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Curvature-induced capillary interaction of spherical particles at a liquid interface

Alois Würger
CPMOH, CNRS�Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France

We consider a liquid interface with di¤erent principal curvatures �c and �nd that the mere pres-
ence of a spherical particle leads to a deformation �eld of quadrupolar symmetry; the corresponding
�capillary quadrupole moment� is given by the ratio of the particle size and the curvature radius.
The resulting pair interaction of nearby particles is anisotropic and favors the formation of ag-
gregates of cubic symmetry. Since the single-particle trapping energy depends quadratically on
curvature with a negative prefactor, a curvature gradient induces a lateral force that pushes the
particles towards strongly curved regions of the interface. As an illustration we discuss the e¤ects
occuring on a catenoid.

I. INTRODUCTION

Capillary interactions arise from the deformation of a
liquid phase boundary due to the presence of colloidal
particles. They in�uence the phase behavior of two-
dimensional colloids [1] and are relevant for technological
applications such as nanostructuring of surfaces [2�4]. In
the visible range, the balance of gravity and interface
tension gives rise to a variety of phenomena, as a simple
example we note the aggregation of cereals on a bowl of
milk. Tension, weight, and hydrodynamics concur in the
locomotion of water walking insects and in the meniscus
climbing of the larvae of the waterlily leaf beetle [5, 6].
For small particles in the micron or nanometer range,
gravity is negligible and often supplanted by charge ef-
fects. It has been known for a while that two-dimensional
colloidal crystals of ionized particles are stabilized by
electrostatic repulsion [1, 7]. More recently, the exper-
imental observation of an attractive force [8] has stimu-
lated a detailed study of the charge-induced electric stress
on the interface [9�12]; indeed, like charges trapped on
micron-sized water droplets are subject to an attractive
capillary potential that depends on the mean curvature
of the liquid interface [13].
An external force F on a spherical particle �oating on

an interface of tension 
, induces an isotropic deforma-
tion �eld that varies logarithmically with the distance,
� = (F=2�
) ln r [14]. On the other hand, the mere
presence of a non-spherical particle may give rise to an
anisotropic interface deformation; like in bulk elasticity,
the dipolar term vanishes, and in most cases the leading-
order deformation is given by the known quadrupolar
�eld in 2D, � � cos(2')r�2 [15�18]; its prefactor is pro-
portional to the capillary quadrupole moment carried by
the particle. The resulting pair potential is anisotropic
and favors the formation of clusters with strong orienta-
tional order. In recent years, several experimental studies
have con�rmed the relevance of capillary quadrupole in-
teractions [15, 19].
In the examples mentioned so far, capillary phenomena

arise from the properties of the trapped particles, such
as weight, charge, or shape. In other words, a spherical
massless and uncharged particle would not a¤ect the in-
terface. In the present paper, we discuss an exception to

this rule: We show that spherical particles at an inter-
face with two di¤erent principal curvatures interact as
if they carried a capillary quadrupole; the value of the
e¤ective quadrupole moment is given by the ratio of the
particle size and the curvature radius of the interface.
After a general formulation of the problem we perform a
perturbative expansion in terms of the small-gradient ap-
proximation and determine the minimal surface by vary-
ing the deformation �eld at �xed boundary conditions.
The expression for the change of interface area provides
the trapping potential of a single particle and the e¤ec-
tive pair interaction. As an example, we study the lateral
forces on micron sized particles on a catenoid interface,
and �nally discuss related problems occuring for a two-
phase �ow in a microchannel and for the meniscus climb-
ing of water treading insects.

II. THE INTERFACE AREA

Consider a particle trapped at a liquid interface. The
total interface energy E = 
SL + 
1P1 + 
2P2 depends
on the tension of the �uid phase boundary 
, those of
the particle surface in the two liquids, 
1 and 
2, and
on the corresponding areas SL, P1, P2. The global con-
straint of minimum energy readily leads to two local con-
straints, one on the liquid interface and one on the inter-
section of the three surfaces: In the absence of external
forces, the �uid phase boundary satis�es Laplace�s equa-
tion, whereas the contact angle at the particule surface
is given by Young�s relation

cos �0 =

1 � 
2



: (1)

