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Abstract

This article focuses on the mathematical problem of existence and unique-
ness of BSDE with a random terminal time which is a general random variable
but not a stopping time, as it has been usually the case in the previous litera-
ture of BSDE with random terminal time. The main motivation of this work is
a financial or actuarial problem of hedging of defaultable contingent claims or
life insurance contracts, for which the terminal time is a default time or a death
time, which are not stopping times. We have to use progressive enlargement of
the Brownian filtration, and to solve the obtained BSDE under this enlarged
filtration. This work gives a solution to the mathematical problem and proves
the existence and uniqueness of solutions of such BSDE under certain general
conditions. This approach is applied to the financial problem of hedging of de-
faultable contingent claims, and an expression of the hedging strategy is given
for a defaultable contingent claim or a life insurance contract.
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Introduction

In the present work, we study backward stochastic differential equations with uncer-
tain time horizon : the terminal time of the problem is a random variable τ , which
is not a stopping time, as usually stated in the previous literature, but a general
random variable. Hedging problems with random variables as terminal time are
among possible application fields : for example defaultable contingent claims or life
insurance contracts fit into this framework, as the terminal time is a default time or
a death time, which are not stopping times.

BSDEs were first introduced by E. Pardoux and S. Peng in 1990 [23]. Such equa-
tions are frequently used, and have a large panel of application areas, especially in
mathematical finance. They also appear in several cases such as stochastic control
(see S. Peng [25], N. El Karoui, S. Peng and M.C. Quenez [10], and X. Zhou and
J. Yong [27]) or problems linked with PDEs (see E. Pardoux [21] and G. Barles,
R. Buckdahn and E. Pardoux [2]). BSDEs are useful in our framework since these
equations naturally appear when describing hedging problems. As we study hedging
of contingent claims with random exercise time, we have to model it with BSDEs
with random terminal time. Such equations were introduced by S. Peng (1991) [24],
and developed by R. Darling and E. Pardoux (1997) [9], P. Briand and Y. Hu (1998)
[8], E. Pardoux (1999) [22], M. Royer (2004) [26] among others, and by E. Pardoux
(1995) [20] for BSDEs with jumps and random terminal time.

As the terminal horizon of our problem is not a stopping time, the filtration that
appears to be convenient to work with is not the Brownian filtration Ft, but the
smallest filtration that contains Ft and that makes τ a stopping time. This method
is well-known as progressive enlargement of filtration. It has been introduced in T.
Jeulin (1980) [15], T. Jeulin and M. Yor (1978,1985) [16, 17], and further developed in
J. Azema, T. Jeulin, F. Knight and M. Yor (1992) [1]. This framework has been used
in default risk models, as the default time is not a stopping time. Works on default
risk models has been developed for example in C. Blanchet-Scalliet and M. Jeanblanc
(2004) [7], T. Bielecki, M. Jeanblanc and M. Rutkowski (2004) [3], M. Jeanblanc and
Y. Le Cam (2007) [14]. A useful representation theorem in this framework is given
in S. Kusuoka (1999) [18]. Existence of solutions of BSDE under enlarged filtration
has already been studied by A. Eyraud-Loisel (2005) [11] for deterministic horizon,
and by A. Eyraud-Loisel and M. Royer-Carenzi (2006) [12] for random terminal
time (stopping time), but only under an initially enlarged filtration, as used for
asymmetrical information and insider trading modeling.

In a first part, we present the financial and actuarial motivation of this work and
introduce several notations. In the second part, the problem of existence and unique-
ness of the BSDE under the enlarged filtration G is solved. The last section is devoted
to an application of the previous results to hedging against a defaultable contingent
claim. We give an explicit hedging strategy in the defaultable world, under tradi-
tional hypothesis (H).
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1 Financial motivation

Let (St)0≤t≤T be the price process and (Ft)0≤t≤T the filtration generated by the
price processes.
Suppose that an agent has to hedge against some contract with random terminal
condition, where the random terminal condition is not a stopping time. It is the
case for defaultable contingent claims, where the terminal time is a default time,
or for a life insurance contract, where the terminal time is a death time . Let us
give an example : an agent sells an option with maturity T based on a defaultable
asset (defaultable contingent claim). This type of contract generally involves two
different kind of possible payoffs : the seller commits itself to give the payoff of a
regular option, if default did not occur at time T , which will be represented by a
FT -measurable random variable V (for instance, V = (ST −K)+ for a call option,
but in a more general case, V may depend on the paths of one or several asset prices
until time T ). If default occurs before time T , the seller has to pay a compensation
Cτ at time τ , which is in the financial case generally a constant, but may depend
on the paths of the risky assets strictly before default time : Cτ ∈ Fτ− . The final
payoff the agent wants to hedge at time τ ∧ T has the following general form :

ξ = V 1lτ>T + Cτ 1lT≤τ ,

This kind of payoff may also be used for life insurance hedging problems : in the
case of a life insurance contract seller (or the owner of a life insurance portfolio), the
default time will be the death time of the policyholder, or the minimum of several
death times, in the case of an entire portfolio. The seller of the contract promises to
give either a pension in case of death does not occur before maturity of the contract
(in that case, the pension can be represented by its present value at time T , which
is a conditional expectation with respect to FT and so may also be represented by a
random variable V ∈ FT ), and a compensation at death time if death occurs before
time T , represented by a random variable Cτ ∈ Fτ− , constant in the most simple
case, or which may depend on some financial aspects strictly until death time.

Finally, in both applications, payoff ξ consists in a FT -measurable random variable
V , to hedge at maturity T if τ has not occurred at time T , and a compensation Cτ ,
payed at hit (at default/death time) in case of default (or death) occurs before T .
The hedging terminal time is T ∧ τ .

Default times, as well as death times, are random variable that do not depend
entirely on the paths of some financial risky assets. They may have a financial
component, but have an exogeneous part, which makes them not adapted to the
natural filtration generated by the observations of prices.
Nevertheless, they are observable. So we suppose that at any time, the agent can
observe if default τ has occured or not, which is quite natural to suppose for default
times as for death times. So the information of an agent is not the filtration generated
by the price processes F , but is defined by

Gt = Ft ∨ σ(1lτ≤t),

3



which is the smallest filtration that contains filtration Ft and that makes τ a stopping
time. So the previous payoff belongs to the following space :

ξ ∈ FT∧τ ∨ σ(τ) = GT∧τ .

