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Abstract

This article focuses on the mathematical problem of existence and uniqueness of

BSDE with a random terminal time which is a general random variable but not a

stopping time, as it has been usually the case in the previous literature of BSDE with

random terminal time. The main motivation of this work is a financial or actuarial

problem of hedging of defaultable contingent claims or life insurance contracts, for

which the terminal time is a default time or a death time, which are not stopping

times. We have to use progressive enlargement of the Brownian filtration, and to

solve the obtained BSDE under this enlarged filtration. This work gives a solution

to the mathematical problem and proves the existence and uniqueness of solutions

of such BSDE under certain general conditions. This approach is applied to the

financial problem of hedging of defaultable contingent claims, and an expression of

the hedging strategy is given for a defaultable contingent claim.
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Introduction

In the present work, we study backward stochastic differential equations with
uncertain time horizon: the terminal time of the problem is a random variable
τ , which is not a stopping time, as usually stated in the previous literature. In
our study, τ is a general random variable. Hedging problems for defaultable
contingent claims fit into this framework, as the terminal time is a default
time, which is not a stopping time.

BSDEs were first introduced by E. Pardoux and S. Peng in 1990 [22]. These
equations naturally appear when describing hedging problems of financial in-
struments (see [8] for example). BSDEs with random terminal horizon were
introduced by S. Peng (1991) [23] in the Brownian setting, and by E. Par-
doux (1995) [20] for BSDEs with Brownian setting and Poisson jumps, and
were developed by R. Darling and E. Pardoux (1997) [6], P. Briand and Y.
Hu (1998) [5], E. Pardoux (1999) [21], M. Royer (2004) [24] among others.
The framework of all these studies extensively uses the hidden hypothesis that
the processes driven by the BSDE are adapted to the natural Brownian filtra-
tion (or Poisson-Brownian in cases with jumps). As the terminal horizon of
our problem is not a stopping time, the filtration that appears to be conve-
nient to work with is not the Brownian filtration Ft, but the smallest filtration
that contains Ft and that makes τ a stopping time. This method is known
as progressive enlargement of filtration. It has been introduced in T. Jeulin
(1980) [15], T. Jeulin and M. Yor (1978,1985) [16, 17], and further developed
in J. Azema, T. Jeulin, F. Knight and M. Yor (1992) [1]. This framework
has been extensively used in default risk models, as the default time is not
a stopping time. Works on default risk models have been developed by C.
Blanchet-Scalliet and M. Jeanblanc (2004) [4], T. Bielecki, M. Jeanblanc and
M. Rutkowski (2004) [2], M. Jeanblanc and Y. Le Cam (2007) [12, 13]. Ex-
istence of solutions of BSDE under enlarged filtration has been studied by A.
Eyraud-Loisel (2005) [9, 10] for deterministic horizon, and by A. Eyraud-Loisel
and M. Royer-Carenzi (2006) [11] for random terminal stopping time, under an
initially enlarged filtration, as used for asymmetrical information and insider
trading modeling.

In a first part, we introduce the model. In a second part, the problem of
existence and uniqueness of the BSDE under enlarged filtration G is solved.
Last section is devoted to an application of previous results to hedging against
a defaultable contingent claim. We give an explicit hedging strategy in the
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defaultable world, under traditional hypothesis (H).

1. Model

Let (Ω, IF, IP) be a complete probability space and (Wt)0≤t≤T be am-dimensional
Brownian motion defined on this space with W0 = 0. F = (Ft)0≤t≤T denotes
the completed σ-algebra generated by W .
We consider a financial market with a riskless asset S0

t and m risky financial
assets Sit . Prices are supposed to evolve according to the following dynamics :

dS0
t = rtS

0
t dt, 0 ≤ t ≤ T, (1)

dSit = µitS
i
t dt+ Sit(σ

i
t, dWt), 0 ≤ t ≤ T, ∀1 ≤ i ≤ m, (2)

where rt ≥ 0 is the risk-free rate, bounded and deterministic, µit is the ith
component of a predictable and vector-valued map µ : Ω× [0, T ] → R

m and σit
is the ith row of a predictable and matrix-valued map σ : Ω× [0, T ] → R

m×m.
In order to exclude arbitrage opportunities in the financial market we assume
that the number of assets is the same as the Brownian dimension. For technical
reasons we also suppose that