(For j
1 � 
2j > 
 the particle does not stay at the in-
terface but is soluted in one of the �uid phases.) These
conditions do not depend explicitly on the solid-liquid
surface areas P1 and P2; yet they do in an implicit man-
ner, since the contact line, which constitutes the bound-
ary of P1 and P2, is determined by Young�s angle.
We brie�y discuss the simple case of a spherical parti-

cle of radius r0 at a �at liquid interface. Because of the
axial symmetry of the problem, the two constraints given
above are independent of each other. The �at interface
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is still the relevant solution of Laplace�s equation, and
Young�s angle is satis�ed by adjusting the vertical posi-
tion of the particle. Moreover, this angle describes the
position of the contact line with respect to the particle
center; and the contact line is given by a circle of radius

a0 = r0 sin �0:

The presence of the particle reduces the interface area by
a disk of area �a20, corresponding to the trapping energy

�a20.
In this work we consider a more complicated situation

that arises at a curved liquid interface. The trapped par-
ticles reduce the interface area and thus lower its energy.
Because of the �nite curvature, their presence also mod-
i�es the interface pro�le and thus renders the evaluation
of the area signi�cantly more di¢ cult. From Fig. 1 it is
clear that the inhomogeneous curvature tensor breaks the
axial symmetry. As a consequence, the constraints at the
liquid interface and the contact line are no longer inde-
pendent of each other; indeed, Young�s relation (1) leads
to a non-uniform boundary condition for the interface
pro�le which, in turn, results in an interface deforma-
tion.
In mathematical terms, the problem consists in min-

imizing the liquid interface area with the constraint on
the contact angle along the two-phase line at the particle
surface. The area SL of the �uid phase boundary with
N particles is given by the integralZZ

I
dudv

p
g;

which is parameterized by two real variables u and v. The
determinant of the metric tensor,

g = det gij ; gij = @iR � @jR;

is de�ned in terms of the derivatives of the position vector
R(u; v). It turns out convenient to substract from SL the
area S0 of the unperturbed interface without particles,
and to consider their di¤erence S = SL � S0. Starting
from the known parameterization R0(u; v) of the inter-
face in the absence of colloidal particles, and denoting the
corresponding determinant g0, the change of area reads

S =

ZZ
I
dudv

p
g �

ZZ
I+P

dudv
p
g0: (2)

Here P and I denote the range of the parameters u; v
occupied by the particles and the liquid interface, re-
spectively, and I + P accounts for the interface in the
absence of particles. Each particle corresponds to a hole
in the interface, which is bounded by the contact line
@S. Note that S is always negative; for a �at interface
one has g = 1 = g0, and N particles reduce the area by
S = �N�a20.
Evaluation of Eq. (2) requires us to caracterize the

boundary @S and to determine the interface deforma-
tion that satis�es the condition of mechanical equilib-
rium. Fig. 1 shows the intersection of a spherical par-
ticle and a surface of zero mean curvature. One easily

realizes that the contact line is not a circle but a curve
in 3D space, and that the unperturbed interface does not
satisfy Eq. (1). Yet Young�s relation expresses the condi-
tion of mechanical equilibrium that must be satis�ed at
the contact line and thus requires a deformation of the
interface in the vicinity of the particles. This constraint
is implemented through the scalar product of the normal
vector of the particle surface nP and that of the interface
nI . In terms of the function

F (r) = nP � nI � cos �0; (3)

mechanical equilibrium corresponds to F (r) = 0 along
the contact line. Formally, this is achieved by adding to
the interface area a line integral,

S +

I
@S

ds�(r)F (r); (4)

where the function �(r) plays the role of a generalized
Lagrange multiplier. The interface pro�le is determined
by minimizing S and requiring that the functional deriv-
atives with respect to �(r) vanishes.

