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In a hydrodynamic approach to thermophoretic transport in colloidal suspensions, the solute velocity u and the solvent ‡ow v(r) are derived from Stokes'equation, with slip boundary conditions imposed by thermal Marangoni forces. The resulting ‡uid velocity …eld v(r) signi…cantly di¤ers from that induced by an externally driven particle. We …nd in particular that thermophoresis due to surface forces is insensitive to hydrodynamic interactions. As a consequence, the thermal di¤usion coe¢ cient DT of polymer solutions is independent of molecular weight and concentration.

Thermophoresis describes the ‡ow induced by a thermal gradient in a complex ‡uid. This "Soret e¤ect" has been observed for polymer solutions and suspensions of bubbles and colloidal particles [1][2][3]. Recent progress in micro ‡uidics and optical detection techniques revealed surprising dependencies on material parameters of solute and solvent [4][5][6][7][8][9][10][11][12][13][14][15], and opened possible applications such as thermally driven segregation of macromolecular solutions [8,10] and pattern formation [14].

Despite the many data available, the physcial mechanisms of thermophoresis in liquids are not well understood, and there seems to be no generally accepted picture for the thermal driving forces. Particle motion in non-uniform gases is well described by kinetic theory [16,17]. In liquids, however, surface forces are essential, and thermophoresis may be viewed as a Marangoni e¤ect requiring a hydrodynamic treatment [1,18,19]. Because of the inhomogeneous temperature, equilibrium thermodynamics do not apply, and the steady state has to be characterized in terms of the mechanical equilibrium of hydrodynamic stress and surface forces.

Weakly perturbed out-of-equilibrium systems are well described by Onsager's linear relations for the irreversible ‡ows and the underlying forces [START_REF] De Groot | Non-equlibrium thermodynam-ics[END_REF]. In the case of thermophoresis, the particle current is determined by the gradients of number density n and temperature T ,

J = Drn nD T rT; (1) 
where D and D T are translational and thermal di¤usion coe¢ cients. In order to relate these quantities to the physical properties of the solute and the solvent, we split the current in two parts,

J = nu r ; (2) 
where the phoretic velocity u arises from solute-solvent interactions and the remainder accounts for the di¤usive ‡ow due to a non-homogeneous osmotic pressure and mobility . For non-interacting particles one has u = 0 and = nk B T ; comparing (1) and (2) one …nds D = k B T and D T = k B , and the Soret coef-…cient S T = D T =D = 1=T . As evidence for the importance of interactions, we note that measured values of D T are much larger than k B and may take both signs, i.e., the solute migrates towards colder or warmer regions [10,11,13].

Quite generally, phoretic transport occurs if physical parameters such as temperature or composition vary along the particle surface and induce a tangential force df on the area element dS. In a mesoscopic description, the ‡uid is subject to an opposite stress df =dS corresponding to the gradient of the surface energy at an idealized phase boundary [START_REF] Levich | [END_REF][START_REF] Landau | Fluid Mechanics[END_REF]; in the case of a nonuniform temperature one has

df =dS = r k = T r k T; (3) 
where r k T is the gradient parallel to the surface and

T = d =dT .
Since heat propagation is much faster than particle migration, the temperature …eld may be taken as stationary. Starting from the overall thermal gradient of the ‡uid rT = T x e x with constant T x , the heat conduction equation for a spherical particle is readily solved, and the gradient at the particle surface reads [START_REF] Landau | Fluid Mechanics[END_REF] r k T = (t rT )t = T x sin t;

where is the polar angle with respect to e x , and t the related tangent vector. The parameter = 3 S =(2 S + P ) is given by the heat conductivities of solvent and particle.