(M1) µ is bounded and deterministic,

(M2) σ is bounded, in the sense that there exist constants 0 < ε < K such that
εIm ≤ σtσ

∗
t ≤ KIm for all t ∈ [0, T ],

(M3) σ is invertible, and σ−1 is also bounded.

where σ∗
t is the transpose of σt, and Im is the m-dimensional unit matrix.

In other words, we require usual conditions to have an arbitrage-free market
([18]), called the the default-free, and even complete market. These conditions
ensure the existence of a unique equivalent martingale measure (e.m.m.), de-
noted by ĨP.

Suppose that a financial agent has a positive F0-measurable initial wealth X0

at time t = 0. Her wealth at time t is denoted by Xt. We consider a hedging
problem, represented by a pay-off ξ, to be reached under a random terminal
condition, which is not a stopping time. It is the case for defaultable contingent
claims, where the terminal time is a default time. For example, an agent sells
an option with maturity T , based on a defaultable asset. This type of contract
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(defaultable contingent claim) generally leads to two possible payoffs: the seller
commits itself to give the payoff of a regular option, if default did not occur
at time T , which will be represented by a FT -measurable random variable V
(for instance, V = (ST − K)+ for a european call option, but in general, V
may depend on the paths of asset prices until time T ); if default occurs before
time T , the seller has to pay at default time a compensation Cτ , defined as the
value at default time τ of an Ft-predictable nonnegative semi-martingale Ct.
Then the final payoff at time τ ∧ T has the general form :

ξ = V 1lτ>T + Cτ 1lτ≤T ,

Default times are random variables that do not depend entirely on the paths
of some financial risky assets. They may have a financial component, but have
an exogenous part, which makes them not adapted to the natural filtration
generated by the observations of prices.
Nevertheless, they are observable : at any time, the common agent can observe
if default τ has occurred or not. The information of an agent is therefore not
the filtration generated by the price processes (Ft)0≤t≤T , but is defined by
G = (Gt)t∈[0,T ], where

Gt = Ft ∨ σ(1lτ≤t), (3)

which is the completion of the smallest filtration that contains filtration (Ft)0≤t≤T

and that makes τ a stopping time. So the previous payoff belongs to the fol-
lowing space : ξ ∈ GT∧τ . The problem is to find a hedging admissible strategy,
i.e. a strategy that leads to the terminal wealth XT∧τ = ξ.

Under G, the default-free market is not complete any more. The martingale
representation property has to be established under this new filtration. For
short, to be able to hedge against the random time, another asset will be
needed, in order to fill up the martingale representation property.

In financial defaultable markets, the payment of a contingent claim depends
on the default occurrence before maturity. Therefore another tradable asset
(or at least attainable) is often considered : the defaultable zero-coupon bond
with maturity T , whose value at time t is ρt = ρ(t, T ). This asset will give its
owner the face-value 1 if default did not occur before T , and nothing otherwise.
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If this asset is tradable on the market, an admissible hedging strategy will be
a self-financing strategy based on the non risky asset, the risky asset, and the
defaultable zero-coupon.

2. Solution of the BSDE under G

To avoid arbitrage opportunities, we work in a mathematical set up where
(F , IP) semi-martingales remain (G, IP) semi-martingales. This property does
not hold at any time. In context of credit risk, the good hypothesis consists
in supposing that τ is an initial time; it is called Density Hypothesis, detailed
by M. Jeanblanc and Y. Le Cam in [13] and also by N. El Karoui et al. in [7].

Density Hypothesis : We assume that there exists an Ft×B(R+)-measurable
function αt : (ω, θ) → αt(ω, θ) which satisfies

IP(τ ∈ dθ|Ft) := αt(θ) dθ, IP − a.s.