III. PERTURBATION THEORY

A. The area functional

The above expression for the area takes a simple form
in the Monge gauge, where u and v are Euclidean coor-
dinates that de�ne the plane A tangent to the surface
in a given point, and where w(u; v) is the height of the
surface with respect to the plane A. One readily �nds
the determinant of the metric tensor g = 1 + (rw)2.
Since capillary deformations induced by colloidal par-

ticles are weak in general, we resort to the small-gradient
approximation

jrwj � 1: (5)

where the 2D gradient operator r is de�ned with re-
spect to the plane A. (This inequality is valid at dis-
tances smaller than curvature radii.) Thus the interface

FIG. 1: Contact line of a spherical particle at a curved inter-
face. The axes de�ne the local coordinates u; v; w.
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FIG. 2: Schematic view of a particle of radius r0 at a liquid
interface. �0 and a0 are the contact angle and the radius of the
contact line for a �at interface. w0 describes a curved interface
without particle, w = w0+� accounts for the deformation due
to the particle. � is the polar angle of the deformed contact
line, and a its radial position.

area may be approximated by the �rst terms of a series
in powers of the deformation �eld w and its derivatives.
The determinant reads to quadratic order

p
g = 1 +

1

2
(rw)2 + ::: (6)

It turns out convenient to write the deformation �eld as

w = w0 + �; (7)

where w0 describes the unperturbed surface with the de-
terminant

p
g0 = 1 +

1

2
(rw0)2 + :::;

and where � accounts for the deformation due the pres-
ence of the colloidal particles.
When regrouping the integrals over the interface do-

main I, the area change due to the presence of colloidal
particles takes the form

S =

Z
I
dA (

p
g �pg0)�

Z
P
dA
p
g0:

The second term represents the area occupied by the par-
ticle, whereas the �rst one accounts for the deformation-
induced area di¤erence on the domain I. Inserting
the truncated series for g and g0, the latter becomes
1
2

R
dA
�
(rw)2 � (rw0)2

�
; its sign clearly depends on the

ratio of the gradients of the deformed and unperturbed

surfaces. Using w = w0+�, we thus obtain the functional

S[�] =
1

2

Z
I
dA
�
(r�)2 + 2r� � rw0

�
�
Z
P
dA

�
1 +

1

2
(rw0)2

�
: (8)

We still have to specify the contact line @S and the con-
straint F (r) in terms of the deformation �eld w, and to
give the explicit form of w0.

B. The contact line

In local coordinates, the contact line is determined by
the radial variable a and the height function w evaluated
at the particle surface, ~w = wj@S . For further use, we
express a as a function of ~w and give its power series
trunated at second order. From Fig. 2, one readily �nds
the cosine and the sine of the polar angle � in terms of ~w
and a,

cos � = cos �0 +
~w

r0
; sin � =

a( ~w)

r0
: (9)

Rewriting a( ~w) = r0
p
1� cos2 � as a function of the small

parameter

~w=a0 � 1;

and expanding to quadratic order, one has

a( ~w) = a0 � ~w cot �0 �
1

2

~w2

a0

�
cot2 �0 + 1

�
+ ::: (10)

The vertical and radial coordinates of the contact line,
~w and a, are parameterized by the azimutal angle '; a
schematic view of a( ~w(')) is given in Fig. 3.

C. Boundary condition

Eq. (3) gives the contact angle in terms of the vectors
normal on the particle surface and the liquid interface.
Chosing polar coordinates r; ' in the u � v-plane and
de�ning the corresponding local basis er, e', ew, the
normal vectors read

nP = sin �er + cos �ew; nI = (ew �r ~w) =
p
g:

With the scalar product nP � nI and the geometric rela-
tions (9) we obtain

F (r) =
1

r0
p
g
[ ~w � a( ~w)er � r ~w + (1�

p
g) r0 cos �0] :

Since both a and g depend on ~w, this expression is a
non-linear function of ~w. The linear approximation is
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FIG. 3: The contact line of a spherical particle on a deformed
surface is given by the vertical position ~w and the radial co-
ordinate a( ~w). On a �at interface, the contact line forms a
circle of radius a0 in the u� v-plane.

achieved by inserting the expansions (6) and (10), and
by retaining the leading terms only,

F (r) =
~w(a0; ')

a0
� er � r ~w(r; ')jr=a0 : (11)

Note that this relation applies to the deformation �eld
along the contact line.

