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CPMOH, CNRS-Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France

(Dated: November 25, 2008)

We study the electrostatic properties of charged particles trapped at an interface in a water-in-oil
microemulsion. The electrostatic potential and the counterion distribution in the water droplet are
given in terms of the ratio of the Debye screening length ��1 and the droplet radius R. In the limit
R ! 1 we recover the well-known results for a �at interface. Finite-size corrections are obtained
in terms of the small parameter 1=�R. Part of the counterions spread along the interface and form
a charged layer of one Debye length thickness. In particular, there is a uniform surface charge
contribution. We derive explicit expressions for the electric �eld, the mobile charge density, and the
charge-induced pressure on the interface.

I. INTRODUCTION

Since Pieranski�s observation of crystallization of
highly charged particles dispersed at a liquid interface
[1], the properties of such two-dimensional colloids have
been found to depend crucially on electrostatic interac-
tions. Uncharged or strongly screened particles coagulate
due to dispersion forces and may form solid capsules [2].
Highly charged micron-sized particles of valency Z � 106
at an air-water interface, are stabilized by their electro-
static repulsion and form 2D hexagonal crystals [1, 3, 4];
a variety of structures have been reported for particles
of di¤erent shape and size [5�8]. The most recent ex-
periments involve colloidal particles trapped on the in-
terfaces of a water-in-oil or oil-in-water microemulsion
[9, 10]; the observation of clusters indicates a subtle in-
terplay of electrostatic and capillary forces. A detailed
study of PMMA particles on water-in-oil droplets of 50
�m diameter [9] gives clear evidence for the existence of a
long-range attraction, which has been discussed in terms
of a charge-induced capillary interaction [11�16].

The counterions of an interfacial particle of charge Q
are con�ned to the electrolyte halfspace, where they are
concentrated in a layer that is about one Debye length
��1 thick. As �rst realized by Pieranski, this charge dis-
tribution carries a dipole moment Q=� and leads to an
e¤ective interaction of two particles, V � (Q=�)2��3,
that is repulsive and varies with the inverse cube of their
distance � [1]. In subsequent work, this picture was given
a sound theoretical basis, and it was shown that the in-
teraction potential depends on the ratio of the dielectric
constants of the two liquid phases [17, 18]. The power
law for the resulting force F � ��4 was veri�ed experi-
mentally for polystyrene particles of 3 micron diameter
at an air-water interface [4].

The e¤ective electrostatic potential of interfacial par-
ticles is closely related to the distribution of the mobile
charges in the electrolyte. Most of the counterions are
con�ned to a screening cloud within one Debye length
from the charged particle; yet a small fraction spread
along the interface and form a charged layer that decays
as r�3 with the lateral distance r [17, 18]. Signi�cant
modi�cations occur if the insulating halfspace is reduced

to a thin slab, or the electrolyte phase to an aqueous
�lm of �nite thickness [19, 20]. The algebraic tail of the
counterion distribution gives rise to an electric stress on
the interface, which, in turn, leads to a deformation �eld
that follows a power law [12, 13]. All theoretical stud-
ies carried out so far dealt with an in�nite �at interface
separating an electrolyte from an insulating phase. Yet
this geometry does not apply to the most recent mea-
surements that involve charged particles trapped on the
surface of a water droplet in an oil phase [9], or the in-
verse system [10].

In the present paper, we study the screened electrostat-
ics of a charge trapped on a water droplet. From the �nite
area of the interface it is clear that the electric �eld and
charge distribution then di¤er signi�cantly from those of
an in�nite �at interface, and that the mentioned power
laws are modi�ed by the spherical geometry. Moreover,
because of the �nite droplet volume, the total number of
salt ions and counterions released by the particle has to
be treated carefully; the normalization of the ion densi-
ties is achieved by introducing chemical potentials.

Since one expects to recover, in the limit R ! 1,
the properties of an in�nite �at interface, we are mainly
concerned with the e¤ects arising from the �nite droplet
size. The ratio of the Debye screening length ��1 and
the droplet radius R satis�es

1

�R
� 1:

In the framework of the Debye-Hückel approximation,
we perform a systematic expansion of the electrostatic
properties of a droplet in terms of this small parameter.

In Sect. II we obtain the screened electrostatic poten-
tial of a charge on a sphere. The electric �eld at both
sides of the interface, the mobile charge density in the
droplet, the pair potential, and the interface pressure are
derived in Sects. III-VI. In the �nal Sect. VI we discuss
and summarize our �ndings. Technical details of the as-
ymptotic expansion for the screened potential are given
in an Appendix.
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II. THE SCREENED POTENTIAL

Consider a colloidal particle of charge Q = Ze trapped
at an electrolyte-insulator interface, typically an oil-
water phase boundary. The Z counterions are soluted
in the electrolyte; we suppose that all mobile ions are
monovalent. The electrostatic potential �(r) has to be
evaluated separately in the two phases. The dielectric
constant is denoted "I in the insulator and "II in the
electrolyte. The boundary conditions of electrostatics
require that that the potential is continuous at the in-
terface,

�I = �II (1)

and the normal components of the displacement vector
D = �"r� on both sides di¤er by the surface charge den-
sity,

n �DI � n �DII = Q�2(r� rQ); (2)

where rQ are the particle�s coordinates. In addition, we
require that the potential vanishes at in�nity,