Remark. For any θ, the process (αt(θ))t≤0 is an (F , IP) non-negative martin-
gale.

We introduce the following conditional probability

Ft = IEIP(1lτ≤t|Ft) = IP(τ ≤ t|Ft). (4)

We will always consider the right-continuous version of this (F , IP)-submartingale,
and we will also assume that Ft < 1 a.s. ∀t ∈ [0, T ]. Define the F -predictable,
right-continuous nondecreasing process (F̂t)t≥0 such that the process F − F̂ is
a (F , IP)-martingale, denoted by (MF

t )t≥0. We denote by (ψ)t≥0 the process
such that dMF

t = ψt dWt.

Under the Density Hypothesis, it is well known that

Ft =

∫ t

0

αt(s) ds
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and that the process

Mt = Ht −

∫ t∧τ

0

(1 −Hs)
αs(s)

1 − Fs
ds

is a (G, IP)-martingale, where process (Ht)t≥0 is the defaultable process with

Ht = 1lτ≤t, and process (λt)t≥0 is defined by λt = αt(t)
1−Ft

(see [3] and [13]).

2.1. Representation theorem

In such a context any (F , IP)-martingale X is a (G, IP) semi-martingale and
the process X̄ defined by

X̄t = Xt −

∫ t∧τ

0

d 〈X,F 〉s
1 − Fs−

−

∫ t

t∧τ

d 〈X,α(u)〉s
αs−(u)

|u=τ , 0 ≤ t ≤ T (5)

is a (G, IP)-martingale (see M. Jeanblanc and Y. Le Cam in [14]).

(Wt)t≥0 is a Brownian motion in probability space (Ω,F , IP), and we denote
by W̄ the associated Brownian motion under (Ω,G, IP), defined by Equation
(5).

For any γ ∈ R, let us define B2
γ = S2

γ×L
2
γ(W̄ , IP)×L2

γ(M, IP) where we denote
by :

• S2
γ the set of 1-dimensional G-adapted càdlàg processes (Yt)0≤t≤T

such that ||Y ||2S2
γ

= IEIP

(
sup

0≤t≤T
eγ (t∧τ) Y 2

t∧τ

)
<∞,

• L2
γ(W̄ , IP) the set of all m-dimensional G-predictable processes (Zt)0≤t≤T

such that ||Z||2
L

2

γ(W̄ ,IP)
= IEIP

( ∫ T∧τ
0

eγ s ‖Zs‖
2 ds
)
<∞,

• L2
γ(M, IP) the set of all 1-dimensional G-predictable processes (Ut)0≤t≤T

such that ||U ||2
L

2

γ(M,IP)
= IEIP

( ∫ T∧τ
0

eγ s |Us|
2 λs ds

)
<∞.

Let recall a representation theorem established by Jeanblanc and Le Cam
under ”density hypothesis”(see theorem 2.1 [13])
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Theorem 2.1. For every (G, IP) martingale X̄, there exist two G-predictable
process β and γ such that

dX̄t = γt dW̄t + βt dMt

Remark. If X̄ is square integrable martingale, then the process γ (respectively

β) belongs to L2
γ(W̄ , IP) (resp. L2

γ(M, IP)).

2.2. Existence theorem

Fix T > 0 and ξ ∈ L2
(GT∧τ ).

The BSDE to be solved is the following :

Yt∧τ = ξ+

∫ T∧τ

t∧τ

f(s, Ys, Zs, Us) ds−

∫ T∧τ

t∧τ

Zs dW̄s−

∫ T∧τ

t∧τ

Us dMs, 0 ≤ t ≤ T.

(6)
The aim of this section is to prove an existence and uniqueness result for this
BSDE stopped at G-stopping time T ∧ τ . In the previous financial interpreta-
tion, this unique G-adapted solution (Y, Z, U), stopped at time τ , will represent
the unique portfolio that hedges the defaultable contingent claim.

