-
ary. Starting from the overall thermal gradient of the
�uid rT = Txex with constant Tx, the heat conduction
equation for a spherical particle is readily solved, and the
gradient at the particle surface reads [22]

rkT = �(t �rT )t = ��Tx sin �t;

where � is the polar angle with respect to ex, and t the
related tangent vector. The parameter � = 3�S=(2�S +
�P ) is given by the heat conductivities of solvent and
particle.
In this Letter we start from the hydrodynamic bound-

ary conditions at the particle-�uid interface, derive the
velocity �eld v(r) of the �uid around a particle driven by
the surface force (3), and then obtain the thermodi¤usion
coe¢ cient DT . Surface forces lead to a slip velocity at
the interface, i.e., a jump in the tangential velocity com-
ponent, whereas the normal component is continuous,

n � vjr=a = n � u: (4)

Since there is no external force acting on the particle, the
integrated surface stress vanishes [19],Z

dS� � n = 0: (5)

There is one more boundary condition that depends on
the properties of the solid-�uid interface. In the station-
ary state, the Marangoni force rk
 is counterbalanced
by the o¤-diagonal component of the surface stress [22],

t � (� � n+rk
) = 0: (6)
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Now we determine the velocity �eld v(r) of the �uid
close to a spherical particle of radius a which moves at a
velocity u = uex. We transform to the reference frame in
which the particle is at rest, i.e., û = 0 and v̂(r) = v(r)�
u. At small Reynolds numbers, the steady state �ow is
well described by the Stokes equation �r2v̂ =rP with
r � v̂ = 0 and the solvent viscosity �. From Ref. [22] we
take the solution v̂ = v̂rn+ v̂�t in spherical coordinates,

v̂r = �u cos �
�
1� 2�a

r
+ 2�

a3

r3

�
; (7a)

v̂� = u sin �

�
1� �a

r
� � a

3

r3

�
: (7b)

The radial and tangential unit vectors n = r=r and
t = @n=@� satisfy ex = cos �n � sin �t. The hydrody-
namic pressure reads P (r) = P0 + 2� cos �(�ua=r

2), and
the parameters u; �; � have to be determined from the
boundary conditions (4�6).
The condition of zero radial velocity (4) gives 1�2�+

2� = 0. The stress tensor � = �0 � P consists of the
shear-induced dissipative term �0 and the isotropic hy-
drodynamic pressure P . At the interface r = a, the rele-
vant entries of the former read [22]

�0rr = 2�
@v̂r
@r

; �0r� = �

�
@v̂�
@r

� v̂�
r

�
:

Writing the total stress in (5) as � � n = n�rr + t�r�,
inserting �rr = �0rr � P and �0r�, and integrating over
the surface, one �nds 1 � 5� + 2� = 0. With the above
relation 1� 2�+ 2� = 0 one has

� = 0; � = �1
2
:

Back transformation to the laboratory frame v(r) =
v̂(r) + u yields the �uid velocity

v(r) = u
a3

r3

�
1

2
sin �t+ cos �n

�
; (8)

with the origin at the center of the particle.
We still have to determine the phoretic velocity u.

The balance (6) of the stress �0r� and the Marangoni
force rk
 = (
T�Tx=a) sin �t readily gives 3u=a =
�(
T�Tx=�). Thus the particle velocity reads

u = �a
T�
3�

Tx: (9)

We note the most striking features of the solution (8,9).
First, at the interface the �uid and the particle move

in opposite directions with a �nite slip velocity v̂S , as
illustrated in Fig. 1b; inserting �; � in (7) at r = a
gives v̂S = 3

2u sin �t. Second, the orientational average
h:::i = 1=(4�)

R
d
(:::) of the velocity �eld v(r) vanishes;

with hsin �ti = � 2
3ex and hcos �ni =

1
3ex one �nds

hv(r)i = 0: (10)

FIG. 1: a) Fluid �ow vF around a particle driven at a velocity
uF = �Fext with stick boundary conditions. b) Velocity �eld
v around a particle driven by surface forces, with slip velocity
v̂�jr=a = 3

2
u sin �.