In this Letter we start from the hydrodynamic boundary conditions at the particle- ‡uid interface, derive the velocity …eld v(r) of the ‡uid around a particle driven by the surface force (3), and then obtain the thermodi¤usion coe¢ cient D T . Surface forces lead to a slip velocity at the interface, i.e., a jump in the tangential velocity component, whereas the normal component is continuous,

n vj r=a = n u: (4) 
Since there is no external force acting on the particle, the integrated surface stress vanishes [19],

Z dS n = 0: (5) 
There is one more boundary condition that depends on the properties of the solid- ‡uid interface. In the stationary state, the Marangoni force r k is counterbalanced by the o¤-diagonal component of the surface stress [START_REF] Landau | Fluid Mechanics[END_REF],

t ( n + r k ) = 0: (6) 
Now we determine the velocity …eld v(r) of the ‡uid close to a spherical particle of radius a which moves at a velocity u = ue x . We transform to the reference frame in which the particle is at rest, i.e., û = 0 and v(r) = v(r) u. At small Reynolds numbers, the steady state ‡ow is well described by the Stokes equation r 2 v = rP with r v = 0 and the solvent viscosity . From Ref. [START_REF] Landau | Fluid Mechanics[END_REF] we take the solution v = vr n + v t in spherical coordinates,

vr = u cos 1 2 a r + 2 a 3 r 3 ; (7a) v = u sin 1 a r a 3 r 3 : (7b)
The radial and tangential unit vectors n = r=r and t = @n=@ satisfy e x = cos n sin t. The hydrodynamic pressure reads P (r) = P 0 + 2 cos ( ua=r 2 ), and the parameters u; ; have to be determined from the boundary conditions (4-6).

The condition of zero radial velocity (4) gives 1 2 + 2 = 0. The stress tensor = 0 P consists of the shear-induced dissipative term 0 and the isotropic hydrodynamic pressure P . At the interface r = a, the relevant entries of the former read [START_REF] Landau | Fluid Mechanics[END_REF] 

0 rr = 2 @v r @r ; 0 r = @v @r v r
Writing the total stress in (5) as n = n rr + t r , inserting rr = 0 rr P and 0 r , and integrating over the surface, one …nds 1 5 + 2 = 0. With the above relation 1 2 + 2 = 0 one has = 0; = 1 2 :

Back transformation to the laboratory frame v(r) = v(r) + u yields the ‡uid velocity

v(r) = u a 3 r 3 1 2 sin t + cos n ; (8) 
with the origin at the center of the particle. We still have to determine the phoretic velocity u. The balance (6) of the stress 0 r and the Marangoni force r k = ( T T x =a) sin t readily gives 3u=a = ( T T x = ). Thus the particle velocity reads

u = a T 3 T x : (9) 
We note the most striking features of the solution (8,9). First, at the interface the ‡uid and the particle move in opposite directions with a …nite slip velocity vS , as illustrated in Fig. 1b; inserting ; in (7) Third, there is no "back ‡ow"; integrating (8) over the plane = 2 , one obtains the ‡uid current a 2 ue x , which exactly cancels that of the particle. Fourth, the Marangoni force does not modify the hydrodynamic pressure, one has P = P 0 everywhere.

It turns out instructive to compare (8,9) with the ‡ow of a particle dragged by an external force F ext such as gravity. In this case the solid- ‡uid interface is homogeneous and requires stick boundary conditions vj r=a = u. In the steady state, the external force and the integrated stress cancel, F ext + R dS n = 0, and one has [START_REF] Landau | Fluid Mechanics[END_REF] 

F = 3 4 ; F = 1 4 ; u F = F ext :
The moving particle induces an excess hydrodynamic pressure P (r) P 0 1=r 2 and a velocity …eld v F that satis…es hv F i = (a=r)u and is illustrated in Fig. 1a.

The transport coe¢ cients D and D T are determined from Eqs. (8,9). Writing the gradient of the osmotic pressure in (2) as r = T rT + n rn, with the shorthand notation T = @ =@T , etc., and comparing with (1), we …nd D = n and D T = T =n+a T =3 . Since D and D T are linear-response coe¢ cients, the pressure derivatives n and T can be evaluated in the framework of equilibrium thermodynamics. In terms of the virial expansion for the pressure

= nk B T (1 + nB + :::), with B = 1 2 R
dV (1 e v(r)=k B T ) and the pair potential v(r), we obtain the translational di¤usion coe¢ cient

D = k B T (1 + 2nB + :::) ; (11) 
which turns out to be insensitive to Marangoni e¤ects. A more complicated expression arises for the thermal di¤usion coe¢ cient

D T = k B (1 + nB + nT B T + :::) + a T 3 : (12) 
The …rst term describes the entropic, or di¤usive, contribution to thermophoresis and is always positive, whereas the second one is proportional to the Marangoni force parameter T which may take both signs. The properties of D and D T determine directly those of the Soret coe¢ cient S T = D T =D.