Hypotheses on f and λ :

• λ is a non-negative function, bounded by a constant K1 ;

• f is a Lipchitz function such that there exist a constant K2 satisfying

|f(s, y, z, u)− f(s, y′, z′, u′)| ≤ K2 (|y − y′| + ‖z − z′‖) + λs |u− u′| . (7)

Let us denote K = max(K1, K2).

Definition 2.2.
Let us consider T > 0 and ξ ∈ L2

(Ω,GT∧τ , IP). A (Ω,G, IP)-solution (or
a solution on (Ω,G, IP)) to equation (6) is a triple of R × R

m × R-valued
(Yt, Zt, Ut)t≥0 processes such that

1. Y is a G-adapted càdlàg process and (Z,U) ∈ L2
0(W̄ , IP) ×L2

0(M, IP),

2. On the set {t ≥ T ∧ τ}, we have Yt = ξ, Zt = 0 and Ut = 0,
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3. ∀ r ∈ [0, T ] and ∀t ∈ [0, r], we have

Yt∧τ = Yr∧τ +
∫ r∧τ
t∧τ

f(s, Ys, Zs, Us) ds−
∫ r∧τ
t∧τ

Zs dW̄s −
∫ r∧τ
t∧τ

Us dMs.

Lemma 2.3.
Let ξ ∈ L2

(Ω,GT∧τ , IP). If (Yt, Zt, Ut)0≤t≤T is a (Ω,G, IP)-solution of the BDSE
(6) as defined in the Definition 2.2, with f satisfying hypothesis (7) and

IE

(∫ T∧τ

0

|f(s, 0, 0, 0)|2 ds

)
< +∞,

then
IE

(
sup

0≤t≤T
Y 2
t∧τ

)
< +∞.

Proof.
The proof is given in Appendix. �

We can now state the following theorem :

Theorem 2.4.
Let ξ ∈ L2

(Ω,GT∧τ , IP) and f : Ω× [0, T ]×R×R
m×R −→ R be G-measurable.

If IE
(∫ T

0
|f(s, 0, 0, 0)|2 ds

)
< ∞ and if f satisfies condition (7), there exists

a unique G-adapted triple (Y, Z, U) ∈ B2
0 solution of the BSDE:

Yt∧τ = ξ+

∫ T∧τ

t∧τ

f(s, Ys, Zs, Us) ds−

∫ T∧τ

t∧τ

Zs dW̄s−

∫ T∧τ

t∧τ

Us dMs, 0 ≤ t ≤ T.

Proof.
We can adopt the usual contraction method using representation Theorem 2.1.
Let γ ∈ R. Recall that B2

γ = S2
γ×L

2
γ(W̄ , IP)×L2

γ(M, IP). We define a function
Φ : B2

0 → B2
0 such that (Y, Z, U) ∈ B2

0 is a solution of our BSDE if it is a fixed
point of Φ.
Let (y, z, u) ∈ B2

0. Define (Y, Z, U) = Φ(y, z, u) with :

Yt = IE
(
ξ +

∫ T∧τ

t∧τ

f(s, ys, zs, us) ds
∣∣∣ Gt
)

, 0 ≤ t ≤ T ,

and processes (Zt)0≤t≤T ∈ L2
0(W̄ , IP) and (Ut)0≤t≤T ∈ L2

0(M, IP) obtained by
using martingale representation Theorem 2.1 applied to the square integrable
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(G, IP)-martingale (Nt)0≤t≤T where Nt = IE
(
ξ +

∫ T∧τ
0

f(s, ys, zs, us) ds
∣∣∣ Gt
)
.

Hence

Nt∧τ = NT∧τ −

∫ T∧τ

t∧τ

Zs dW̄s −

∫ T∧τ

t∧τ

Us dMs,

Yt∧τ +

∫ t∧τ

0

f(s, ys, zs, us) ds = ξ +

∫ T∧τ

0

f(s, ys, zs, us) ds

−

∫ T∧τ

t∧τ

Zs dW̄s −

∫ T∧τ

t∧τ

Us dMs.

Consequently

Yt∧τ = ξ +

∫ T∧τ

t∧τ

f(s, ys, zs, us) ds−

∫ T∧τ

t∧τ

Zs dW̄s −

∫ T∧τ

t∧τ

Us dMs.