The problem is to find a hedging admissible strategy for this defaultable contingent
claim, i.e. a strategy that leads to a terminal wealth XT∧τ = ξ. An admissible
hedging strategy will be a self-financing strategy based on the non risky asset, the
risky asset, and the defaultable zero-coupon.

Let us write what this means. Following the notations of C. Blanchet-Scalliet and
M. Jeanblanc [7], let us first introduce the following conditional probability denoted
by Ft:

Ft = IEIP(1lτ≤t|Ft) = IP(τ ≤ t|Ft). (1)

We will always consider the right-continuous version of this (F , IP)-submartingale.

Suppose that the dynamics of the price St at time t of the risky asset is the following
(for simplicity reasons, we will only consider the case where there is only one risky
financial asset) :

dSt = µtSt dt + σtSt dWt, 0 ≤ t ≤ T, (2)

where Wt is a one-dimensional Brownian motion under IP, and (Ft)0≤t≤T is its
natural filtration.
We will suppose, as in [7] that there exists at least one probability equivalent to
IP on F under which the discounted price process is a martingale (there exists an
equivalent martingale measure), so that the default-free market is arbitrage free.
We will also consider here that this probability is unique, so that the default-free
market is complete (σ invertible and E(σ−1W ) integrable). We denoted by ĨP this
unique equivalent martingale measure (e.m.m.) on F

The riskless asset follows the dynamics :

dS0
t = rtS

0
t dt, 0 ≤ t ≤ T. (3)

Let Rt be the discount factor :

Rt = exp

(
−

∫ t

0
rs ds

)
, 0 ≤ t ≤ T.

Then the price of the riskless asset has the following form :

S0
t = exp

(∫ t

0
rs ds

)
, 0 ≤ t ≤ T.

Even if the default-free market is complete under filtration (Ft)0≤t≤T , it is not
complete under (Gt)0≤t≤T any more (the martingale representation property does
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not held in the same way, we need another martingale representation theorem). In
short, to be able to hedge against the random time, another asset will be needed,
that will appear in the martingale representation property.

In fact, in financial defaultable markets there is often another tradable asset (or at
least attainable) : the defaultable zero-coupon bond with maturity T , whose value
at time t is ρ(t, T ) : this asset gives its owner the payment 1 if default did not
occur before T , and nothing otherwise. For more convenience, we will always denote
ρ(t, T ) by ρt, without specifying maturity T .
Two different cases will appear : whether this defaultable zero-coupon bond is trad-
able on the market or not. For instance in an insurance problem, there aren’t any
defaultable zero-coupon bond that is possibly traded, whereas in the financial set-
tings, it may be attainable.

2 BSDE under G

Let IP denote a general probability measure. Consider a standard one-dimensional
Brownian motion W , and its natural filtration F . Define the F-predictable, right-
continuous nondecreasing process (F̂t)t≥0 such that the process F − F̂ is a (F , IP)-
martingale.
Denote gy (Ht = 1lτ≤t)t≥0 the defaultable process and define the F-predictable,
right-continuous nondecreasing process (Λt)t≥0 such that the process Mt = Ht−Λt∧τ
is a (G, IP)-martingale. Process M is called the compensated process of H.

Proposition 2.1 Process Λ exists, is well defined and satisfies

dΛt =
dF̂t

1 − Ft−
, t ≥ 0.

Proof. See Lemma 8.7 in [6] for the proof. �

2.1 Representation theorem

For simplicity reasons, we consider a one-dimensional Brownian motion, but all
proofs can be adapted to the multi-dimensional case, and all results remain true.

In M. Yor [28], the decomposition of (F , IP)-martingales in filtration G is given by
the pfollowing proposition.

Proposition 2.2 If X is a (F , IP)-martingale, there exists a (G, IP)-martingale X̄
such that

Xt∧τ = X̄t∧τ −

∫ t∧τ

0

d 〈X,F 〉s
1 − Fs−

, 0 ≤ t ≤ T .
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In the case where filtration F is generated by a Brownian motion W , M. Yor et al
established in [1] a representation theorem for G-martingales.

For any γ ∈ R, let us define B2
γ = S2

γ ×L2
γ(W̄ , IP)×L2

γ(M, IP) where we denote by :

• S2
γ the set of 1-dimensional G-adapted càdlàg processes (Yt)0≤t≤T such that

||Y ||2S2
γ

= IEIP

(
sup

0≤t≤T
eγ (t∧τ) |Yt∧τ |

2
)
<∞,

• L2
γ(W̄ , IP) the set of all m-dimensional G-predictable processes (Zt)0≤t≤T such

that ||Z||2
L2

γ(W̄ ,IP)
= IEIP

( ∫ T∧τ
0 eγ s ‖Zs‖

2 ds
)
<∞,

• L2
γ(M, IP) the set of all 1-dimensional G-predictable processes (Ut)0≤t≤T such

that ||U ||2
L2

γ(M,IP)
= IEIP

( ∫ T∧τ
0 eγ s |Us|

2 dΛs

)
<∞.

Theorem 2.3 Any (G, IP) square-integrable martingale stopped in τ can be written
as a sum of two (G, IP) square-integrable orthogonal martingales

X̄t∧τ =

∫ t∧τ

0
Zs dW̄s +

∫ t∧τ

0
Us dMs, 0 ≤ t ≤ T,

where IE
( ∫ ∞

0
‖Zs‖

2 ds
)
<∞ and IE

(∫ ∞

0
|Us|

2 dΛs

)
<∞.

This decomposition is unique in L2
0(W̄ , IP) ×L2

0(M, IP).

Proof.

• Existence : The proof is stated in [1]. In this paper, the integrability condition
on U is

IE
(∫ ∞

0
|Us|

2 dF̂s

)
<∞.

But one has

IE
(∫ ∞

0
|Us|

2 dΛs

)
≤ IE

(∫ ∞

0
|Us|

2 dF̂s

)
<∞.

• Uniqueness : Let X be a square-integrable G-martingale stopped in τ . Suppose
that there exist (Z,U) and (Z̄, Ū) in L2

0(W̄ , IP) ×L2
0(M, IP) such that

Xt∧τ =

∫ t∧τ

0
Zs dW̄s +

∫ t∧τ

0
Us dMs

=

∫ t∧τ

0
Z̄s dW̄s +

∫ t∧τ

0
Ūs dMs.
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So

0 =

∫ t∧τ

0
Ẑs dW̄s +

∫ t∧τ

0
Ûs dMs,

where Ẑ = Z − Z̄ and Û = U − Ū .