D. The unperturbed surface

Since the quantities w0 and � de�ned in (7) turn out to
be of the same order of magnitude, it is justi�ed to treat
them on an equal footing and to expand w0 in terms
of the small gradient approximation (5). Any minimal
surface has zero mean curvature; as a consequence, the
equation of the undeformed surface satis�es r2w0 = 0
and can be cast in the form

w0(r) =
1

2
c
�
u2 � v2

�
+ ::::;

where the principal curvatures at the origin are given
by �c. For later use we rewrite this expression in polar
coordinates, r =

p
u2 + v2 and ' = arctan(v=u), and

thus have

w0(r) =
1

2
cr2 cos(2'): (12)

The condition jrw0j � 1 restricts the validity of the
expansion for w0(r) to distances r within the curvature
radius, r � 1=c. (We have supposed that the principal
curvatures do not vary signi�cantly in this range.)

IV. VARIATIONAL PRINCIPLE

The change of area (8) comprises two terms S = SI +
SP , that involve integrals over the parameter domains I
and P occupied by the liquid interface and the particles,
respectively. Here we derive explicit expressions in terms
of the deformation �eld at the contact line.
Integrating the �rst term in (8) by parts, we �nd

SI =

I
@S

ds �
�
1

2
r� +rw0

�
� � 1

2

Z
dA�r2�:

Since the integrand is already of second order in the small
quantities � and w0, we replace the oriented line element
along the surface boundary @S by the leading term ds =
�era0d', and thus have

SI = �a0
Z 2�

0

d'

�
1

2
@r� + @rw0

�
� � 1

2

Z
dA�r2�:

(13)
The second contribution SP represents the area oc-

cupied by the particle; it is de�ned with respect to the
unperturbed interface and bounded by the contact line
@S. At a �at interface it reads ��a20; we are mainly in-
terested in the small changes that arise from the �nite
curvature of w0 and from the non-circular shape of the
contact line. We evaluate SP for a single particle located
at the origin. In polar coordinates we have dA = d'drr
and (rw0)2 = c2r2, and the radial integral is readily
performed,

SP = �
Z 2�

0

d'

�
1

2
a( ~w)2 +

1

8
c2a( ~w)4

�
:

Inserting (10), expanding to quadratic order in the small
parameters ca0 and ~w=a0, integrating the terms that in-
volve w0 only, and using

R
d'w0 = 0, we �nd

SP = ��a20
�
1 +

1

8
c2a20

�
+

Z 2�

0

d'

�
�a0 cot �0 + �w0 +

�2

2

�
: (14)

Eqs. (13) and (14) explicit the functional dependence
of the area on the interface pro�le �, where the actual
deformation is to be determined by minimizing the sur-
face area. Since SP and the �rst term in SI involve the
deformation at the contact line and thus are �xed by the
boundary condition (11), the variation with respect to �
reduces to

0 =
�S

��
= �r2�; (15)

which is the well-known condition for a minimal surface.
The boundary condition is formally imposed by the

functional derivative �S=�� = 0, which implies F (r) = 0
everywhere along the contact line. Inserting the form
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(12) and the relation dw0=dr = 2w0=r in (11), we obtain
the linear inhomogeneous di¤erential equation

a0
d�(r; ')

dr

����
r=a0

= �(a0; ')� w0(a0; '): (16)

Together with the condition that � vanishes at large dis-
tances, Eqs. (15) and (16) entirely determine the defor-
mation �eld; their solution is denoted �̂(r). Since the
boundary condition (16) is a linear equation and since
the integral of the inhomogeneity vanishes,

R
d'w0 = 0,

a similar relation holds for its solution, and the corre-
sponding integral in (14) vanishes,

R
d'�̂a0 cot �0 = 0.

The surface integral in (13) is zero because of r2� = 0.
Replacing the derivatives in the line integral with (16)
and dw0=dr = 2w0=r, the integrand simpli�es to 1

2 �̂
2 +

3
2 �̂w0; taking the sum S = SI + SP , the terms in �̂2

cancel, and we obtain the total change of area

S1[�̂] = ��a20
�
1 +

1

8
c2a20

�
� 1
2

Z 2�

0

d'�̂w0:

The constant represents the area that the particle occu-
pies on the unperturbed interface, whereas the integral
term accounts for the additional reduction due to the
relaxation of the interface pro�le.
This result has been obtained for a single particle at

the origin. The formal generalization is straightforward,

SN = �N�a20
�
1 +

1

8
c2a20

�
� 1
2

NX
i=1

Z 2�

0

d'i�̂iw0; (17)

with a set of local coordinates for each of the N particles.
Here �̂i represents the total deformation �eld evaluated
at the contact line of particle i; since it comprises con-
tributions from all particles, care has to be taken when
evaluating the boundary condition (16). In the remain-
der of this paper, we determine the deformation �eld �̂
for the particular cases N = 1; 2, and we derive both the
trapping energy of a single particle and the pair interac-
tion of two nearby particles.