This means that (Y, Z, U) is a ( Ω, G , IP )-solution to Equation (6) with partic-
ular generator s 7→ g(s) = f(s, ys, zs, us), which implies thanks to Lemma 2.3
that the triple (Y, Z, U) belongs to the convenient space B2

0 and consequently
map Φ is well defined.

Next, for (y1, z1, u1) and (y2, z2, u2) in B2
0, we define (Y 1, Z1, U1) = Φ(y1, z1, u1)

and (Y 2, Z2, U2) = Φ(y2, z2, u2). Let (ŷ, ẑ, û) = (y1 − y2, z1 − z2, u1 − u2) and
(Ŷ , Ẑ, Û) = (Y 1 − Y 2, Z1 − Z2, U1 − U2).

Then

Ŷt∧τ =

∫ T∧τ

t∧τ

(
f(s, y1

s , z
1
s , u

1
s) − f(s, y2

s , z
2
s , u

2
s)
)
ds

−

∫ T∧τ

t∧τ

Ẑs dW̄s −

∫ T∧τ

t∧τ

Ûs dMs.

Let us apply Itô’s formula to process (eγ t Y 2
t )0≤t≤T . Taking γ = 4K2 +2K+1,

it gives for any t in [0, T ] :

IE

(∫ T∧τ

t∧τ

eγs ( Ŷ 2
s + ‖Ẑs‖

2 ) ds +

∫ T∧τ

t∧τ

eγs Û2
s λs ds

)

≤
1

2
IE

(∫ T∧τ

0

eγs (ŷ2
s + ‖ẑs‖

2) ds+

∫ T∧τ

0

eγs û2
s λs ds

)
.
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And finally, with t = 0,

IE

(∫ T∧τ

0

eγs ( Ŷ 2
s + ‖Ẑs‖

2 ) ds +

∫ T∧τ

0

eγs Û2
s λs ds

)

≤
1

2
IE

(∫ T∧τ

0

eγs (ŷ2
s + ‖ẑs‖

2) ds+

∫ T∧τ

0

eγs û2
s λs ds

)
.

Then Φ is a strict contraction on B2
0 with norm

|||(Y, Z, U)|||γ = IE

(∫ T∧τ

0

eγs (Y 2
s + ‖Zs‖

2) ds+

∫ T∧τ

0

eγs U2
s λs ds

) 1

2

.

We finally deduce that Φ has a unique fixed point and conclude that the BSDE
has a unique solution. �

3. Hedging strategy in the defaultable world with BSDE

3.1. Defaultable zero-coupon

After giving in Section 2 the results in a framework of initial times, we restrict
hereafter to consider the particular case where

αt(u) = αu(u), ∀u ≤ t

This case is equivalent to the hypothesis called immersion property or Hypoth-
esis (H).

Hypothesis (H). Any square integrable (F , IP)-martingale is a square inte-
grable (G, IP)-martingale.

Under this hypothesis, the process F is continuous and Brownian motion W

is still a Brownian motion in the enlarged filtration. The results obtained in
the previous section are still satisfied, with W instead of W̄ . As explained in
the introduction, we denote by ĨP the unique e.m.m equivalent to IP on F .
According to section 3.3 in [4], when (H) holds on the historical probability,
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as soon as the F -market is complete, the defaultable market is still arbitrage
free. (H) holds under any G-equivalent martingale measure IPψ such that
IPψ

|Gt
= K

ψ
t IP|Gt with

dK
ψ
t = K

ψ
t−(−θt dWt + ψt dMt) , 0 ≤ t ≤ T,

where θ = σ−1(µ− r) denotes the risk premium and ψ > −1.