In liquids hydrodynamic interactions are present, in addition to the electrostatic, magnetic, and steric forces accounted for by the virial coe¢ cient B. For example, particle sedimentation at a velocity u s engenders a ‡uid back ‡ow v s u s , where = 4 3 a 3 n is the volume fraction of the colloidal suspension. At small the mobility varies as ( ) = 0 (1 ), with the bare value 0 = 1=(6 a) and a numerical constant 1 [START_REF] Russell | Colloidal Dispersions[END_REF]. The resulting modi…cation of the entropic contribution k B to D T is discussed in detail in [START_REF] Dhont | [END_REF].

Yet thermophoresis of most colloidal suspensions is driven by surface forces, D T = a T =3 , and the di¤usive term k B of ( 12) is generally small. We consider the hydrodynamic e¤ects on the driven motion of a particle at r 0 that experiences the velocity …eld created by its neighbors, u+ P n v(r n r 0 ). In a complex ‡uid there is no orientational order; from Eq. ( 10) it follows that the angular average of the drag …eld is zero, hv(r n r 0 )i = 0. Thus each particle drifts with mean velocity u = ue x and we conclude that thermophoresis driven by surface forces is not a¤ected by hydrodynamic interactions. Now we consider solutions of ‡exible polymers. Each molecular chain consists of N beads of e¤ective radius a at position r n ; the average con…guration is described by a gyration radius R that scales as R aN where 3 5 in a good solvent and 1 2 for theta conditions [START_REF] De Gennes | Scaling Concepts in Polymer Physics[END_REF]. Hydrodynamic interactions reduce the mobility to the value = =( R) with 1, i.e., the polymer diffuses like a spherical particle of size R and drags a ‡uid volume R 3 , as shown in Fig. 2a. As a consequence, the di¤usion coe¢ cient D and the di¤usive part k B of D T vary with the molecular weight as N .

A totally di¤erent picture arises for surface forces, i.e., for the last term in (12). The ‡uid velocity induced by the migrating polymer is given by the superposition

V(r) = X n v(r r n ):
Because of (10), the mean ‡ow of the surrounding ‡uid vanishes, hVi = 0. In the frame attached to the polymer this means that Marongoni forces do not retain the ‡uid volume within the gyration radius. As illustrated in Fig. 2b, the ‡uid ‡ows through the polymer coil without signi…cant perturbation. The velocity of a given monomer n is obtained by adding to the single-bead velocity u the ‡ow induced by the neighbors,

U n = u+ X m6 =n v(r n r m ):
The statistical average over the polymer con…gurations corresponds to performing the orientational mean (10),

hU n i = u: (13) 
Thus each monomer drifts with mean velocity u, and so does the polymer as a whole, independently of its molecular weight and its branching structure. This remarkable result had been inferred by Brochard and de Gennes from general properties of heat ‡ow and from symmetry relations for the Onsager coe¢ cients [START_REF] Brochard | [END_REF]. Here it has been derived explicitly from the zero mean ‡ow (10) which is closely related to the absence of hydrodynamic interactions. (In contrast, hydrodynamic interactions are responsible for volume-fraction dependent mobility ( ) of colloidal suspensions and for the variation N with the molecular weight of polymers.) A phoretic mobility ph may be de…ned through u = ph f , where the force acting on a single bead is given by the surface integral of the Marangoni stress (3), f = 8 3 a 2 T T x e x . One readily …nds that ph = 1=(8 a) depends only on the solvent viscosity and the e¤ective size of a monomer. Experimentally, Eq. ( 13) has been shown to hold for various polymers and alkanes in di¤erent solvents over a wide range of parameters [2,[4][5][6][7].