0 = IE

[
(

∫ t∧τ

0
Ẑs dW̄s)

2 + (

∫ t∧τ

0
Ûs dMs)

2

]

= IE



∫ t∧τ

0
‖Ẑs‖

2ds+
∑

0≤s≤t

|Ûs|
2∆Hs




= IE

[∫ t∧τ

0
‖Ẑs‖

2ds+

∫ t∧τ

0
|Ûs|

2dHs

]

= IE

[∫ t∧τ

0
‖Ẑs‖

2ds+

∫ t∧τ

0
|Ûs|

2dMs +

∫ t∧τ

0
|Ûs|

2dΛs

]
.

This leads to

0 = IE

(∫ t∧τ

0
‖Ẑs‖

2ds

)
+ IE

(∫ t∧τ

0
|Ûs|

2dΛs

)
,

and uniqueness is clear in L2
0(W̄ , IP) ×L2

0(M, IP).

�

2.2 Existence theorem

Fix T > 0 and ξ ∈ L2(GT∧τ ). (Wt)t≥0 is a Brownian motion in probability space
(Ω,F , IP), and we denote by W̄ the associated Brownian motion under (Ω,G, IP).

Consider process Λ as defined in Proposition 2.1. In addition we assume that it is a
continuous process, not necessarily absolutely continuous. So we suppose that

dΛt = λtdt+ dΛet .

The BSDE to be solved is the following :

Yt∧τ = ξ+

∫ T∧τ

t∧τ
f(s, Ys, Zs, Us) ds−

∫ T∧τ

t∧τ
Zs dW̄s−

∫ T∧τ

t∧τ
Us dMs, 0 ≤ t ≤ T. (4)

The aim of this section is to prove an existence and uniqueness result for this BSDE
stopped at G-stopping time T ∧ τ . In the previous financial interpretation, this
unique G-adapted solution (Y,Z,U), stopped at time τ , will represent the unique
portfolio that hedges the defaultable contingent claim.

Hypotheses on f and λ :
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• f is a Lipchitz function such that there exist a constant K satisfying
∣∣f(s, y, z, u) − f(s, y′, z′, u′)

∣∣ ≤ K(
∣∣y − y′

∣∣+
∥∥z − z′

∥∥) + λs
∣∣u− u′

∣∣ , (5)

where 0 ≤ λs ≤ K.

Definition 2.4
A (Ω,G, IP)-solution (or a solution on (Ω,G, IP)) to equation (4) is a triple of R ×
R
m × R-valued (Yt, Zt, Ut)t≥0 processes such that

1. Y is a G-adapted càdlàg process and (Z,U) ∈ L2
0(W̄ , IP) ×L2

0(M, IP),

2. On the set {t ≥ τ}, we have Yt = ξ, Zt = 0 and Ut = 0,

3. ∀ r ≥ 0, ∀t ∈ [0, r], we have

Yt∧τ = Yr∧τ +
∫ r∧τ
t∧τ f(s, Ys, Zs, Us) ds−

∫ r∧τ
t∧τ Zs dW̄s −

∫ r∧τ
t∧τ Us dMs.

Corollary 2.5
Let ξ ∈ L2(Ω,GT∧τ , IP). If (Yt, Zt, Ut)0≤t≤T is a (Ω,G, IP)-solution of the BDSE (4)
as defined in the Definition 2.4, with f satisfying hypothesis (5) and

IE

(∫ T∧τ

0
|f(s, 0, 0, 0)|2 ds

)
< +∞,

then

IE

(
sup

0≤t≤T
|Yt|

2

)
< +∞.

Proof. Let (Yt) be a solution of (4) :

Yt∧τ = ξ +

∫ T∧τ

t∧τ
f(s, Ys, Zs, Us) ds −

∫ T∧τ

t∧τ
Zs dW̄s −

∫ T∧τ

t∧τ
Us dMs, 0 ≤ t ≤ T.

Let us consider γ ∈ R. Apply Itô’s formula to the process (eγtY 2
t ) between t∧ τ and

T ∧ τ .

eγ(t∧τ) Y 2
t∧τ = eγ(T∧τ) ξ2 − γ

∫ T∧τ

t∧τ
eγs Y 2

s ds − 2

∫ T∧τ

t∧τ
eγsYs dYs

−

∫ T∧τ

t∧τ
eγs d [Y, Y ]cs −

∑

t∧τ≤s≤T∧τ

eγs
(
Y 2
s − Y 2

s− − 2Ys−∆Ys−
)

= eγ(T∧τ) ξ2 − γ

∫ T∧τ

t∧τ
eγs Y 2

s ds −

∫ T∧τ

t∧τ
eγs ‖Zs‖

2 ds

−
∑

t∧τ≤s≤T∧τ

eγs U2
s ∆Hs − 2

∫ T∧τ

t∧τ
eγs YsZs dW̄s

− 2

∫ T∧τ

t∧τ
eγs Ys Us dMs + 2

∫ T∧τ

t∧τ
eγsYs f(s, Ys, Zs, Us) ds.
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Then

eγ(t∧τ) Y 2
t∧τ + γ

∫ T∧τ

t∧τ
eγs Y 2

s ds +

∫ T∧τ

t∧τ
eγs ‖Zs‖

2 ds +
∑

t∧τ≤s≤T∧τ

eγs U2
s ∆Hs

= eγ(T∧τ) ξ2 − 2

∫ T∧τ

t∧τ
eγs Ys Zs dW̄s − 2

∫ T∧τ

t∧τ
eγs YsUsdMs

+ 2

∫ T∧τ

t∧τ
eγs Ys f(s, Ys, Zs, Us) ds.

Hence, for any η, ε, δ ∈ R
∗
+,

eγ(t∧τ) Y 2
t∧τ + γ

∫ T∧τ

t∧τ
eγs Y 2

s ds +

∫ T∧τ

t∧τ
eγs ‖Zs‖

2 ds +

∫ T∧τ

t∧τ
eγs U2

s ( dMs + dΛs )

≤ eγ(T∧τ) ξ2 − 2

∫ T∧τ

t∧τ
eγs YsZs dW̄s − 2

∫ T∧τ

t∧τ
eγs Ys Us dMs

+ 2

∫ T∧τ

t∧τ
eγs |Ys| |f(s, 0, 0, 0)| ds + 2

∫ T∧τ

t∧τ
eγs |Ys| (K |Ys| +K ‖Zs‖ + λs |Us| ) ds

≤ eγ(T∧τ) ξ2 − 2

∫ T∧τ

t∧τ
eγs YsZs dW̄s − 2

∫ T∧τ

t∧τ
eγs Ys Us dMs +

1

δ

∫ T∧τ

t∧τ
eγs |f(s, 0, 0, 0)|2 ds

+

∫ T∧τ

t∧τ
eγs |Ys|

2 (δ + 2K + εK2 + ηK) +
1

ε

∫ T∧τ

t∧τ
eγs ‖Zs‖

2 ds+
1

η

∫ T∧τ

t∧τ
eγs U2

s λs ds.