�I(r)! 0 for r !1:

Because of the absence of charges, the potential in the
insulator satis�es Laplace�s equation

��I = 0: (3)

In the electrolyte one has to take to account both salt and
soluted counterions, resulting in the Poisson equation

��II =
e

"II
(n+ � n�); (4)

with the positive and negative ion densities n�(r). Re-
sorting to a mean-�eld approximation, we replace these
quantities with their average

n� = n0 exp

�
�e�II + ��

kBT

�
; (5)

where �� are pseudo-chemical potentials and n0 is the
salinity of the electrolyte. Eqs. (1�5) constitute a closed
set of equations for the electrostatic potential and the
mobile charge densities.
Because of the large dielectric constant of water,

"II="0 � 80, electrostatic energies at micron distances
are small as compared to the thermal energy. Thus we
may simplify the Poisson-Boltzmann equation (4,5) by
using the Debye-Hückel approximation, and linearize the
densities n�. We rewrite the chemical potentials of pos-
itive and negative ions as

�� = �0 � �1;

absorb the �rst term in the e¤ective salinity parameter

~n0 = n0e
�0=kBT ; (6)

and expand n� with respect to the quantity

X =
e�II + �1
kBT

:

The mobile ion densities then read

n� = ~n0

�
1�X +

1

2
X2 +O

�
X3
��

: (7)

In the remainder of this paper, these series are truncated
at second order in X, i.e., we neglect terms of cubic and
higher order.
When inserting the approximate ion densities (7) in

(4), the quadratic terms cancel each other, and we obtain
the linear Debye-Hückel equation

��II � �2�II = �2�1=e: (8)

Note that the screening parameter

� =
p
8�`B~n0

depends on the e¤ective salinity and thus di¤ers from the
usual de�nition

p
8�`Bn0. In water, the Bjerrum length

`B =
e2

4�"IIkBT
:

takes a value of about 7 Å.

A. Flat interface

We brie�y recall well-known results for the potential
of a charge trapped at a �at interface [17�20]. The in�-
nite electrolyte halfspace of salinity n0 provides a mobile
charge reservoir of zero chemical potential, �� = 0. The
resulting Debye-Hückel equation

��II � �2�II = 0

is solved in Fourier space with respect to the in-plane
coordinates ; we rewrite the potential �II(�; z) in the
electrolyte halfspace (z � 0) in the form

Q

2�"II

Z 1

0

dqJ0(q�)

�
q

q̂
� �q2

q̂ (q̂ + �q)

�
e�q̂z; (9)

with q = jqj, q̂ =
p
q2 + �2.

For water as electrolyte, the ratio of the dielectric con-
stants

� = "I="II

is small, and the �rst term in brackets gives the screened
potential, �II = (Q=2�"IIr)e��r, that is relevant at dis-
tances r =

p
�2 + z2 within a few Debye lengths.

At large lateral distances � � ��1, the potential is
dominated by the second term that is linear in the ratio
� of dielectric constants. For ��� 1 the inverse Fourier
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transform is determined by small wave vectors ; expand-
ing �II(q; z) in powers of q and taking the inverse Fourier
transform, one obtains a series in powers of 1=(��),

�II(�; z) =
Q"I

2�"2II�
2

e��z

�3

�
1 +O

�
1

�2�2

��
(10)

Note that the leading term is proportional to � and varies
with the lateral distance as ��3. In both halfspaces the
potential vanishes at in�nity, � ! 0 for �; z ! 1, and
one easily veri�es that the mobile charge density satis�es
overall neutrality,

R
dV e(n+ � n�) = �Q.

B. Debye-Hückel theory on a droplet

Now we turn to the case of a charge on a water droplet
of radius R. Contrary to the Debye-Hückel equation on
an in�nite �at interface, the relation for a droplet (8)
comprises a inhomogeneous term that is given by the
chemical potential �1.
Because of the axial symmetry, the problem involves

only two coordinates, the distance from the center of the
sphere r and the polar angle �; the particle�s position is
r = R and � = 0. In the insulating phase outside the
droplet, there are no charges; the most general solution
of the Laplace equation (3) is given as a series in inverse
powers of r,

�I =
Q

4�"IIR

1X
`=0

a`r̂
�(`+1)P`(x); (11)

where we have de�ned reduced variables

r̂ = r=R; x = cos �; (12)

and where P`(x) are Legendre polynomials. Since the
total charge of the droplet is zero, the monopole term in
�I vanishes, a0 = 0. Because of the presence of mobile
charges, the expansion inside the droplet

�II =
Q

4�"IIR

 
C +

1X
`=0

b` `(r̂)P`(x)

!
(13)

involves radial functions  `(r̂) that are solutions of the
homogeneous equation ��II��2�II = 0, and a constant
C that is related to the inhomogeneity of Eq. (8).
In a �rst step we solve the homogeneous equation and

determine the expansion coe¢ cients a`, b`, and C from
the boundary conditions at the interface (1,2). Separat-
ing the radial and angular parts of the Laplace operator
and de�ning the reduced Debye parameter

�̂ = �R;

the relation ��II � �2�II = 0 takes the form�
r̂2@2r̂ + 2r̂@r̂ � `(`+ 1)� r̂2�̂2

�
 `(r̂) = 0:

Its solutions are given in terms of modi�ed spherical
Bessel function of the �rst kind i`,

 `(r̂) = i`(�̂r̂)=i`(�̂):

Here we used a normalization such that  `(1) = 1, e.g.,

 0(r̂) =
sinh(�̂r̂)

r̂ sinh(�̂)
:

The expansion coe¢ cients a`, b`, and C are determined
by the boundary conditions (1,2). For a particle at � = 0,
we may discard the azimutal angle and write

�2(r� rQ) =
1

2�R2
�(cos � � 1): (14)

Expanding the delta function in terms of Legendre poly-
nomials we have

�(cos � � 1) =
1X
`=0

(`+ 1=2)P`(cos �); (15)

with the convention
R 1
�1 dx�(x� 1) = 1.