V. SINGLE-PARTICLE CASE

We consider the deformation �eld induced by a sin-
gle particle. The solution of the Young-Laplace equation
r2� = 0 reads in polar coordinates r; '

�(r) = �0 ln r +
1X
n=1

�n

�a0
r

�n
cos(n'� �n); (18)

where the coe¢ cients �m and the phases �m are to be de-
termined from the boundary condition and the require-
ment that the deformation vanishes at large distances.
Inserting the above series for � and the explicit form of

the inhomogeneity (12) in the di¤erential equation (16),

one readily �nds that n = 2 is the only �nite term. The
solution reads

�̂(r) = �1f(r) (19)

with the shape function

f(r) =
�a0
r

�2
cos(2') (20)

and the amplitude

�1 =
ca20
6
: (21)

This approximate expression is valid in the range cr � 1,
i.e., at distances shorter than the curvature radius 1=c.
We remark that at the contact line, the unperturbed pro-
�le w0 and the deformation �̂ di¤er by a factor 3 and thus
are of the same order of magnitude.
The last term in Eq. (17) is readily integrated, and

one �nds for the area reduction due to the deformation
�eld,

�1
2

Z 2�

0

d'�̂w0 = �
�

4
�1ca

2
0:

resulting in the total change of area

S1 = ��a20
�
1 +

c2a20
8

+
�1c

4

�
:

A colloidal particle at a �at interface reduces the area
by �a20; at a curved interface described by w0 augments
this quantity by a fraction 1

8c
2a20, whereas the interface

deformation � enhances this e¤ect by 1
4�1c. Inserting the

above relation for �1 we obtain the total change of area,

S1 = ��a20
�
1 +

1

6
c2a20

�
: (22)

The curvature-induced enhancement is proportional to
the square of the aspect ratio ca0 of the contact line and
curvature radii.
The reduction of the undeformed interface area by a

factor 18c
2a20 may be understood by noting that the area

inside of a circle is always smaller than the area inside
of a three-dimensional curve, obtained by distorting that
circle on the sphere while keeping its center �xed. The
second term in S1, of relative magnitude 1

4�1c, arises
from the relaxation of the liquid phase boundary and thus
has no such simple explanation. Our calculation shows
that both contributions diminish the interface area and
are of the same order of magnitude.

VI. TWO-PARTICLE CASE

Now we turn to the case where a second particle is
found at the position � = �(cos'0,sin'0)y. We evalu-
ate the induced pair interaction for the case where the
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distance � is larger than the contact line radius a0 but
smaller than the curvature radius,

a0 � �� 1=c:

The �rst inequality justi�es to retain only the term of
leading order in a0=�, whereas the second one implies
that the principal curvatures at the positions of the two
particles di¤er very little and may be taken to be identi-
cal.

A. Deformation �eld

If the prinicpal axes don�t change over the distance �,
the deformation �elds of the particles are described by
the same function f , and the solution of r2� = 0 is a
superposition

�̂(r) = �2 [f(r) + f(r� �)] : (23)

The contribution of the particle at r = 0 reads

f(r) =
�a
r

�2
cos(2'� �);

where the phase � accounts for the coupling of the de-
formation �eld to the orientational angle '0. The �eld
f(r � �) is due to the particle at position �. Since we
are interested in its values close to the origin r � �, we
expand in powers of r=� and truncate at quadratic order.
This is done most simply after writing the �eld in carte-
sian coordinates, f(R) = a2(X2 � Y 2)=(X2 + Y 2)2, and
we �nd

f(r� �) = f0 +
3a2

�4
r2 cos(2'� 4'0 + 2�); (24)

where f0 contains a constant and a term proportional to
(ra2=�3) cos(' � 3'0). The constant would merely shift
the origin of the vertical axis, whereas the remaining term
vanishes when inserting (23) in (17); thus we discard f0.