The equation satisfied by Kψ is obtained using a representation theorem for
all (G, IP) square-integrable martingales established by S. Kusuoka [19] under
hypothesis (H).
Let IPψ be such a G-equivalent martingale measure. We have IPψ

|F = IP0
|F =

ĨP|F . W 0 denotes the Brownian motion obtained using Girsanov’s transfor-
mation (since the coefficient in the Radon-Nikodým density associated to the
Brownian motion is always θ). We also introduce processes Fψ and Mψ con-
structed in the same way as F and M but associated to the probability IPψ

instead of IP. Note that process F ψ is continuous because τ is still an initial
time with immersion property under IPψ (see M. Jeanblanc and Y. Le Cam
in [13]). Then using Girsanov’s transformation, the (G, IPψ)-martingale Mψ

satisfies dMψ
t = dMt − (1 −Ht) (1 + ψt)λt dt.

Let (ρ̃t)0≤t≤T be the discounted price of the defaultable zero-coupon bond and
Rt the discount factor :

Rt = exp

(
−

∫ t

0

rs ds

)
, 0 ≤ t ≤ T.

We obtain from Proposition 2 in [4] the following result :

Lemma 3.1.

dρ̃t =
1lτ>t

1 − F
ψ
t−

φmt dW
0
t − ρ̃t− dM

ψ
t , 0 ≤ t ≤ T,

Proof. (φmt )t≥0 comes from the representation of (F , IP0)-martingale (mt)t≥0 =(
IEIP0(RT 1lτ>T | Ft)

)

t≥0
with respect to (F , IP0)-Brownian motion W 0.

As ∀t ∈]0, T ∧ τ ] ρ̃t− 6= 0, we can set ct =
1lτ>t

1 − F
ψ
t−

φmt
ρ̃t−

.
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Using Girsanov transformation, we obtain finally the dynamics of the default-
able zero-coupon under historical probability :

Proposition 3.2.

dρt = ρt− (at dt + ct dWt − dMt), (8)

where :
at = rt + θt ct + (1 −Ht−)ψt λt. (9)

3.2. Wealth’s dynamic

3.2.1. BSDE formulation

Let Yt be the wealth at time t of the agent. Suppose that she has αt parts of
the risky asset, δt parts of the riskless asset, and βt parts of the defaultable
zero-coupon bond. At any time t, we have :

Yt = αt St + βt ρt− + δt S
0
t . (10)

where αt, βt and δt are predictable.
The self-financing hypothesis can be written as :

dYt = αt dSt + βt dρt + δt dS
0
t ,

which can be developed, for any t in [0, T ∧ τ ], using (10) and the dynamics of
the three assets (2), (8) and (1). This yields to

dYt = (αt µt St + rt Yt − αt rt St − βt rt ρt− + βt at ρt−) dt

+ (αt σt St + βt ct ρt−) dWt − βt ρt− dMt.

Then, denoting by Zt = αt σt St + βt ct ρt− and Ut = −βt ρt− , we obtain a
BSDE satisfied by the wealth process Yt :

{
dYt = −f(t, Yt, Zt, Ut) dt+ Zt dWt + Ut dMt, 0 ≤ t ≤ T ∧ τ
YT∧τ = ξ

(11)

with f(t, y, z, u) = −rt y − θt z + ( at − rt − θt ct ) u.
Using (9), we obtain

f(t, y, z, u) = −rt y − θt z + (1 −Ht−)ψt λt u. (12)
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This provides a BSDE with Gt-adapted coefficients. As F -Brownian motion W
is still a Brownian motion under the new filtration G, the previous stochastic
differential equation has a sense.

3.2.2. Application of Theorem 2.4

As condition (7) holds true, as r, θ and λ are bounded, and as f(s, 0, 0, 0) =
0, the integrability condition on f under IP is also satisfied, Theorem 2.4
guarantees existence and uniqueness of the solution of the previous BSDE.

Proposition 3.3. There exists a unique solution of BSDE (11) with driver

(12), for all ξ ∈ L2
(GT∧τ ).

3.2.3. Explicit solution for the hedging strategy

When ξ = V 1lτ>T +Cτ 1lτ≤T represents a defaultable contingent claim, we give
an explicit solution for the hedging strategy, given by the solution of (11) with
driver (12).

Theorem 3.4.
Let V ∈ L2

(FT ) and C be a square integrable F-predictable process.