When inserting these series in the continuity relation
for the potential and taking advantage of the linear inde-
pendence of the Legendre polynomials, one �nds for all
`

a` = b` + C�`0; (16)

whereas the equation involving the displacement vector
and the surface charge results in

� (`+ 1) a` +D`b` = (2`+ 1) ; (17)

with the shorthand notation

D` = @r̂ `(r̂)jr̂=1: (18)

These equations are easily solved; for ` � 1 we have

a` = b` =
2`+ 1

D` + � (`+ 1)
(` � 1): (19)

The mode ` = 0 involves the constants a0; b0, and C.
The droplet being neutral implies a0 = 0 and b0 = �C =
1=D0. Since �̂� 1 one has D0 =  00(1) = �̂ coth �̂� 1 �
�̂, and the coe¢ cients

b0 = �C =
1

�̂
: (20)

One readily �nds that both b0 and C vanish as the system
size diverges, i.e., as �̂ = �R!1.
Note that the constant C has been determined through

the continuity condition (1) and that we have not yet
considered the inhomogeneity of Eq. (8).
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C. The chemical potentials

In the absence of colloidal particles, the densities of
positive and negative ions are given by the salinity n� =
n0, and their total numbers are N� = n0V , where V is
the droplet volume. A macroion of valency Z trapped
at the interface, releases Z counterions and induces non-
uniform mobile-ion densities n�. Then the total ion num-
bers N+ 6= N� are implemented most conveniently by
introducing pseudo-chemical potentials �� = �0 � �1 in
the densities (5), i.e., we adopt a grandcanonical point
of view where the �xed particle numbers are assured by
chosing appropriate values for �0 and �1.
Because of the linear relation between electrostatic po-

tential and mobile ion densities in Debye-Hückel approx-
imation, the relative chemical potential �1 may be taken
directly from Eq. (8). When identifying the constant
part of its left-hand side with the right-hand side, we
�nd

�1 = �
eQ

4�"IIR
C =

eQ

4�"II�R2
; (21)

which relates �1 to the valency of the macro-ion, the
Debye length, and the droplet radius. Thus the relative
chemical potential �1 exactly cancels the constant part
of the potential energy �e� in the expressions for the ion
densities (5,7). As a consequence, the ion densities may
be rewritten as

n� = ~n0e
�e~�II=kBT ; (22)

with the shifted potential

~�II = �II + �1=e:

We turn to the remaining term �0 that renormalizes
the salinity. For the case of a negatively charged macro-
ion, Q = �Ze, the number of negative ions is given by
the salinity N� = n0V , whereas that of positive ions
comprises both salt and soluted counterions, N+ = n0V+
Z; in terms of the densities n� we have

Z
dV n�(r) = n0V;

Z
dV n+(r) = n0V + Z: (23)

When evaluating these integrals with the linearized ex-
pression (7), we obtain e�0=kBT � 1 = Z=2n0V , i.e.,

�0 = kBT ln

�
1 +

Z

2n0V

�
; (24)

which holds for positive or negative charge, Q = �Ze.
Both terms of the chemical potentials depend on num-
ber of the released counterions, i.e., on the valency Z,
the bare salinity n0, and the droplet radius; the di¤er-
ence �1 = 1

2 (�� � �+) takes the sign of the charge Q
and can be absorbed in the de�nition of the electrosta-
tic potential. When rewriting the above expressions in

terms of the Bjerrum and Debye lengths and expanding
the logarithm according to ln(1 + x) � x for small x,

�0
kBT

=
3Z`B
�2R3

;
�1
kBT

=
Z`B
�R2

;

it is clear that both �0 and �1 vanish as the droplet
radius tends towards in�nity, albeit with di¤erent power
laws. (In this paper, the limit R!1 is always taken at
constant salinity n0.)
In a �nite droplet, the released counterions a¤ect both

the salinity and the screening length. Yet as long as the
number of soluted counterions is much smaller than that
of salt ions, the e¤ective salinity ~n0 hardly di¤ers from its
bare value n0. Similarly, the e¤ective Debye parameter
� =

p
8�`B~n0 is close to the value

p
8�`Bn0 calculated

with the bare salinity.