This yields to

eγ(t∧τ) Y 2
t∧τ +

(
γ − δ − 2K − εK2 − ηK

) ∫ T∧τ

t∧τ
eγs Y 2

s ds +

(
1 −

1

ε

)∫ T∧τ

t∧τ
eγs ‖Zs‖

2 ds

+

(
1 −

1

η

)∫ T∧τ

t∧τ
eγs U2

s λs ds +

∫ T∧τ

t∧τ
eγs U2

s dΛ
e
s +

∫ T∧τ

t∧τ
eγs U2

s dMs

≤ eγ(T∧τ) ξ2 +
1

δ

∫ T∧τ

t∧τ
eγs |f(s, 0, 0, 0)|2 ds − 2

∫ T∧τ

t∧τ
eγs Ys Zs dW̄s − 2

∫ T∧τ

t∧τ
eγs Ys Us dMs.

Choose ε = η = δ = 1, and γ > 1 + 3K +K2. Taking the supremum under 0 and T
and the expectation, we obtain

IE

(
sup

0≤t≤T
eγ(t∧τ) Y 2

t∧τ

)
+ IE

(
sup

0≤t≤T

∫ T∧τ

t∧τ
eγs U2

s dMs

)

≤ IE
(
eγ(T∧τ) ξ2

)
+ IE

(∫ T∧τ

0
eγs |f(s, 0, 0, 0)|2 ds

)

+ 2 IE

(
sup

0≤t≤T

∣∣∣∣
∫ t∧τ

0
eγs YsZs dW̄s

∣∣∣∣

)
+ 2 IE

(∣∣∣∣
∫ T∧τ

0
eγs Ys Zs dW̄s

∣∣∣∣
)
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+ 2 IE

(
sup

0≤t≤T

∣∣∣∣
∫ t∧τ

0
eγs, YsUs dMs

∣∣∣∣

)
+ 2 IE

(∣∣∣∣
∫ T∧τ

0
eγs YsUs dMs

∣∣∣∣
)
.

Moreover,

IE

(
sup

0≤t≤T
Y 2
t

)
≤ IE

(
sup

0≤t≤T
eγ(t∧τ) Y 2

t∧τ

)
+ IE

(
sup

0≤t≤T

∫ T∧τ

t∧τ
eγs U2

s dMs

)

≤ eγT IE
(
ξ2
)

+ eγT IE

(∫ T∧τ

0
|f(s, 0, 0, 0)|2 ds

)

+ 4CBDG IE

((∫ T∧τ

0
e2γs Y 2

s ‖Zs‖
2ds

)1/2
)

+ 4CBDG IE

((∫ T∧τ

0
e2γs Y 2

s U
2
s d[M,M ]s

)1/2
)

≤ eγT IE
(
ξ2
)

+ eγT IE

(∫ T∧τ

0
|f(s, 0, 0, 0)|2 ds

)

+ 4CBDG e
2γT IE



(

sup
0≤t≤T

|Yt|
2
∫ T∧τ

0
‖Zs‖

2ds

)1/2



+ 4CBDG e
2γT IE



(

sup
0≤t≤T

|Yt|
2
∫ T∧τ

0
U2
s d[M,M ]s

)1/2



≤ eγT IE
(
ξ2
)

+ eγT IE

(∫ T∧τ

0
|f(s, 0, 0, 0)|2 ds

)

+ 4 (ε′ + η′)CBDG e
2γT IE

(
sup

0≤t≤T
|Yt|

2

)

+
4

ε′
e2γT IE

(∫ T∧τ

0
‖Zs‖ds

)
+

4

η′
e2γT IE

(∫ T∧τ

0
U2
s d[M,M ]s

)
,

for any η′, ε′ ∈ R
∗
+.

Notice that d[M,M ]s = (∆Ms)
2 = (∆Hs)

2 = ∆Hs = dHs = dMs + dΛs, so

IE

(∫ T∧τ

0
U2
s d[M,M ]s

)
= IE

(∫ T∧τ

0
U2
s dΛs

)

Finally, taking ε′ = η′ = 1
16CBDG

,

1

2
IE

(
sup

0≤t≤T
Y 2
t

)
≤ eγT IE

(
ξ2
)

+ eγT IE(

∫ T∧τ

0
|f(s, 0, 0, 0)|2 ds)

10



+ 64C2
BDG e

2γT IE

(∫ T∧τ

0
‖Zs‖

2ds

)

+ 64C2
BDG e

2γT IE

(∫ T∧τ

0
U2
s dΛs

)
<∞.

�

Theorem 2.6
Let ξ ∈ L2(Ω,GT∧τ , IP). If (Yt, Zt, Ut)0≤t≤T is a (Ω,G, IP)-solution of BDSE (4) as
defined in Definition 2.4, with f satisfying hypothesis (5) and

IE

(∫ T∧τ

0
|f(s, 0, 0, 0)|2 ds

)
< +∞, then

IE

(
sup

0≤t≤T
|Yt∧τ |

2 +

∫ T∧τ

0
‖Zs‖

2ds+

∫ T∧τ

0
U2
s dΛs

)

≤ 2 eC T IE

(
ξ2 +

∫ T∧τ

0
|f(s, 0, 0, 0)|2 ds

)
,

where C is a constant only depending on K.

Proof. Let γ ∈ R. We apply Itô’s formula to process eγt Y 2
t between t ∧ τ and

T ∧ τ . Hence, for any η, ε, δ ∈ R
∗
+, we have

eγ(t∧τ) Y 2
t∧τ +

(
γ − δ − 2K − εK2 − ηK

) ∫ T∧τ

t∧τ
eγs Y 2

s ds+

(
1 −

1

ε

)∫ T∧τ

t∧τ
eγs ‖Zs‖

2 ds

+

(
1 −

1

η

)∫ T∧τ

t∧τ
eγs U2

s λs ds +

∫ T∧τ

t∧τ
eγs U2

s dΛ
e
s +

∫ T∧τ

t∧τ
eγs U2

s dMs

= eγ(T∧τ) ξ2 +
1

δ

∫ T∧τ

t∧τ
eγs |f(s, 0, 0, 0)|2 ds − 2

∫ T∧τ

t∧τ
eγs YsZs dW̄s − 2

∫ T∧τ

t∧τ
eγs Ys Us dMs.