ξ = V 1lτ>T + Cτ 1lτ≤T

Let f : Ω × [0, T ] × R × R
m × R −→ R be the G-measurable generator defined

by
f(t, y, z, u) = −rt y − θt z + (1 −Ht−)ψt λt u,

satisfying condition (7).
Then, under hypothesis (H), there exists a unique G-adapted triple (Y, Z, U) ∈
B2

0 solution of the BSDE :

Yt∧τ = ξ+

∫ T∧τ

t∧τ

f(s, Ys, Zs, Us) ds−

∫ T∧τ

t∧τ

Zs dWs−

∫ T∧τ

t∧τ

Us dMs, 0 ≤ t ≤ T.

(13)
Moreover

Zt =
aCt + aVt

Rt(1 − F
ψ
t )
,
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and
Ut = Ct − R−1

t IEIPψ(RτCτ |Gt−) −R−1
t IEIPψ(RTV 1lT<τ |Gt−),

where (aCt )t≥0 comes from the representation of (F , IPψ)-martingale(
IEIPψ

(∫∞

0
RsCs dF

ψ
s |Ft

) )
t≥0

and (aVt )t≥0 from
(
IEIPψ(RTV 1lτ>T | Ft)

)
t≥0

.

Proof.
Let us consider the discounted process (RtYt)0≤t≤T . We have

Rt∧τ Yt∧τ = IEIPψ(RT∧τ ξ|Gt).

We compute separately the conditional expectation ofRτCτ 1lτ≤T andRT V 1lT<τ .
Let XC

t = IEIPψ(RτCτ 1lτ≤T |Gt).

From Proposition 3 in C. Blanchet-Scalliet and M. Jeanblanc [4], we have

XC
t = XC

0 +

∫ t∧τ

0

1

IPψ(τ > s | Fs)
aCs dW

0
s +

∫ t∧τ

0

(RsCs −XC
s−) dMψ

s , (14)

where (aCt )t≥0 comes from the representation of the (F , IPψ)-martingale(
IEIPψ

(∫∞

0
RsCs dFs|Ft

) )

t≥0
with respect to (F , IPψ)-Brownian motion W 0.

For the second term, XV
t = IEIPψ(RTV 1lT<τ |Gt) is a (G, IPψ)-martingale and

can be represented as follows :

XV
t = XV

0 +

∫ t∧τ

0

1

IPψ(τ > s | Fs)
aVs dW

0
s −

∫ t∧τ

0

XV
s− dM

ψ
s , (15)

where (aVt )t≥0 comes from the representation of the (F , IPψ)-martingale(
IEIPψ(RTV 1lτ>T | Ft)

)

t≥0
with respect to (F , IPψ)-Brownian motion W 0.

Summing (14) and (15), we obtain RsZs = aCs +aVs
1−Fψs

and RsUs = RsCs −XC
s− −

XV
s−.

Since XV
t and XC

t are square integrable, Z ∈ L2
0(W, IP). Using Theorem 2.4,

(Y, Z, U) is the unique solution of BSDE (13) in S2 × L2
0(W, IP) × L2

0(M, IP).
�

Remark. By solving BSDEs, we detailed a new approach to find the same
results as those stated in C. Blanchet-Scalliet and M. Jeanblanc [4], as a special
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case of the last Theorem.

4. Conclusion

This article has presented a new BSDE approach to finding hedging strategies
in a defaultable world. Results have been obtained for a large panel of hedging
payoffs, and under general assumptions. The hedging portfolios have been
expressed in term of a solution of a backward stochastic differential equation.
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Appendix : Proof of Lemma 2.3

Let (Yt, Zt, Ut)0≤t≤T be a solution of (6) :

Yt∧τ = ξ+

∫ T∧τ

t∧τ

f(s, Ys, Zs, Us) ds−

∫ T∧τ

t∧τ

Zs dW̄s−

∫ T∧τ

t∧τ

Us dMs, 0 ≤ t ≤ T.