D. Asymptotic expansion

Although it entirely determines the screened potential,
the series (13) with the coe¢ cients (19,20) cannot be
evaluated as it stands. In all relevant applications, the
dielectric constant of the insulating side is much smaller
than that of water, and the droplet radius signi�cantly
exceeds the Debye screening length, providing two small
parameters � = "I="II and 1=�̂ = 1=(�R) that will be
taken as the basis of a series expansion. (For example,
the system studied in Ref. [9] satis�es � � 1=30 and
�̂�1 � 10�2.)
It turns out convenient to rewrite the potential as

~�II =
Q

4�"IIR
	; (25)

where the series

	(r̂; cos �) =
1X
`=0

b` `(r̂)P`(cos �) (26)

is evaluated in the Appendix and the term of leading
order in � and 1=�̂ is given in Eq. (51). When insert-
ing this approximate expression in (25) and de�ning the
angle-dependent function

�R(cos �) = 1 +
1

4

1

sin(�=2)3
; (27)

we obtain a main result of the present paper,

~�II =
"IQ

4�"2II�
2R3

�R(cos �)e
�(r�R): (28)

As in the case of an in�nite �at interface, the potential
decays in the normal direction exponentially within one
Debye length ��1, whereas the lateral variation shows an
intricate power law dependence. For a point charge, this
expression is valid at lateral distances well beyond one
Debye length, i.e., � > 1=�̂. In the following sections,
we derive the resulting electrric �eld, mobile ion density,
and interface stress.
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III. THE ELECTRIC FIELD AT THE
INTERFACE

We write the electric �eld at the aqueous side of the in-
terface in terms of its radial and tangential components,

EIIR = �@�II
@r

����
r=R

; EIIT = � 1
R

@�II
@�

����
r=R

:

Taking the derivative @r = (1=R)@=@r̂ of the potential
(28) and de�ning the prefactor

E0 =
Q

4�"II�R3
(29)

we have

EIIR = ��E0�R(cos �): (30)

The constant term present in �R is particular to the
spherical geometry considered here, whereas the angle-
dependent part corresponds to the power law well known
from a �at interface. Indeed, for not too large angles we
have sin(�=2) � �=2 and � � �R and thus �nd

EIIR = � "IQ

2�"2II�

1

�3
;

which is identical to the result obtained by Hurd [18].
We turn to the tangential component of the electric

�eld. Applying the derivative @=@� on (28) and rewriting
the result in terms of sin(�=2) we �nd

EIIT = E0
�

�R
�T (cos �);

with

�T (cos �) =
3 cos(�=2)

8 sin(�=2)4
:

At lateral distances beyond one Debye length, EIIT is sig-
ni�cantly smaller than the radial component. This is
obvious for large angles � > �

2 , when noting cot(�=2) < 1
and �R� 1. For smaller angles, we may put sin(�=2) �
�=2, cos(�=2) � 1, � � �R, and thus �nd the power law

EIIT =
"IQ

4�"2II�
2

3

�4
;

which, again, is by a factor (��)�1 smaller than the radial
component; since in the range of validity of the asymp-
totic expansion one has �� � 1, we may conclude that
the tangential electric �eld is small, EIIT � EIIR .
The �eld at the insulating side is given by the conti-

nuity conditions of electrostatics,

"IE
I
R = "IIE

II
R +Q�(r� rQ); EIT = EIIT :

At �nite distance from the colloidal particle, the source
term is irrelevant and the radial �eld outside, is by a
factor "II="I larger than that inside and reads

EIR = �E0�R(cos �): (31)

The tangential component is continuous at the interface.
A schematic view of the electric �eld lines in the vicinity
of the droplet is given in Fig. 1.

FIG. 1: Schematic view of the electric-�eld lines in the vicinity
of the water droplet. The grey region indicates the net charge
density due to the accumulation of counterions.

IV. MOBILE-ION DENSITY

The electric �eld lines penetrating the water droplet
are screened within a distance of one Debye length from
the phase boundary, i.e., they end at the charge that
arises from the accumulation of counterions at the inter-
face. The net charge density is readily evaluated,

�(r) = e(n+ � n�) = �
2e2~n0
kBT

~�II(r);

its sign is opposite to that of the charge Q carried by the
macroion. Using the de�nition of the Debye length in
Eq. (7) and inserting (28) we �nd

�(r; �) = �0

�
1 +

1

4

1

sin(�=2)3

�
e�(r�R); (32)

with the prefactor

�0 = �
"I
"II

Q

4�R3
:

The �1� in brackets corresponds to an isotropic charge
distribution; both the constant and the angular depen-
dent terms are plotted in Fig. 2. We recall that the se-
ries expansion for the electrostatic potential, and thus
the above expression for �(r), are valid at �nite angles
only.
When integrating over the radial coordinate, we obtain

the charge density per unit area,

s(�) = � "I
"II

Ze

4��R3

�
1 +

1

4

1

sin(�=2)3

�
:

We brie�y discuss the total charge accumulated in the
surface layer. Multiplying the constant term in s(�) with
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FIG. 2: Mobile charge density at the interface as a function
of the polar angle �. The dashed lines give the constant and
the angle-dependent contributions of (32). The constant �0
is de�ned in the text.

the surface area of the droplet 4�R2, one �nds that it
comprises a fraction �=�̂ = ("I="II�R) of the Z soluted
counterions. An estimate for the integral of the angle-
dependent part is obtained by cutting at a polar angle
corresponding to the particle radius a. One thus calcu-
lates that a fraction ("I="II�a) of the counterions are
spread along the interface; for typical parameter values
"I="II � 1=30 and �a � 3, this corresponds to about one
percent. The remaining 99 percent of the counterions
are con�ned to the exponential screening cloud within
one Debye length from the particle; for highly charged
macroions, the majority of these screening ions are more
strongly bound and condense in a �di¤use layer�of a few
nanometer thickness [23�25].