Choose δ = 1. Taking the supremum under 0 and T and the expectation, we have

IE

(
sup

0≤t≤T
eγ(t∧τ) Y 2

t∧τ

)
+
(
γ − 1 − 2K − εK2 − ηK

)
IE

(∫ T∧τ

0
eγs Y 2

s ds

)

+ IE

(
sup

0≤t≤T

∣∣∣∣
∫ T∧τ

t∧τ
eγs U2

s dMs

∣∣∣∣

)
+ IE

(∫ T∧τ

0
eγs U2

s dΛ
e
s

)

+

(
1 −

1

ε

)
IE

(∫ T∧τ

0
eγs ‖Zs‖

2 ds

)
+

(
1 −

1

η

)
IE

(∫ T∧τ

0
eγs U2

s λs ds

)

11



≤ eγT IE

(
ξ2 +

∫ T∧τ

0
|f(s, 0, 0, 0)|2 ds

)
+ 4CBDG IE

(∫ T∧τ

0
e2γs Y 2

s ‖Zs‖
2ds

)1/2

+ 4CBDG IE

(∫ T∧τ

0
e2γs Y 2

s U
2
s d[M,M ]s

)1/2

≤ eγT IE

(
ξ2 +

∫ T∧τ

0
|f(s, 0, 0, 0)|2 ds

)
+ 2CBDG (ε′ + η′) IE

(∫ T∧τ

0
eγs Y 2

s ds

)

+ 2CBDG IE

(
1

ε′

∫ T∧τ

0
eγs‖Zs‖

2ds +
1

η′

∫ T∧τ

0
eγs U2

s dΛs

)

for any η′, ε′ ∈ R
∗
+, noticing that [M,M ]s = dMs + dΛs.

Finally, taking ε′ = η′ = 8CBDG, ε = η = 4 and γ > 1 + 6K + 4K2 + 32C2
BDG,

IE

(
sup

0≤t≤T
Y 2
t +

1

2

∫ T∧τ

0
‖Zs‖

2 ds +
1

2

∫ T∧τ

0
U2
s dΛs

)

≤ IE

(
sup

0≤t≤T
eγ (t∧τ) Y 2

t∧τ +
1

2

∫ T∧τ

0
eγs ‖Zs‖

2 ds +
1

2

∫ T∧τ

0
eγs U2

s (dΛs + dΛes)

)

≤ eγ T IE

(
ξ2 +

∫ T∧τ

0
|f(s, 0, 0, 0)|2 ds

)
.

By choosing C = 2 + 6K + 4K2 + 32C2
BDG, the result follows. �

Corollary 2.7 Let ξ ∈ L2(Ω,GT∧τ , IP). If (Yt, Zt, Ut)0≤t≤T is a (Ω,G, IP)-solution
of BDSE (4) as defined in Definition 2.4, with f satisfying hypothesis (5) and

IE

(∫ T∧τ

0
|f(s, 0, 0, 0)|2 ds

)
< +∞, then

IE

(
sup

0≤t≤T
|Yt∧τ |

2 +

∫ T∧τ

0
(1 − Fs)

2 ‖Zs‖
2ds+

∫ T∧τ

0
U2
s dΛs

)

≤ 2eCT IE

(
ξ2 +

∫ T∧τ

0
|f(s, 0, 0, 0)|2 ds

)
,

where C is a constant only depending on K.

Proof. As
∫ T∧τ
0 (1−Fs)

2‖Zs‖
2 ds ≤

∫ T∧τ
0 ‖Zs‖

2 ds, the result follows from Theorem
2.6. �

We can now state the following theorem :
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Theorem 2.8
Let ξ ∈ L2(Ω,GT∧τ , IP) and f : Ω × [0, T ] × R × R

m × R −→ R be G-measurable.

If IE
(∫ T

0 |f(s, 0, 0, 0)|2 ds
)
< ∞ and if f satisfies condition (5), there exists a

unique G-adapted triple (Y,Z,U) ∈ B2
0 solution of the BSDE:

Yt∧τ = ξ +

∫ T∧τ

t∧τ
f(s, Ys, Zs, Us) ds −

∫ T∧τ

t∧τ
Zs dW̄s −

∫ T∧τ

t∧τ
Us dMs, 0 ≤ t ≤ T.

Proof.
We can adopt the usual contraction method using representation Theorem 2.3.
Let γ ∈ R. Recall that B2

γ = S2
γ × L2

γ(W̄ , IP) × L2
γ(M, IP). We define a function

Φ : B2
0 → B2

0 such that (Y,Z,U) ∈ B2
0 is a solution of our BSDE if it is a fixed point

of Φ.
Let (Y ,Z,U ) ∈ B2

0. Define (Y,Z,U) = Φ(Y ,Z,U ) with :

Yt = IE
(
ξ +

∫ T∧τ

t∧τ
f(s, Y s, Zs, U s) ds

∣∣∣ Gt
)

, 0 ≤ t ≤ T ,

and processes (Zt)0≤t≤T and (Ut)0≤t≤T obtained by using martingale representation
Theorem 2.3 applied to square integrable (G, IP)-martingale (Nt)0≤t≤T where Nt =

IE
(
ξ +

∫ T∧τ
0 f(s, Y s, Zs, U s) ds

∣∣∣ Gt
)
.

Moreover, Z ∈ L2
0(W̄ , IP) and U ∈ L2

0(M, IP).
Hence

Nt∧τ = NT∧τ −

∫ T∧τ

t∧τ
Zs dW̄s −

∫ T∧τ

t∧τ
Us dMs,

Yt∧τ +

∫ t∧τ

0
f(s, Y s, Zs, U s) ds = ξ +

∫ T∧τ

0
f(s, Y s, Zs, U s) ds

−

∫ T∧τ

t∧τ
Zs dW̄s −

∫ T∧τ

t∧τ
Us dMs.

Consequently

Yt∧τ = ξ +

∫ T∧τ

t∧τ
f(s, Y s, Zs, U s) ds −

∫ T∧τ

t∧τ
Zs dW̄s −

∫ T∧τ

t∧τ
Us dMs.