Let us consider γ ∈ R. Apply Itô’s formula to the process (eγt Y 2
t )t≥0 between

t ∧ τ and T ∧ τ .

eγ(t∧τ) Y 2
t∧τ = eγ(T∧τ) ξ2 − γ

∫ T∧τ

t∧τ

eγs Y 2
s ds + 2

∫ T∧τ

t∧τ

eγs Ys f(s, Ys, Zs, Us) ds

− 2

∫ T∧τ

t∧τ

eγs Ys Zs dW̄s − 2

∫ T∧τ

t∧τ

eγs Ys− Us dMs
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−

∫ T∧τ

t∧τ

eγs ‖Zs‖
2
ds −

∑

t∧τ≤s≤T∧τ

eγs U2
s ∆Hs .

Then

eγ(t∧τ) Y 2
t∧τ + γ

∫ T∧τ

t∧τ

eγs Y 2
s ds

≤ eγ(T∧τ) ξ2 + 2

∫ T∧τ

t∧τ

eγs Ys f(s, Ys, Zs, Us) ds

− 2

∫ T∧τ

t∧τ

eγs Ys Zs dW̄s − 2

∫ T∧τ

t∧τ

eγs Ys− Us dMs .

≤ eγ(T∧τ) ξ2 +

∫ T∧τ

t∧τ

eγs |f(s, 0, 0, 0)|2 ds + (1 + 3K +K2)

∫ T∧τ

t∧τ

eγs Y 2
s ds

+

∫ T∧τ

t∧τ

eγs ‖Zs‖
2
ds +

∫ T∧τ

t∧τ

eγs U2
s λs ds

− 2

∫ T∧τ

t∧τ

eγs Ys Zs dW̄s − 2

∫ T∧τ

t∧τ

eγs Ys− Us dMs.

Choosing γ > 1 + 3K +K2 and taking the supremum under 0 and T and the
expectation, we obtain

IE

(
sup

0≤t≤T
eγ(t∧τ) Y 2

t∧τ

)
≤ eγT IE

(
ξ2
)

+ eγT IE

(∫ T∧τ

0

|f(s, 0, 0, 0)|2 ds

)

+ IE

(∫ T∧τ

0

eγs ‖Zs‖
2
ds

)
+ IE

(∫ T∧τ

0

eγs U2
s λs ds

)

+ 4CBDG IE

((∫ T∧τ

0

e2γs Y 2
s ‖Zs‖

2ds

)1/2
)
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+ 4CBDG IE

((∫ T∧τ

0

e2γs Y 2
s− U

2
s d[M,M ]s

)1/2
)

≤ eγT IE
(
ξ2
)

+ eγT IE

(∫ T∧τ

0

|f(s, 0, 0, 0)|2 ds

)

+

(
1 +

2

ε
CBDG

)
eγT IE

(∫ T∧τ

0

‖Zs‖
2
ds

)

+ 4 ε CBDG e
γT IE

(
sup

0≤t≤T

(
Y 2
t∧τ

))

+
2

ε
CBDG e

γT IE

(∫ T∧τ

0

U2
s d[M,M ]s

)
+ eγT IE

(∫ T∧τ

0

U2
s λs ds

)
,

for any ε > 0.

Notice that d[M,M ]s = (∆Hs)
2 = ∆Hs = dHs = dMs + (1 − Hs)λs ds, so

applying the standard procedure of localization, one has

IE

(∫ T∧τ

0

U2
s d[M,M ]s

)
= IE

(∫ T∧τ

0

U2
s λs ds

)
.

Choosing ε = 1
8CBDG eγT

, we obtain

1

2
IE

(
sup

0≤t≤T
Y 2
t∧τ

)
≤ eγT IE

(
ξ2
)

+ eγT IE

(∫ T∧τ

0

|f(s, 0, 0, 0)|2 ds

)

+

(
eγT +

1

4

)
IE

(∫ T∧τ

0

‖Zs‖
2ds

)
+

(
eγT +

1

4

)
IE

(∫ T∧τ

0

U2
s λs ds

)

< +∞ .
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