V. ELECTROSTATIC REPULSION OF LIKE
CHARGES

The Debye-Hückel approximation implies a linear re-
lation between the charge density and the e¤ective po-
tential. As a consequence, the electrostatic potential of
several macro-ions is given by the superposition of their
one-particle potentials, and the pair interaction reduces
to the potential of one particle evaluated at the position
of the other, Vij = Qj�i(rj). This result is valid in gen-
eral; an explicit calculation for particles on a �at interface
is given in Ref. [20]. In the present case of two charges
on a droplet at polar angles �1 = 0 and �2 = �, one
�nds, with the e¤ective electrostatic potential (28), the
repulsive interaction V = Q�(�). Discarding the constant
term that is irrelevant here, we have

V (�) =
Q2"I

16�"2II�
2R3 sin(�=2)3

: (33)

The inverse power law � sin(�=2)�3 is closely related
to the algebraic screening due to the mobile-ion charge
density (32) at the interface. This interaction is very dif-
ferent from the Yukawa type potential Q2=(4�"IIr)e��r

in a bulk electrolyte, which decays exponentially with the
distance r of the two charges.
Eq. (33) is based on the Debye-Hückel approximation

which is valid as long as the electrostatic energy of a
single charge is smaller than the thermal energy, e� <
kT . In terms of the two-particle potential, this condition
reads as V < ZkT . We conclude that for large valencies,
Z = 104:::107, the interaction potential may exceed the
thermal energy by several orders of magnitude.
The angle dependence of V (�) results in a lateral two-

particle force, F = �(1=R)dV=d�, that reads as

F (�) =
3Q2"I

32�"2II�
2R4

cos(�=2)

sin(�=2)4
: (34)

At small angles, � � �, the potential shows a power law
dependence V / ��3. Accordingly, the repulsive force
varies as �dV=d� / ��4, whereas close to the opposite
pole � � �, it reads �dV=d� / cos �2 and thus disappears
as � ! �.
In order to relate this result to the pair potential at

an in�nite �at interface, we consider the limit R ! 1,
� ! 0. Then the lateral distance � of the two charges is
given by � = �R, and we have

V =
Q2"I

2�"2II�
2�3

; �� R; (35)

which corresponds to (10) and is identical to Hurd�s result
[18].

VI. INTERFACE PRESSURE

Particles trapped at a liquid interface are subject to
surface-mediated interactions. For millimeter sized ob-
jects, such capillary forces are mainly due to gravity
[21, 22], whereas the weight is irrelevant in the microm-
eter and nanometer domain. The interface deformation
induced by the electric stress of highly charged macro-
ions on a �at interface has been discussed controversely
in recent years [11�16]. In view of the recent experiments
on water droplets [9], we derive the pressure exerted by
a charged particle on a sphere, and we discuss in detail
the momentum conservation of an isolated system.

A. Pressure on the liquid interface

The interfacial pressure exerted by the charged parti-
cle and the mobile ions comprises two di¤erent contribu-
tions,

PI(cos �) = kBT�n+ T I � T II : (36)
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The �rst term is the ideal-gas entropic pressure of the
excess density

�n(r) = n+ + n� � 2~n0

of the mobile ions, whereas the remaining terms involve
the normal component of the Maxwell tensor,

T = "

�
(n �E)2 � 1

2
E2
�
; (37)

where the unit vector n is perpendicular on the interface.
The energy density of the electric �eld is di¤erent on both
sides of the interface and thus gives rise to a �nite stress
T I � T II .
Eq. (36) accounts only for the pressure induced by the

presence of the macroion. We have subtracted the uni-
form osmotic pressure 2kBT ~n0 of the mobile ions, which
may be absorbed in the de�nition of the interface ten-
sion, and retain the spatially variying part �n only. In
order to calculate the entropic term in (36), we expand
the excess ion density to second order in X; inserting Eq.
(28) we have

�n(r) =
1

2
~n0

�
e~�II(r)=kBT

�2
: (38)

Note that the mobile charge density at the interface
is linear in the angle-dependent function �R, whereas
the excess ion density varies as �2R. Using the de�ni-
tions of the electric �eld E0 and the Debye parameter
�2 = (2e2~n0="IIkBT ), one �nds that the entropic pres-
sure cancels the radial part of T II ,

kBT�n =
"I
2

�
EIIR

�2
: (39)

Inserting the above asymptotic expressions for the elec-
tric �eld on both sides of the interface, we �nd the pres-
sure

PI(cos �) =
"I
2
E20

 
�2R +

"II � "I
"II

�3

(�R)
2�

2
T

!
: (40)

Note that the contribution arising from the radial �eld,
i.e., the �rst term in brackets, is always positive, whereas
the sign of the pressure due to the tangential �eld de-
pends on the relative magnitude of the dielectric con-
stants.
For water as electrolyte, one always has "II � "I , i.e.,

all pressure components are oriented towards the insu-
lating phase. In this case the factors appearing in the
second term are small, � � 1 and (�R)�2 � 1, and the
pressure arising from the tangential component of the
electric �eld may be neglected. The interfacial pressure
then reads P (cos �) = 1

