David Ilcinkas
email: ilcinkas@lri.fr

Nicolas Nisse
email: nisse@lri.fr

David Soguet
email: soguet@lri.fr

The cost of monotonicity in distributed graph searching

Keywords: Graph searching, Monotonicity, Competitive ratio

 proved that, in order to ensure the smallest number of searchers to clear any nnode graph in a monotone way, it is necessary and sufficient to provide Θ(n log n) bits of information to the searchers by putting short labels on the nodes of the graph. This paper deals with the smallest number of searchers that are necessary and sufficient to monotoneously clear any graph in a decentralized manner, when the searchers have no a priori information about the graph. The distributed graph searching problem considers a team of searchers that is aiming at clearing any connected contaminated graph. The clearing of the graph is required to be connected, i.e., the clear part of the graph must remain permanently connected, and monotone, i.e., the clear part of the graph only grows. The search number mcs(G) of a graph G is the smallest number of searchers necessary to clear G in a monotone connected way in centralized settings. We prove that any distributed protocol aiming at clearing any unknown n-node graph in a monotone connected way, in decentralized settings, has competitive ratio Θ(n log n). That is, we prove that, for any distributed protocol P, there exists a constant c such that for any sufficiently large n, there exists a n-node graph G such that P requires at least c n log n mcs(G) searchers to clear G. Moreover, we propose a distributed protocol that allows O(n log n) mcs(G) searchers to clear any unknown asynchronous n-node graph G in a monotone connected way.

Introduction

In graph searching [START_REF] Breisch | An intuitive approach to speleotopology[END_REF][START_REF] Parson | Pursuit-evasion in a graph[END_REF], a team of searchers is aiming at capturing an invisible arbitrarily fast fugitive hidden in a graph (see [START_REF] Bienstock | Graph searching, path-width, tree-width and related problems (a survey)[END_REF] for a survey). Equivalently, an undirected connected graph is thought as a system of tunnels contaminated by a toxic gas. In this setting, the searchers are aiming at clearing the graph. The search problem has been widely studied in the design of distributed protocols for clearing a network in a decentralized manner [START_REF] Blin | Distributing Chasing of Network Intruders[END_REF][START_REF] Flocchini | Decontamination of chordal rings and tori[END_REF][START_REF] Flocchini | Size Optimal Strategies for Capturing an Intruder in Mesh Networks[END_REF][START_REF] Flocchini | Contiguous search in the hypercube for capturing an intruder[END_REF][START_REF] Nisse | Graph searching with advice[END_REF]. Initially, all edges are contaminated. The searchers stand at the vertices of the graph and move along the edges. An edge is cleared when it is traversed by a searcher. A clear edge e is recontaminated as soon as there exists a path P between e and a contaminated edge such that no searchers are occupying any vertex or any edge of P . A search strategy is a sequence of moves of the searchers along the edges of the graph, such that, initially, all the searchers are placed at a particular vertex of the graph, called the homebase. Moreover, this sequence of moves must satisfy that recontamination never occurs, that is, a clear edge always remains clear. A search strategy is aiming at clearing the whole network. Given a graph G and a homebase v 0 ∈ V (G), the search problem consists in designing a distributed protocol that allows the smallest number of searchers to clear G starting from v 0 . The search strategy must be computed online by the searchers themselves.

Note that, by definition, a search strategy satisfies two important properties. First, a search strategy is monotone [START_REF] Bienstock | Monotonicity in graph searching[END_REF][START_REF] Lapaugh | Recontamination does not help to search a graph[END_REF]. That is, the contaminated part of the graph never grows. This ensures that the clearing of the graph can be performed in polynomial time. Secondly, a search strategy is connected [START_REF] Barrière | Capture of an intruder by mobile agents[END_REF][START_REF] Barrière | Connected and Internal Graph Searching[END_REF], in the sense that, at any step of the strategy, the clear part of the graph induces a connected subgraph. This latter property ensures safe communications between the searchers. In the following, the search number mcs(G, v 0) of a graph G with homebase v 0 ∈ V (G) denotes the smallest number of searchers required to clear the graph in a monotone connected way, starting from v 0 , in centralized settings.

Several distributed protocols have been proposed to solve the search problem [1, 5, 7-9, 14, 16]. Two main approaches have been proposed in the previous works. On one hand, Blin et al. proposed a distributed protocol that enables mcs(G, v 0) + 1 searchers to clear any unknown asynchronous graph G, starting from any homebase v 0 ∈ V (G), in a connected way [START_REF] Blin | Distributing Chasing of Network Intruders[END_REF]. That is, the clearing of the graph is performed without the searchers being provided any information about the graph. However, the search strategy that is actually performed is not monotone and may be performed in exponential time, which is not surprising since the problem of computing mcs(G, v 0) is NP-complete [START_REF] Megiddo | The complexity of searching a graph[END_REF]. On the other hand, the distributed protocols that are proposed in [7-9, 14, 16] enable mcs(G, v 0) + 1 searchers to monotoneously clear a graph G, starting from a homebase v 0 , such that the searchers are given some a priori information about it. In this paper, we consider the problem from another point of view. More precisely, we address the problem of the minimum number of searchers permitting to solve the search problem (again, the performed strategy must be connected and monotone) without any a priori information about the graph.