B. Superposition approximation

A widely used approximation consists in taking �̂(r) as
the sum of two single-particle deformations, i.e., putting
�2 = �1 and � = 0 in the above expression. Integrating
the overlap term along the contact line r = a0,

�1
2

Z 2�

0

d'f(r� �)w0(r) =
3

4
��1ca

2 a
4
0

�4
cos(4'0);

the interface area (17) is readily evaluated and reads

S2 = 2S1 �
9

2
��21

a40
�4
cos(4'0): (25)

In terms of the interface energy E = 
S, this expression
constitutes a pair interaction that depends both on the
distance � and the orientation '0.

C. Boundary condition

The superposition approximation is justi�ed if the de-
formation �eld arises from an external force acting on the
particles. In the present case, however, the deformation
originates from the boundary condition imposed in terms
of the contact angle. As a consequence, the prefactor �
is not the same for one and two particles. Here we solve
the boundary conditions for the total deformation �eld
of two particles that is given by (23-24).
In order to determine �2 and �, we insert �̂(r) in Eq.

(16) and evaluate �̂r at the contact line of the particle at
the origin, i.e., at r = a0. The �rst term in (23) gives

(a0@r � 1)f(r) = �3 cos(2'� �);

whereas the second one leads to

(a0@r � 1)f(r� �) = 3(a0=�)4 cos(2'� 4'0 + 2�):

After decomposing the cosine and inserting w0(r), we
obtain for Eq. (16) the form cos(2')Q � sin(2')P = 0
which is valid for all '. The resulting equation Q = 0
reads explicitly

1

2
ca20 � 3�2

�
cos � � a40

�4
cos(4'0 � 2�)

�
= 0;

whereas P = 0 gives

sin � � (a0=�)4 sin(4'0 � 2�) = 0:

To leading order in the small parameter a0=�, one �nds
the phase � = (a0=�)

4 sin(4'0). Inserting this phase in
(23) and integrating (17), one �nds corrections of the
order �2 � (a0=�)

8 which are negligible at distances �
larger than the particle size.
Putting � = 0 in the relation for �2 one �nds the pref-

actor of the deformation �eld

�2 =
ca20
6

1

1�  =
�1
1�  (26)

with the shorthand notation

 = (a0=�)
4 cos(4'0):

The quantity �2 is maximum for particles aligned on one
of the principal curvature axes. In the limit a0=� ! 0,
we recover the deformation amplitude (22) of a single
particle.

D. Area reduction

Inserting (23) and (26) in Eq. (17), one readily obtains
the change of area in the presence of two particles

S2 = �2�a20
�
1 +

c2a20
8

+
�2c

4

�
:
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Evaluating the corrections with respect to the single-
particle expression S1, we �nd in leading order in the
small parameter  

S2 � 2S1 = �
�

2
�1ca

2
0 = �3��21 : (27)

This is by a factor 2
3 smaller than the result (25) from

the superposition approximation.
These results are readily generalized to the case of N

particles. Solving the boundary condition for the super-
position of N one-particle deformation �elds, we obtain
the change of interface area

SN = NS1 � 3��21
X
<i;j>

 ij :

Here the correction factor  ij depends on the distance
and relative orientation of particles i; j, and the sum runs
over all pairs.

VII. DISCUSSION

The presence of the colloidal particles reduces the area
of the liquid interface by S and thus diminishes the en-
ergy by the amount

E = 
S:

As discussed below Eq. (1) this expression does not de-
pend explicitly on the particle-�uid interface areas P1
and P2, since their e¤ect has been absorbed in the con-
straint of Young�s law. More precisely we have discarded
a constant term 1

2 (
1 + 
2)(P1 + P2) = (
1 + 
2)2�r
2
0,

which does not depend on the contact line and thus is
irrelevant for our purpose.
We �rst discuss the energy gain due to a single particle,

and then consider the deformation-induced e¤ective pair
interaction of nearby particles.