2"IE
2
0�

2
R: Spelling out the angle-

dependent function we �nd

PI(cos �) =
"I
2
E20

�
1 +

1

4 sin(�=2)3

�2
: (41)

Because of its unphysical divergency at � = 0, this ex-
pression holds at �nite angles � > �0 only and ceases to
be valid as � ! 0. For a pointlike particle, the cut-o¤
angle �0 = 1=(�R) is readily obtained from the conver-
gence of the series expansion and is equal to the ratio
of the Debye length and the droplet radius. For micron
size particles and weak electrolytes, the particle size a ex-
ceeds the Debye length, and the cut-o¤ angle is, in good
approximation, given by the ratio of particle and droplet
radii �0 = a=R; note that this is the polar angle of the
contact line, i.e., of the intersection of the particle surface
and the liquid interphase.

B. Momentum conservation

When evaluating the interfacial forces one must keep
in mind that the total force on the droplet vanishes, i.e.,
the charged particle and its counterions do not change
the state of motion of the droplet as a whole. This means
that the integral of the oriented pressure vanishes,Z

dSnP = 0:

On a �at interface the normal vector is constant; the
resulting expression for the normal component

R
dSP =

0 has been used in previous work [11, 12].
For the present spherical geometry, it is su¢ cient to

consider the projection of the force on the symmetry axis.
The corresponding component of the normal vector n is
cos �; using x = cos � and dS = R2d
 we obtain the
constraint Z 1

�1
dxxP (x) = 0: (42)

C. Force acting on the particle

The pressure PI derived above acts on the liquid inter-
face only, i.e., at angles � > �0; it does not apply within
the contact line at �0 = a=R. The electric stress acting
on the particle can be obtained from momentum conser-
vation as expressed by Eq. (42). Separating these two
contributions, the total pressure reads

P (cos �) = PI(cos �)�
F1
2�R2

�(1� cos �): (43)

Inserting this relation in (42) one obtains the total elec-
trostatic force acting on the particle as the weighted sur-
face integral of the pressure on the liquid interface,

F1 = 2�R
2

Z cos �0

�1
dxxPI(x): (44)

The cut-o¤ angle �0 = a=R is, at most, of the order of a
few percent.
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The above expressions for the interface pressure and
the counterforce reduce, in the limit R!1, to those on
an in�nite �at interface [12, 13]. Indeed, permforming
the limit R ! 1 at �nite lateral distance � = R�, one
�nds

PI =
"I
2

�
Q

2�"II�

�2
1

�6
;

whereas the conservation law (42) is satis�ed by a coun-
terforce that is given by the integrated pressure, F0 =R
dSPI(x).
On a �at interface, the counterforce is given by the

integrated pressure. This is di¤erent on a droplet: The
force on the particle F1 involves the integral of the ori-
ented pressure, whereas the quantity

F0 = 2�R
2

Z cos �0

�1
dxPI(x)

has no obvious physical meaning. Since the electric stress
is positive and strongly peaked at the contact line � = �0,
one has the strict inequality F1 < F0 and �nds, in a good
approximation, the explicit relation F1 � cos �0F0.
The pressure P (r) leads to a deformation of the liquid

interface, with a pro�le that is determined by the Young-
Laplace equation. The counterforce on a �at interface is
given by F0; as a consequence the integrated pressure
2�
R r
0
drrP (r) decays as r�4 with the radius of the inte-

grated area. The deformation �eld obeys the same power
law, and the resulting capillary force on nearby particles
has been found to be repulsive and in any case rather
weak [12, 13]. On a droplet, however, the integrated pres-
sure does not decay algebraically; there remains an un-
compensated net force F1�F0 = (cos �0�1)F0 that leads
to capillary phenomena that are di¤erent from those on a
�at interface [26]. In this sense, momentum conservation
has di¤erent physical implications for �at and spherical
geometries.

VII. DISCUSSION AND SUMMARY

We have studied the electrostatic properties of a
charged colloidal particle on a water droplet, and found
them to di¤er signi�cantly from those of a particle at
an in�nite �at interface. We brie�y summarize the main
results.
As a most striking feature, both the electrostatic po-

tential and the surface charge density comprise a constant
and an angle-dependent term of the form 1= sin (�=2)

3.
The latter corresponds to the power law variation ��3

on an in�nite �at interface, whereas the constant in (27)
vanishes for an in�nite droplet radius. The presence of an
angle independent term in Eq. (32) means that a �nite
fraction of the counterions spread along the interface and
form a uniformly charged surface layer on the droplet.
From the expressions for charge density and the chemi-
cal potentials, it is clear that the e¤ects studied here rely

FIG. 3: Schematic view of a water droplet with a charged
particle and the mobile counterions. Nonlinearties are impor-
tant in the di¤use layer that covers the macro-ion and the
interface very close to the particle. At distances beyond one
screening length, the electrostatics are given by the expres-
sions in Debye-Hückel approximation.

on the fnite droplet size and disappear as its radius tends
towards in�nity. Thus all results of this paper arise from
the �nite curvature 1=R of the droplet.
The present work is based on linearized Poisson-