This means that (Y,Z,U) is a (Ω, G , IP )-solution to Equation (4) with particular
generator s 7→ g(s) = f(s, Y s, Zs, U s), which implies thanks to Theorem 2.6 that
the triple (Y,Z,U) belongs to the convenient space B2

0 and consequently map Φ is
well defined.

Next, for (Y1, Z1, U1) and (Y2, Z2, U2) in B2
0, we define (Y1, Z1, U1) = Φ(Y1, Z1, U1)

and (Y2, Z2, U2) = Φ(Y2, Z2, U2). We denote (Y ,Z,U) = (Y1 − Y2, Z1 −Z2, U1 −U2)
and (Ŷ , Ẑ, Û) = (Y1 − Y2, Z1 − Z2, U1 − U2).
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So

Ŷt∧τ =

∫ T∧τ

t∧τ

(
f(s, Y1s, Z1s, U1s) − f(s, Y2s, Z2s, U2s)

)
ds

−

∫ T∧τ

t∧τ
Ẑs dW̄s −

∫ T∧τ

t∧τ
Ûs dMs.

Then, from Itô’s formula,

eγ(t∧τ) Ŷ 2
t∧τ = − γ

∫ T∧τ

t∧τ
eγs Ŷ 2

s ds − 2

∫ T∧τ

t∧τ
eγs Ŷs dŶs −

∫ T∧τ

t∧τ
eγs d

[
Ŷ , Ŷ

]c
s

−
∑

t∧τ≤s≤T∧τ

eγs
(
Ŷ 2
s − Ŷ 2

s− − 2 Ŷs− ∆Ŷs−
)

= − γ

∫ T∧τ

t∧τ
eγs Ŷ 2

s ds −

∫ T∧τ

t∧τ
eγs ‖Ẑs‖

2 ds −

∫ T∧τ

t∧τ
eγs Û2

s (dMs + dΛs)

− 2

∫ T∧τ

t∧τ
eγs Ŷs Ẑs dW̄s − 2

∫ T∧τ

t∧τ
eγs Ŷs Ûs dMs

+ 2

∫ T∧τ

t∧τ
eγs Ŷs

(
f(s, Y1s, Z1s, U1s) − f(s, Y2s, Z2s, U2s)

)
ds.

Then

eγ(t∧τ) Ŷ 2
t∧τ + γ

∫ T∧τ

t∧τ
eγs Ŷ 2

s ds +

∫ T∧τ

t∧τ
eγs ‖Ẑs‖

2 ds +

∫ T∧τ

t∧τ
eγs Û2

s dΛs

= −

∫ T∧τ

t∧τ
eγs Û2

s dMs − 2

∫ T∧τ

t∧τ
eγs Ŷs Ẑs dW̄s − 2

∫ T∧τ

t∧τ
eγs Ŷs Ûs dMs

+ 2

∫ T∧τ

t∧τ
eγs Ŷs

(
f(s, Y1s, Z1s, U1s) − f(s, Y2s, Z2s, U2s)

)
ds.

Taking expectation, it yields to the following equation, for any ε′′, η′′, δ′′ ∈ R
∗
+ :

IE

(
eγ(t∧τ) |Ŷt∧τ |

2 + IE
( ∫ T∧τ

t∧τ
eγs (γ |Ŷs|

2 + ‖Ẑs‖
2) ds +

∫ T∧τ

t∧τ
eγs Û2

s dΛs

)

≤ 2 IE

(∫ T∧τ

t∧τ
eγs |Ŷs|

(
K |Y s| +K ‖Zs‖ + λs |U s|

)
ds

)

≤ IE

(∫ T∧τ

t∧τ
(K2 δ′′ +K2 ε′′ + η′′ λs) e

γs |Ŷs|
2 ds

)
+

1

δ′′
IE

(∫ T∧τ

t∧τ
eγs |Y s|

2 ds

)

+
1

ε′′
IE

(∫ T∧τ

t∧τ
eγs ‖Zs‖

2 ds

)
+

1

η′′
IE

(∫ T∧τ

t∧τ
eγs U

2
s λs ds

)
.
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Choosing ε′′ = η′′ = δ′′ = 2 we obtain

IE
(
eγ(t∧τ) |Ŷt∧τ |

2
)

+ IE

(∫ T∧τ

t∧τ
eγs (γ |Ŷs|

2 + ‖Ẑs‖
2) ds +

∫ T∧τ

t∧τ
eγs Û2

s dΛs

)

≤ (4K2 + 2K) IE

(∫ T∧τ

t∧τ
eγs |Ŷs|

2 ds

)
+

1

2
IE

(∫ T∧τ

t∧τ
eγs |Y s|

2 ds

)

+
1

2
IE

(∫ T∧τ

t∧τ
eγs ‖Zs‖

2ds

)
+

1

2
IE

(∫ T∧τ

t∧τ
eγs U

2
s λs ds

)
.

Chosing γ = 4K2 + 2K + 1, it gives :

IE

(∫ T∧τ

0
eγs ( |Ŷs|

2 + ‖Ẑs‖
2 ) ds +

∫ T∧τ

0
eγs Û2

s dΛs

)

≤
1

2
IE

(∫ T∧τ

0
eγs (|Y s|

2 + ‖Zs‖
2) ds +

∫ T∧τ

0
eγs U

2
s λs ds

)

+
1

2
IE

(∫ T∧τ

0
eγs U

2
s dΛ

e
s

)
.

Then Φ is a strict contraction on B2
0 with norm

|||(Y,Z,U)|||γ = IE

(∫ T∧τ

0
eγs (|Ys|

2 + ‖Zs‖
2) ds+

∫ T∧τ

0
eγs U2

s dΛs

)1

2

.

We finally deduce that Φ has a unique fixed point and conclude that the BSDE has
a unique solution. �

2.3 Uniqueness result

The previous theorem yields to uniqueness of the solution in B2
0. But uniqueness is

needed in a larger space. Let us define

• L2
F,0(W̄ , IP) the set of all 1×m-dimensional G-predictable processes (Zt)0≤t≤T

such that ||Z||2
L2

F,0(W̄ ,IP)
= IEIP

(∫ T∧τ
0 (1 − Fs)

2 ‖Zs‖
2 ds

)
<∞.

Corollary 2.9
BDSE (4) has a unique solution in S2

0 ×L2
F,0(W̄ , IP) ×L2

0(M, IP).