Third, there is no �back�ow�; integrating (8) over the
plane � = �

2 , one obtains the �uid current ��a
2uex,

which exactly cancels that of the particle. Fourth, the
Marangoni force does not modify the hydrodynamic pres-
sure, one has P = P0 everywhere.
It turns out instructive to compare (8,9) with the �ow

of a particle dragged by an external force Fext such as
gravity. In this case the solid-�uid interface is homoge-
neous and requires stick boundary conditions vjr=a = u.
In the steady state, the external force and the integrated
stress cancel, Fext +

R
dS� � n = 0, and one has [22]

�F =
3

4
; �F =

1

4
; uF = �Fext :

The moving particle induces an excess hydrodynamic
pressure P (r) � P0 � 1=r2 and a velocity �eld vF that
satis�es hvF i = (a=r)u and is illustrated in Fig. 1a.
The transport coe¢ cients D and DT are determined

from Eqs. (8,9). Writing the gradient of the osmotic pres-
sure in (2) asr� = �TrT+�nrn, with the shorthand
notation �T = @�=@T , etc., and comparing with (1), we
�nd D = ��n and DT = ��T =n+a
T�=3�. Since D and
DT are linear-response coe¢ cients, the pressure deriva-
tives �n and �T can be evaluated in the framework of
equilibrium thermodynamics. In terms of the virial ex-
pansion for the pressure � = nkBT (1 + nB + :::), with
B = 1

2

R
dV (1� e�v(r)=kBT ) and the pair potential v(r),

we obtain the translational di¤usion coe¢ cient

D = �kBT (1 + 2nB + :::) ; (11)

which turns out to be insensitive to Marangoni e¤ects.
A more complicated expression arises for the thermal

di¤usion coe¢ cient

DT = �kB (1 + nB + nTBT + :::) +
a
T�

3�
: (12)

The �rst term describes the entropic, or di¤usive, contri-
bution to thermophoresis and is always positive, whereas
the second one is proportional to the Marangoni force
parameter 
T which may take both signs. The proper-
ties of D and DT determine directly those of the Soret
coe¢ cient ST = DT =D.
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In liquids hydrodynamic interactions are present, in
addition to the electrostatic, magnetic, and steric forces
accounted for by the virial coe¢ cient B. For example,
particle sedimentation at a velocity us engenders a �uid
back�ow vs � ��us, where � = 4

3�a
3n is the volume

fraction of the colloidal suspension. At small � the mo-
bility varies as �(�) = �0(1 � ��), with the bare value
�0 = 1=(6��a) and a numerical constant � � 1 [23]. The
resulting modi�cation of the entropic contribution � �kB
to DT is discussed in detail in [24].
Yet thermophoresis of most colloidal suspensions is

driven by surface forces, DT = a
T�=3�, and the di¤u-
sive term � �kB of (12) is generally small. We consider
the hydrodynamic e¤ects on the driven motion of a parti-
cle at r0 that experiences the velocity �eld created by its
neighbors, u+

P
n v(rn� r0). In a complex �uid there is

no orientational order; from Eq. (10) it follows that the
angular average of the drag �eld is zero, hv(rn � r0)i = 0.
Thus each particle drifts with mean velocity u = uex and
we conclude that thermophoresis driven by surface forces
is not a¤ected by hydrodynamic interactions.
Now we consider solutions of �exible polymers. Each

molecular chain consists of N beads of e¤ective radius
a at position rn; the average con�guration is described
by a gyration radius R that scales as R � aN� where
� � 3

5 in a good solvent and � �
1
2 for theta conditions

[25]. Hydrodynamic interactions reduce the mobility to
the value � = �=(�R) with � � 1, i.e., the polymer dif-
fuses like a spherical particle of size R and drags a �uid
volume � R3, as shown in Fig. 2a. As a consequence,
the di¤usion coe¢ cient D and the di¤usive part � �kB
of DT vary with the molecular weight as � N�� .
A totally di¤erent picture arises for surface forces, i.e.,

for the last term in (12). The �uid velocity induced by
the migrating polymer is given by the superposition

V(r) =
X
n

v(r� rn):

Because of (10), the mean �ow of the surrounding �uid
vanishes, hVi = 0. In the frame attached to the poly-
mer this means that Marongoni forces do not retain the
�uid volume within the gyration radius. As illustrated in
Fig. 2b, the �uid �ows through the polymer coil without
signi�cant perturbation.
The velocity of a given monomer n is obtained by

adding to the single-bead velocity u the �ow induced by
the neighbors,

Un = u+
X
m6=n

v(rn � rm):

The statistical average over the polymer con�gurations
corresponds to performing the orientational mean (10),

hUni = u: (13)

Thus each monomer drifts with mean velocity u, and so
does the polymer as a whole, independently of its molec-
ular weight and its branching structure. This remarkable