Boltzmann theory. Formally, the Debye-Hückel approxi-
mation (7) is justi�ed as long as the potential energy of
an elementary charge is smaller than the thermal energy,
e� < kT . For highly charged macro-ions it is well known
that the Debye-Hückel expression is generally valid at
distances beyond the screening length, albeit with e¤ec-
tive values for the valency and the Debye parameter. In
bulk solutions, colloidal particles carry an e¤ective va-
lency Z� = 4(a=`B)(1 + �a) that can be by orders of
magnitude smaller than the bare value Z [24]; for micron
sized particles in a weak electrolyte one has Z� � 104 and
Z � 107. Then the majority of counterions are condensed
in a di¤use layer, the thickness of which is given by the
Gouy-Chapman length and is of the order of nanometers.
A charged particle at a liquid interface constitutes a

more complicated problem, which is not accounted for
by available strong-coupling theories that deal with one-
dimensional or isotropic geometries [23�25]. In this case,
the di¤use layer of counterions spreads, in the immediate
vicinity of the contact line, along the liquid interface, as
shown in Fig. 3; the corresponding length scale is lim-
ited by the Debye and Gouy-Chapman lengths, i.e., it
lies in the range 1:::100 nanometers. At larger distances,
beyond one Debye length, one recovers Debye-Hückel the-
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ory with the e¤ective valency Z�.

Thus the Debye-Hückel potential (28) and the result-
ing expressions for the mobile ion density and the electric
stress are valid at distances beyond the screening length.
This implies, in particular, that the electrostatic repul-
sive force (34) applies quite generally to charge-stabilized
interfacial colloids with micrometer spacings, even for
high valencies Z � Z�; one merely has to replace the
charge Q with the e¤ective value Z�e. The force given
in Eq. (34) is essential for the stabilization of the 2D
colloidal aggregates observed in a water-in-oil emulsion
[9].

A much more restricted criterion, however, arises for
the interface pressure and thus for charge-induced capil-
lary phenomena. From the functional form of the elec-
tric stress (41), it is clear that the dominant contribu-
tion to the counterforce acting on the particle, Eq. (44),
stems from the domain very close to the particle. Yet in
this range neither the Debye-Hückel approximation (7)
nor the asymptotic expansion (51) are valid for high va-
lencies. Only for moderately charged macro-ions with
Z � Z�, one can show that Eq. (28) provides a reason-
able approximation even at short distances.

Recent work on charge-induced capillary forces empha-
sized the importance of momentum conservation, i.e., of
taking into account the counterforce acting on the parti-
cle [11�14]. We �nd that the counterforce on a droplet,
Eq. (44) di¤ers from the corresponding expression on a
�at interface. Because of the incomplete compensation
of pressure on the liquid interface by the counterforce F1,
there remains a net force F1 � F0 that is determined by
electric stress close to the contact line. Yet in this range
our Eqs. (41�44) do not apply to strongly charged par-
ticles, such as those investigated in [9], with a valency
Z � 107 that by far exceeds the value Z�.

We close with a brief discussion of additional structure
that may occur in a surface layer of a few Ångströms
and that we have not taken into account when calculat-
ing the charge density �(r) and the excess ion density
�n(r). For instance, the discontinuity of the dielectric
constant at the phase boundary gives rise to an electro-
static repulsion of mobile charges, resulting in ion deple-
tion very close to the interface [27]. Moreover, numerical
simulations of the molecular dynamics indicate that spe-
ci�c interactions lead to signi�cant structure of the ion
densities at an air-water interface, and may even enhance
them in the �rst molecular layers [28]. We have discarded
these e¤ects, since they are con�ned to a layer of less than
one nanometer thickness, whereas the charge modulation
(32) and the density inhomogeneity in (36) considered in
this work, are spread over one Debye length, which is
larger than 100 nanometers.

Helpful discussions with M. Deserno and R.R. Netz are
gratefully acknowledged.

VIII. APPENDIX

A. Expansion scheme for 	

We evaluate the series (26) in terms of an asymptotic
expansion that is valid at su¢ ciently large angles �. In-
serting the coe¢ cients (19) we have

	 =
 0
D0

+

1X
`=1

(2`+ 1)

D` + �(`+ 1)
 `P` (45)

It turns out convenient to rewrite the coe¢ cients for ` �
1 as

(2`+ 1)

D` + �(`+ 1)
=
2`+ 1

D`
� � (2`+ 1)(1 + `)

D` (D` + �(`+ 1))
: (46)

Note that there is a close formal analogy to the 2D
Fourier transform (9) of the potential at an in�nite �at
interface. The �rst term in (46) results in an exponen-
tially screened potential at distances within one Debye
length, whereas the second one dominates at larger dis-
tances and gives rise to a power law dependence.
There are two small parameters, the ratio of dielectric

constants � = "I="II , and the ratio of the Debye length
and the droplet radius �̂�1 = ��1=R. We evaluate 	
to lowest non-vanishing order in these parameters. For-
mally this is done by expanding D` and  `(r̂) in powers
of ` + 1

2 , the extrema of the underlying Bessel functions
occurring at ` = � 1

2 .
Thus we write D` as a series

D` = d0 +

�
`+

1

2

�
d1 +

�
`+

1

2

�2
d2 + :::;

with

dn =
1

n!
@nD`=@`

nj`=�1=2 :

From the de�nition in terms of Bessel functions one �nds,
to leading order in �̂�1, the constant

d0 = �̂:

The derivatives of odd order are exponentially small,
d2n+1 � e��̂, whereas the even ones vary as powers of
�̂�1, e.g., d2 = 1

2 �̂
�1.