Proof.
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Let (Yt, Zt, Ut) and (Y t, Zt, U t) in S2
0 × L2

F,0(W̄ , IP) × L2
F,0(M, IP) be solutions of

(4). Define Ŷ = Y − Y , Ẑ = Z − Z and Û = U − U . Then

Ŷt∧τ =

∫ T∧τ

t∧τ

(
f(s, Ys, Zs, Us) − f(s, Y s, Zs, U s)

)
ds −

∫ T∧τ

t∧τ
Ẑs dW̄s

−

∫ T∧τ

t∧τ
Ûs dMs, 0 ≤ t ≤ T.

Define also

αs =





f(s,Ys,Zs,Us)− f(s,Y s,Zs,Us)
Ys−Y s

if Ys 6= Y s ,

0 else .

For any z, z′ ∈ R
m and k = 1, 2, ...,m we will use the following usual notations :

(z, z′)k = (z′1, z
′
2, ..., z

′
k−1, zk, zk+1, ..., zm), and (z − z′)k = zk − z′k.

Denote by ΓZk,s = (Zs, Zs)k and define

βk,s =





f(s,Ys,ΓZk,s,Us)−f(s,Ys,Γ
Z
k+1,s

,Us)

(Ẑs)k
if (Ẑs)k 6= 0 ,

0 otherwise .

For the last coordinate, we also introduce

θs =





f(s,Ys,Zs,Us)−f(s,Ys,Zs,Us)
Us−Us

if Us 6= U s ,

0 else .

Consequently the triple of processes (Ŷ , Ẑ, Û) is solution of the following BSDE

Ŷt∧τ =

∫ T∧τ

t∧τ
g(s, Ŷs, Ẑs, Ûs) ds −

∫ T∧τ

t∧τ
Ẑs dW̄s −

∫ T∧τ

t∧τ
Ûs dMs,

with generator g(s, y, z, u) = αs y +

m∑

k=1

βk,s zk + θs u.

The result follows then from Corollary 2.7 �

Remark. Given that L2
0 ⊆ L2

F,0, solutions of BSDE (4) stated in Theorems 2.8 and
in Corollary 2.9 are equal.

3 Hedging strategy in the defaultable world with BSDE

3.1 Defaultable zero-coupon

We have to introduce the following hypothesis, which is a standard hypothesis in
default risk models :
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Hypothesis (H) Any square integrable (F , IP)-martingale is a square integrable
(G, IP)-martingale.

Under this hypothesis, Brownian motionW is still a Brownian motion in the enlarged
filtration and so results obtained in the previous section hold with W instead of W̄ .

In this section, we assume that process Λ is absolutely continuous with respect to
the Lebesgue measure.
As explained in the introduction, we denote by ĨP the unique e.m.m equivalent to
IP on F .

According to [7], section 3.3, when (H) holds on the historical probability, and when
the F-market is complete, then the defaultable market is arbitrage free. Hence, (H)

holds under any G-equivalent martingale measure IPψ such that IPψ|Gt = K
ψ
t IP|Gt

with
dK

ψ
t = K

ψ
t−

(−θt dWt + ψt dMt) , 0 ≤ t ≤ T,

where θ = σ−1(µ− r) denotes the risk premium and ψ > −1.

The equation satisfied by Kψ is obtained using the representation theorem for all
(G, IP) square-integrable martingales established by S. Kusuoka [18] under hypoth-
esis (H).
Let us denote by IPψ such a G-equivalent martingale measure, chosen by the market.
Then we have IPψ|F = IP0

|F = ĨP|F . We shall denote by W 0 the Brownian motion ob-

tained using Girsanov’s transformation (since the coefficient in the Radon-Nykodym
density associated to the Brownian motion is always θ). We also introduce processes
Fψ,Λψ,Mψ constructed in the same way as F,Λ,M but associated to the proba-
bility IPψ instead of IP. Let us denote by (ρ̃t)0≤t≤T the discounted price of the
defaultable zero-coupon bond.
We obtain from Proposition 2 in [7] that :

dρ̃t =
1lτ>t

1 − F
ψ
t−

φmt dW
0
t − ρ̃t− dM

ψ
t , 0 ≤ t ≤ T,

where (φmt )t≥0 comes from the representation of (F , IP0)-martingale (mt)t≥0 =(
IEIP0(RT 1lτ>T | Ft)

)
t≥0

with respect to (F , IP0)-Brownian motion W 0.

As ∀t ∈]0, T ∧ τ ] ρ̃t− 6= 0, we can set ct =
1lτ>t

1 − F
ψ
t−

φmt
ρ̃t−

.

Using Girsanov transformation, the dynamics of the defaultable zero-coupon under
historical probability is given by

dρt = ρt− (at dt + ct dWt − dMt), (6)

where at is determined by the G-equivalent martingale measure IPψ in the following
way :

at = rt + θt ct + (1 −Ht−)ψt λt. (7)
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3.2 Wealth’s dynamic

Let Yt be the wealth at time t of the agent. Suppose that she has αt parts of the
risky asset, δt parts of the riskless asset, and βt parts of the defaultable zero-coupon
bond. At any time t, we have :

Yt = αt St + βt ρt− + δt S
0
t . (8)

where αt, βt and δt are predictable
The self-financing hypothesis can be written :

dYt = αt dSt + βt dρt + δt dS
0
t ,

which can be developed, for any t in [0, T ∧ τ ], using (8) and the dynamics of the
three assets (2), (6) and (3). This yields to

dYt = (αt µt St + rt Yt − αt rt St − βt rt ρt− + βt at ρt−) dt

+ (αt σt St + βt ct ρt−) dWt − βt ρt− dMt.

Then, denoting by Zt = αt σt St + βt ct ρt− and Ut = −βt ρt− , we obtain a
stochastic differential equation for wealth :

{
dYt = −f(t, Yt, Zt, Ut) dt + Zt dWt + Ut dMt, 0 ≤ t ≤ T ∧ τ
YT∧τ = ξ

(9)

with f(t, y, z, u) = −rt y − θt z + ( at − rt − θt ct ) u. Using (7), we obtain

f(t, y, z, u) = −rt y − θt z + (1 −Ht−)ψt λt u. (10)

This provides a stochastic differential equation with Gt-adapted coefficients. As F-
Brownian motion W remains a Brownian motion under the new filtration G, the
previous stochastic differential equation has a sense.
This equation is a backward stochastic differential equation with uncertain horizon,
with terminal condition :

YT∧τ = ξ = V 1lτ>T + Cτ 1lT≤τ ,

where V ∈ L2(FT ) and (Ct)t≥0 is an F-adapted process.