A. Single-particle energy

From the single-particle area (22) one readily obtains
the energy gain

E1 = 
S1 = ��
a20
�
1 +

c2a20
6

�
: (28)

The leading term of the trapping energy reads E0 =
��
a20. For a micron size particle (a0 = 1 �m) at an
interface with a tension 
 = 100 mJ/m2, it is of the or-
der of E0 � 10�13 J, which is about 108 times the thermal
energy kBT at room temperature.
Here we are mainly interested in the contribution that

depends on curvature,

E1 � E0 = �
�

6

c2a40:

At an interface with curvature radius 1=c � 100 �m,
this energy di¤erence takes a value of about 4 � 10�18
J, which is by three orders of magnitude larger than the
thermal energy at room temperature, E1�E0 � 103kBT .
Two conclusions may be drawn from this estimate. First,
in the case of a non-uniform curvature c(r), the energy
E1 �E0 varies with position and constitutes an e¤ective
potential that takes its minimum value where the curva-
ture is maximum; this potential provides a lateral force,

F (r) = �rE1(r) =
�

3

a40crc;

that pushes the �oating particle towards regions of max-
imum curvature. With the above parameter values one
�nds F � 10�14 N. Second, the deformation energy, i.e.,
the term arising from the pro�le �̂, is of the order of the
curvature-dependent term, E1�E0, and thus exceeds by
far the thermal energy; we conclude that the deformation
�eld �̂(r) is hardly a¤ected by thermal �uctuations.
Regarding the validity of the small-gradient approx-

imation, leading-order corrections are of the order
O
�
(ca0)

4
�
and thus by a factor c2a20 � 10�4 smaller than

the above results.

B. Pair interaction

Two nearby particles interact through the interface in-
duced potential energy U = 
(S2 � 2S1). With (27) one
�nds the expression

U(�; '0) = �
�

12


c2a80
�4

cos(4'0); (29)

that depends both on the distance � and the relative ori-
entation '0 with respect to the principal curvature axes.
Formally, the expansion in powers of a0=� breaks down
if the two particles are at contact, � = 2r0 = 2a0= sin �0.
Even in this extreme case, the above expression for U
provides a meaningful estimate for the interaction en-
ergy. Yet in real systems, the particles are often subject
to short-range repulsive forces, arising from surfactants
grafted at the surface or from the screened electrostatic
of their charges, that keep them at a minimum distance
of a few radii, where our result applies. With the parame-
ter values given above and at distances of a few particle
radii, the interaction potential is of the order of 10�19 J
which is still larger than the thermal energy.
Thus the interaction energy may induce aggregation

and ordering of the particles. Since U is minimum for
'0 = 0 and �

2 , its angular dependence favors alignment
parallel to the principal axes. In the case of several par-
ticles, one expects the formation of colloidal clusters of
cubic symmetry, as shown schematically in Fig. 4.

C. Catenoid

The present work applies to colloidal particle sus-
pended at an arbitrary surface of zero mean curvature.
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FIG. 4: Catenoid, or surface of revolution of a catenary, with
the parameterization �(z) = R cosh(z=R). As explained in
the text, capillary forces may result in colloidal aggregates of
cubic symmetry.

Here we discuss several particular features that arise for a
catenoid, i.e., for the surface of revolution of the catenary
about the z-axis. A simple parameterization is given in
terms of distance from the vertical axis,

�(z) = R cosh(z=R); (30)

as shown in Fig. 4. The minimum radius R occurs at
midplane z = 0. The principal curvatures are of opposite
sign, cu = c = �cv, and depend on the vertical position
z as

c =
1

R cosh(z=R)2
; (31)

and so does the trapping energy E1. From (28) it is clear
that the energy E1 takes its minimum value at z = 0
where the curvature is largest. The vertical force F =
�dE1=dz

F (z) = �4�
3


c2a40
R

tanh(z=R)

pushes the particles towards midplane where the curva-
ture takes its maximum value c = 1=R.
For micron-sized particles, the curvature-induced force

is comparable to gravity. If the maximum value of
F (z) exceeds mg, the height-dependent potential energy
E1(z)�E0 +mgz of a buoyant particle of e¤ective mass
m presents a metastable minimum; its position z0 is de-
termined by putting F (z0) = mg. Thus one expects that
colloidal particles on a vertically placed catenoid accu-
mulate at a height z0 < 0 below midplane. This is il-
lustrated in Fig. 5 for particles of radius a0 = 1 �m at
a catenoid of minimum radius R = 100 �m. The total