We brie ‡y discuss the physical origin of the surface force (3). On a microscopic level, the interface consists of a boundary layer of thickness with an anisotropic pressure that results in a surface excess energy [27,28]. A lateral temperature gradient causes a shear stress; the ‡uid velocity vanishes at the solid surface but rapidly increases across the boundary layer, and attains the slip value at distances beyond . The best studied example of thermal Marangoni forces arises from a surface charge in contact with an electrolyte of Debye length . For not too small particles, a > , the electric …eld reads E = n( =")e y= , with y = r a. The normal and parallel electric stress components T ? = 1 2 "E 2 = T k result in the anisotropy T ? T k = "E 2 and the e¤ective surface energy

= Z 1 0 dy(T ? T k ) = 2 2" : (14) 
Both p "T and the dielectric constant " depend on temperature; at constant surface charge one …nds T = 1 2 ( =T )(1 + ), with = d ln "=d ln T 1:4 for water [START_REF] Deserno | Electrostatic E¤ ects in Soft Matter and Biophysics[END_REF]. (Note that for constant surface potential 0 , one has = 1 2 2 0 "= and the opposite sign, T = 1 2 ( =T )(1+ ) [18].) Eqs. (12,14) correct a previous result [15,18,[START_REF] Fayolle | [END_REF] by a numerical factor 1 2 = 3 2 S =(2 S + P ); for suspensions of solid nanoparticles, the solute thermal conductivity P may signi…cantly exceed that of the solvent and thus reduce thermophoresis [31].

Further contributions to are the interface tension and the energy of surfactants grafted on the particle [13,32]. For most materials the interface energy decreases with temperature according to the law = 0 (1 T =T 0 ) with 0 100 mJ/m 2 and T 0 10 4 K. Adding the charge and interface energy, one obtains

T = 2 4"T (1 + ) 0 T 0 : (15) 
For zero surface charge = 0, the interface tension term 0 =T 0 10 5 J/(m 2 K) results in T < 0 and in an inverse Soret e¤ect, D T < 0, i.e., the particles migrate to warmer regions. With typical parameters = 10 2 e=nm 2 and = 10 nm, the charge term 2 =4"T 10 4 J/(m 2 K) dominates and leads to a positive thermodi¤usion coef-…cient D T > 0. This rule is qualitatively con…rmed by various experiments on suspensions of micelles, polymers, and solid nanoparticles, in water and organic solvents [9,13,15]. Uncertainties arise mainly from the temperature dependence of the interface tension and from the contribution of surface coating. A quantitive description has been achieved for charged particles [9,15,[START_REF] Fayolle | [END_REF], con-…rming in particular the dependency on particle size and Debye length D T / a . For a > , our previous result S T / a 2 [START_REF] Fayolle | [END_REF] compares favorably with several measurments, as shown in Fig. 1 of Ref. [33].

  FIG. 1: a) Fluid ‡ow vF around a particle driven at a velocity uF = Fext with stick boundary conditions. b) Velocity …eld v around a particle driven by surface forces, with slip velocity v jr=a = 3 2 u sin .

FIG. 2 :

 2 FIG. 2: Fluid velocity …eld v(r) in the frame attached to a soluted polymer. a) Stick boundary conditions, applying to self-di¤usion and externally driven motion. Because of hydrodynamic interactions, the polymer retains a ‡uid volume R 3 . b) In the case of surface forces, there are no hydrodynamic interactions, and the ‡uid passing through the polymer is hardly perturbed, i.e., v = u almost everywhere.

We brie ‡y summarize the main results. (i) Stokes' equation with slip boundary conditions (4)(5)(6) results in a ‡ow …eld v(r) 1=r 3 with zero orientational average. (ii) In colloidal suspensions, the Marangoni term a T =3 in general exceeds the di¤usive contribution to D T . (iii)

The Marangoni term is insensitive to hydrodynamic interactions and does not depend on the volume fraction . (iv) As a consequence, thermophoresis in polymer solutions is independent of molecular weight and concentration.
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