As condition (5) holds true, as r, θ and λ are bounded, and as f(s, 0, 0, 0) = 0, the
integrability condition on f under IP is also satisfied, we can apply Theorem 2.8.

3.3 Explicit solution for the hedging strategy

We consider now the particular case of a hedging strategy against a defaultable
contingent claim. Then, the terminal value represents the payoff and has the form
ξ = V 1lτ>T +Cτ 1lτ≤T , where V ∈ L2(FT ) and C is an F-adapted process. Previous
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Theorem 2.8 guarantees existence and uniqueness of the solution. But we can go
further by giving an explicit formulation of processes Z and U that stands for the
strategy, thanks to the explicit representation Theorem obtained C. Blanchet-Scalliet
and M. Jeanblanc [7], instead of M. Yor representation Theorem previously used.

Theorem 3.1
Let IPψ an e.m.m chosen by the market and let V ∈ L2(FT ) and C be an F-adapted
process. We set ξ = V 1lτ>T + Cτ 1lτ≤T .
Consider also the G-measurable generator f : Ω× [0, T ]×R×R

m×R −→ R defined
by

f(t, y, z, u) = −rt y − θt z + (1 −Ht−)ψt λt u,

satisfying condition (5).
Suppose that Λψ is absolutely continuous and that Fψ, defined in (1), is continuous.
Then, under hypothesis (H), there exists a unique G-adapted triple (Y,Z,U) ∈ B2

0

solution of the BSDE :

Yt∧τ = ξ+

∫ T∧τ

t∧τ
f(s, Ys, Zs, Us) ds−

∫ T∧τ

t∧τ
Zs dWs−

∫ T∧τ

t∧τ
Us dMs, 0 ≤ t ≤ T. (11)

Moreover, Zt =
aCt +aVt
Rt(1−F

ψ
t )

and Ut = Ct−R
−1
t IEIPψ(RτCτ |Gt−)−R−1

t IEIPψ(RTV 1lT<τ |Gt−),

where (aCt )t≥0 comes from the representation of (F , IPψ)-martingale(
IEIPψ

(∫∞
0 RsCs dF

ψ
s |Ft

))

t≥0

and (aVt )t≥0 from

(
IEIPψ(RTV 1lτ>T | Ft)

)

t≥0

, where

R denotes the discounted factor.

Proof.
Let us consider the discounted process (RtYt)0≤t≤T . Given that

Rt∧τ Yt∧τ = IEIPψ(RT∧τ ξ|Gt),

we can compute separately for RτCτ and for RT V 1lT<τ .
First case. Let XC

t = IEIPψ(RτCτ |Gt), where C is an F-predictable process. Then
from Proposition 3 in C. Blanchet-Scalliet and M. Jeanblanc [7], we have

XC
t = XC

0 +

∫ t∧τ

0

1

IPψ(τ > s | Fs)
aCs dW

0
s +

∫ t∧τ

0
(RsCs −XC

s−) dMψ
s , (12)

where (aCt )t≥0 comes from the representation of (F , IPψ)-martingale(
IEIPψ

(∫∞
0 RsCs dFs|Ft

))

t≥0

with respect to (F , IPψ)-Brownian motion W 0.

Second case. Let V ∈ FT be an integrable random variable. From Proposition 3 of
[7], the (G, IPψ)-martingale XV

t = IEIPψ(RTV 1lT<τ |Gt) can be represented as follows
:

XV
t = XV

0 +

∫ t∧τ

0

1

IPψ(τ > s | Fs)
aVs dW

0
s −

∫ t∧τ

0
XV
s− dM

ψ
s , (13)
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where (aVt )t≥0 comes from the representation of (F , IPψ)-martingale(
IEIPψ(RTV 1lτ>T | Ft)

)

t≥0

with respect to (F , IPψ)-Brownian motion W 0.

By summing (12) and (13),we obtain RsZs = aCs +aVs
IPψ(τ>s | Fs)

and RsUs = RsCs−X
C
s−−

XV
s− .

Consequently, using Corollary 2.9, (Y,Z,U) is the unique solution of BSDE (11)
in S2 × L2

F,0(W, IP) × L2
0(M, IP). From uniqueness results in Corollary 2.9 and in

Theorem 2.8, it is also the unique solution of BSDE (11) in B2
0. �

The main consequence of Theorems 2.8 and 3.1 is that the BSDE has a unique
solution adapted to the enlarged space (Ω,G, IP). The interest of the second Theorem
instead of the first one is that it gives an explicit form of the solution, and so of the
hedging portfolio. This particular case can be used in solving hedging problems of
defaultable contingent claims and also in problems issued from hedging of non life
insurance products. These financial examples are a particular case of Theorem 3.1,
applied to BSDE (9) with generator f defined as in (10).

Remark. By means of solving BSDEs, we find the same results as those stated in
C. Blanchet-Scalliet and M. Jeanblanc [7], as a special case of the last Theorem.

4 Conclusion

This article has presented a BSDE approach to finding hedging strategies in a de-
faultable world. Results have been obtained for a large panel of hedging payoffs,
and under general assumptions. The hedging portfolios have been expressed in term
of a solution of a backward stochastic differential equation. Well known results
from T.R. Bielecki, M. Jeanblanc and M. Rutkowski [4, 3] or C. Blanchet and M.
Jeanblanc [7] have been found, giving a new way to obtain it.

From a practical point of view, the use of this approach may lead to obtain numerical
approximations of the hedging portfolios, in cases where direct computation may not
be implemented. One can use numerical schemes for backward stochastic differential
equations, such as E. Gobet and C. Labart [13], and even for reflected BSDEs, see
J. Mémin, S. Peng and M. Xu [19].

Following the approach of T.R. Bielecki, M. Jeanblanc and M. Rutkowski [5], the
market may also be completed by adding a CDS (credit default swap). The method
presented in the present article will provide hedging strategies by solving the corre-
sponding BSDE. This method may be useful as soon as the generator of the backward
equation can be expressed in a closed-form formula.
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lems., Birkhüser Verlag, Basel, 1997.

23


	Financial motivation
	BSDE under G
	Representation theorem
	Existence theorem
	Uniqueness result

	Hedging strategy in the defaultable world with BSDE
	Defaultable zero-coupon
	Wealth's dynamic
	Explicit solution for the hedging strategy

	Conclusion