Regarding the radial function  `(r̂) we have

 `(r̂) = �0 +

�
`+

1

2

�
�1 +

�
`+

1

2

�2
�2 + ::::

where the coe¢ cients still depend on r̂ = r=R,

�n(r̂) =
1

n!

dn `(r̂)

d`n

����
`=� 1

2

:

It turns out that  ` varies weakly with `. The leading
term of the series is well approximated by

�0(r̂) = e�̂(r̂�1):

As above, the derivatives of odd order are exponentially
small, �2n+1 � e��̂ whereas the even ones involve powers
of �̂�1, e.g., �2 � 1

2 (1� r̂)�̂
�1�0.
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B. Case � = 0

First we consider the case where the dielectric constant
of the insulating is much smaller than that of water, i.e.,
where their ratio approaches zero, � = 0. We show that
the �rst term in (46) is irrelevant at distances beyond a
few Debye lengths, i.e., that the series

	0(r̂; x) =
1X
`=0

2`+ 1

D`
 `(r̂)P`(x)

does not contribute sign�cantly to the potential.
The derivatives dn and �n of odd order are exponen-

tially small and thus may be discarded. Expanding 1=D`

in terms of the derivatives of even order gives the series

	0(r̂; x) =
�0
d0
M1(x) +

�
�2
4d0

� �0d2
4d20

�
M3(x) + :::

in terms of the moments

Mn(x) =
1X
`=0

(2`+ 1)nP`(x):

Note that the series contains those of odd order
only. Yet when evaluating the moments as derivatives
[(t@t)

nf(t; x)]t=1 of the generating function

f(t; x) =
1p

1� 2xt+ t2
=

1X
`=0

t`P`(x); (47)

one �nds M2m+1(x) = 0. In summary, the moments
of odd order vanish, whereas the coe¢ cients of those of
even order are negligible because of the small coe¢ cients
d2n+1 � e��̂. We conclude that, beyond a few Debye
lengths, 	0 does not contribute to the potential.

C. Case of �nite �

Now we turn to the remaining part of the coe¢ cients
(46) that is proportional to the ratio � of dielectric con-
stants. When rearranging the term ` = 0 in (26) we have

	(r̂; x) =
�

D0(D0 + �)
 0(r̂)

� �
1X
`=0

(2`+ 1)(1 + `)

D` (D` + �(`+ 1))
 `(r̂)P`(x): (48)

As above we linearize with respect to � and retain only
the leading terms of the series for D` and  `, i.e., we put
D` = d0 = �̂ and  ` = �0 = e�̂(r̂�1). We thus �nd

	 =
�

�̂2
e�̂(r̂�1)

 
1�

1X
`=0

(1 + 3`+ 2`2)P`(x)

!
: (49)

The sum over ` is evaluated in terms of the generating
function (47).

Taking on both sides the derivative with respect to t
and then multiplying with t gives

1X
`=0

`P`(x)t
n = t@tf(t; x) =

t(x� t)
(1� 2xt+ t2)3=2

:

Evaluating f and t@tf at t = 1 one �nds

1X
`=0

P`(x) =
1p
2� 2x

;

1X
`=0

`P`(x) = �
1

2
p
2� 2x

:

Repeating the derivative and evaluating t@tt@tf at t = 1
gives the second moment

1X
`=0

`2P`(x) = t@t [t@tf(t; x)]jt=1 = �2
�5=2 1 + x

(1� x)3=2
:

When inserting these three contributions in (49) we ob-
tain

1X
`=0

(1 + 3`+ 2`2)P`(x) = �
2�1=2

(1� x)3=2
: (50)

Noting 1� x = 2 sin(�=2)2 we �nally have

	(r̂; cos �) =
�

�̂2

�
1 +

1

4

1

sin(�=2)3

�
e�̂(r̂�1): (51)

This expression is the leading term of a systematic ex-
pansion in terms of 1=�̂, and accounts for d0 = �̂ and
�0 = e�̂(r̂�1). Both the corrections to d0 and �0, and
the coe¢ cients dn and �n of higher order n � 1, involve
powers of the small parameter 1=�̂ and thus have been
neglected. Eq. (51) is valid at angles � well beyond 1=�̂,
which, in physical terms, corresponds to distances well
beyond one Debye length.

D. Comparison with the �at interface

There is a close analogy between the two contribu-
tions to the coe¢ cients of the potential on a droplet,
Eq. (46), and the two terms in brackets in the expres-
sion for the �at interface, Eq. (9). Formally one may
identify (` + 1

2 )=R with the wave vector q. Moreover,
for �̂ � 1 the quantity D` is well approximated by
D` =

p
(`+ 1=2)2 + �̂2 and thus satis�es the relation

D` = q̂=R where q̂ =
p
q2 + �2.

These relations become mathematically exact in the
limit of an in�nte droplet radius, R!1. A �nite lateral
distance � then corresponds to an in�nitely small angle
� = �=R. For � ! 0 the Legendre polynomials and
the Bessel function are related by P`(cos �) ! J0[(2` +
1) sin(�=2)], and the series (13) tends towards the inverse
Fourier transformation of (9). In this limit we recover
Hurd�s result for a �at interface [18].
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