FIG. 2: Fluid velocity �eld v̂(r) in the frame attached to a
soluted polymer. a) Stick boundary conditions, applying to
self-di¤usion and externally driven motion. Because of hy-
drodynamic interactions, the polymer retains a �uid volume
� R3. b) In the case of surface forces, there are no hydrody-
namic interactions, and the �uid passing through the polymer
is hardly perturbed, i.e., v̂ = �u almost everywhere.

result had been inferred by Brochard and de Gennes from
general properties of heat �ow and from symmetry rela-
tions for the Onsager coe¢ cients [26]. Here it has been
derived explicitly from the zero mean �ow (10) which is
closely related to the absence of hydrodynamic interac-
tions. (In contrast, hydrodynamic interactions are re-
sponsible for volume-fraction dependent mobility �(�) of
colloidal suspensions and for the variation � � N�� with
the molecular weight of polymers.) A phoretic mobility
�ph may be de�ned through u = �phf , where the force
acting on a single bead is given by the surface integral
of the Marangoni stress (3), f = � 8

3�a
2
T�Txex. One

readily �nds that �ph = 1=(8��a) depends only on the
solvent viscosity and the e¤ective size of a monomer. Ex-
perimentally, Eq. (13) has been shown to hold for vari-
ous polymers and alkanes in di¤erent solvents over a wide
range of parameters [2, 4�7].
We brie�y discuss the physical origin of the surface

force (3). On a microscopic level, the interface consists
of a boundary layer of thickness � with an anisotropic
pressure that results in a surface excess energy [27, 28].
A lateral temperature gradient causes a shear stress; the
�uid velocity vanishes at the solid surface but rapidly
increases across the boundary layer, and attains the slip
value at distances beyond �.
The best studied example of thermal Marangoni forces

arises from a surface charge � in contact with an elec-
trolyte of Debye length �. For not too small particles,
a > �, the electric �eld reads E = n(�=")e�y=�, with
y = r � a. The normal and parallel electric stress com-
ponents T? = 1

2"E
2 = �Tk result in the anisotropy

T? � Tk = "E2 and the e¤ective surface energy


 =

Z 1

0

dy(T? � Tk) =
�2�

2"
: (14)

Both � �
p
"T and the dielectric constant " depend on

temperature; at constant surface charge � one �nds 
T =
1
2 (
=T )(1 + �), with � = �d ln "=d lnT � 1:4 for water
[29]. (Note that for constant surface potential  0, one has
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 = 1
2 

2
0"=� and the opposite sign, 
T = � 1

2 (
=T )(1+�)
[18].) Eqs. (12,14) correct a previous result [15, 18, 30] by
a numerical factor 12� =

3
2�S=(2�S+�P ); for suspensions

of solid nanoparticles, the solute thermal conductivity
�P may signi�cantly exceed that of the solvent and thus
reduce thermophoresis [31].
Further contributions to 
 are the interface tension and

the energy of surfactants grafted on the particle [13, 32].
For most materials the interface energy decreases with
temperature according to the law 
 = 
0(1� T=T0) with

0 � 100 mJ/m2 and T0 � 104 K. Adding the charge and
interface energy, one obtains


T =
�2�

4"T
(1 + �)� 
0

T0
: (15)

For zero surface charge � = 0, the interface tension term

0=T0 � 10�5J/(m2K) results in 
T < 0 and in an inverse
Soret e¤ect, DT < 0, i.e., the particles migrate to warmer
regions. With typical parameters � = 10�2e=nm2 and
� = 10 nm, the charge term �2�=4"T � 10�4J/(m2K)
dominates and leads to a positive thermodi¤usion coef-
�cient DT > 0. This rule is qualitatively con�rmed by
various experiments on suspensions of micelles, polymers,

and solid nanoparticles, in water and organic solvents
[9, 13, 15]. Uncertainties arise mainly from the temper-
ature dependence of the interface tension and from the
contribution of surface coating. A quantitive description
has been achieved for charged particles [9, 15, 30], con-
�rming in particular the dependency on particle size and
Debye length DT / a�. For a > �, our previous result
ST / a2� [30] compares favorably with several measur-
ments, as shown in Fig. 1 of Ref. [33].

We brie�y summarize the main results. (i) Stokes�
equation with slip boundary conditions (4�6) results in a
�ow �eld v(r) � 1=r3 with zero orientational average. (ii)
In colloidal suspensions, the Marangoni term a
T�=3� in
general exceeds the di¤usive contribution to DT . (iii)
The Marangoni term is insensitive to hydrodynamic in-
teractions and does not depend on the volume fraction
�. (iv) As a consequence, thermophoresis in polymer
solutions is independent of molecular weight and concen-
tration.
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