FIG. 5: Total potential energy E1 � E0 +mgz of a colloidal
particle of radius r0 = 1 �m and density % = 1 g/cm3 trapped
at a vertical catenoid, with a contact line radius a0 = 1 �m.
The interface parameters are 
 = 100 mJ/m2 and R = 100
�m. There is a local minumum at z0 � �25 �m, which is
stabilized by a barrier of about 170 kBT . The dashed line
indicates the gravitational potential mgz.

energy is shifted towards negative values by the curva-
ture contribution E1(z) � E0, with respect to the gravi-
tational potential mgz. The metastable minimum occurs
at z0 � �25 �m and is stabilized by a barrier of about
170kBT .

D. Finite mean curvature

We close with a brief discussion of interfaces with �-
nite mean curvature; as the simplest realization we take
the case where one of the principal curvatures vanishes,
cu = c and cv = 0. Then the Laplace equation (15) is
replaced with the inhomogeneous relation r2� + c = 0,
which just expresses the fact the cylinder is not a mini-
mal surface. Yet such interfaces do occur as a metastable
state, for example in liquid jets, or in the presence of
external forces, such as hydrodynamic coupling of two-
phase micro�uidic devices or gravity at the meniscus of
a liquid surface. Two aspects of the present work could
be of some relevance for these systems.
Liquid jets are inherently unstable and decay into

droplets due to the tension-driven Rayleigh instabil-
ity; its onset is triggered by tiny surface �uctuations.
The presence of a colloidal particle leads to a local de-
formation that could develop much quicker than the
�uctuation-induced perturbation and thus could signif-
icantly accelerate the instabililty.
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The viscous �ow of two di¤erent �uid phases in a mi-
crochannel may result in a stable cylindrical interface.
Then the Laplace equation is supplemented with a restor-
ing force, r2� + c + R[�] = 0, that arises from hydro-
dynamic constraints. Still, the presence of the colloidal
particles would deform the interface and lead to a local
depression �̂(r) of the interface pro�le �̂(r).
Finally we mention a striking example of a curvature-

induced lateral force, which has been shown to operate
in the meniscus climbing skills of water-treading insects
and amphiphile beetle larvae [5, 6]. In order to pass from
the water surface to land and to overcome the slippery
meniscus, the larvae deform their body in such a way
that the contact line becomes a 3D curve that �ts in
the upper part of the concave meniscus. Then the inter-
face deformation energy is smallest where the curvature
is largest, and thus provides a lateral force pushing the
larva uphill towards the shore. The above expression for
a catenoid shows that the tension-induced force F � c2r40
varies more strongly with the size of the �oating object
than gravity mg � r30; in spite of the somewhat smaller
curvature c, the e¤ects on millimeter sized animals ex-
ceed those discussed above for colloidal particles.

VIII. SUMMARY

We have studied how the presence of spherical parti-
cles a¤ects a liquid interface with two di¤erent principal

curvatures �c. In the absence of external forces, the cur-
vature of the liquid phase boundary leads to several novel
capillary phenomena.

(i) The contact line of a particle at a curved interface
w0 would not satisfy the condition of a constant contact
angle. Mechanical equilibrium thus requires a �nite de-
formation which, in turn, reduces the interface energy.

(ii) The single-particle energy (28) varies with the
square of the curvature and takes its mimimum value
where the curvature is largest. Thus there is an e¤ec-
tive force pushing the particles towards strongly curved
regions of the interface.

(iii) The superposition of the deformation of two
nearby particles results in an anisotropic curvature-
driven interaction U . Its angle-dependence favors the
formation of colloidal aggregates of cubic symmetry,
whereas the capillary interactions of spherical particles
studied so far are isotropic and result in hexagonal clus-
ters.

(iv) For micron sized particles on a vertical catenoid in-
terface, the competition of the curvature-driven force and
gravity results in a rather deep metastable minimum of
the total energy; one expects colloidal particles �oating
on the interface to be captured slightly below the mid-
plane of the catenoid.

Stimulating discussions with Yacine Amarouchène are
gratefully acknowledged.
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