Model and definitions

The searchers are modeled by synchronous autonomous mobile computing entities with distinct IDs. A network is modeled by a synchronous undirected connected simple graph. The network is anonymous, that is, the nodes are not labelled. The deg(u) edges incident to any node u are labelled from 1 to deg(u), so that the searchers can distinguish the different edges incident to a node. These labels are called port numbers. Every node of the network has a zone of local memory, called whiteboard, in which searchers can read, erase, and write symbols. It is moreover assumed that searchers can access these whiteboards in fair mutual exclusion.

A search protocol P is a distributed protocol that solves the search problem, i.e., for any connected graph G and any homebase v 0 ∈ V (G), a team of searchers executing P can clear G in a connected monotone way, starting from v 0 . In these settings, the searchers do not know in advance in which graph they are launched. The number of searchers used by P to clear G is the maximum number of searchers that stand at the vertices of G over all steps of the execution of P. The quality of a search protocol P is measured by comparing the number of searchers it used to clear a graph G to the search number mcs(G, v 0) of G. This ratio, maximized over all graphs and all starting nodes, is called the competitive ratio r(P) of the protocol P.

Our results

We prove that any search protocol for clearing n-node graphs has competitive ratio Ω(n log n). Moreover, we propose a search protocol that has competitive ratio O(n log n). More precisely, we prove that for any distributed protocol P, there exists a constant c such that for any sufficiently large n, there exists a n-node graph G with a homebase v 0 ∈ V G , such that P requires at least c n log n mcs(G, v 0) searchers to clear G, starting from v 0 . On the other hand, we propose a search protocol that uses at most O(n log n) mcs(G, v 0) searchers to clear any connected graph G in a connected monotone way, starting from any homebase v 0 ∈ V (G). Moreover, our protocol performs clearing of n-node graphs using searchers with at most O(log n) bits of memory, and whiteboards of size O(n) bits.

Related work

In connected graph searching [START_REF] Barrière | Capture of an intruder by mobile agents[END_REF][START_REF] Barrière | Connected and Internal Graph Searching[END_REF][START_REF] Fraigniaud | Connected Treewidth and Connected Graph Searching[END_REF], the clear part must remain connected during all steps of the search strategy. This property is very useful as soon as we want to ensure the communications between the searchers to be secured. Contrary to the classical, i.e., non-connected, graph searching [START_REF] Bienstock | Monotonicity in graph searching[END_REF][START_REF] Lapaugh | Recontamination does not help to search a graph[END_REF][START_REF] Parson | Pursuit-evasion in a graph[END_REF], the monotonicity has a cost in terms of number of searchers. Indeed, Alspash et al. proved that recontamination does help in the case of connected graph searching [START_REF] Yang | Sweeping Graphs with Large Clique Number[END_REF] (see also [START_REF] Fraigniaud | Monotony properties of connected visible graph searching[END_REF]). That is, they describe a class of graphs for which the smallest number of searchers required to clear these graphs is strictly less than the number of searchers necessary to clear them in a monotone connected way. This result has an important impact since it is not known whether the decision problem corresponding to the connected search number of a graph, i.e., the smallest number of searchers required to clear a graph in a connected way, belongs to NP. Moreover, monotone strategies are of particular interest in decentralized settings since, first, they perform in polynomial time, and second, it is a priori difficult to design non-monotone search strategies.

Several distributed protocols have been proposed to solve the search problem for particular graph's topologies. More precisely, Barrière et al. designed protocols for clearing trees [START_REF] Barrière | Capture of an intruder by mobile agents[END_REF], Flocchini, Luccio and Song considered tori [START_REF] Flocchini | Decontamination of chordal rings and tori[END_REF] and meshes [START_REF] Flocchini | Size Optimal Strategies for Capturing an Intruder in Mesh Networks[END_REF], Flocchini, Huang and Luccio considered hypercubes [START_REF] Flocchini | Contiguous search in the hypercube for capturing an intruder[END_REF], and Luccio dealt with Sierpinski's graphs [START_REF] Luccio | Intruder capture in Sierpinski graphs[END_REF]. Assuming the searchers know the topology of the graph G they must clear, these protocols enable mcs(G, v 0) + 1 searchers to clear G in a monotone connected way, starting from any homebase v 0 ∈ V (G). The extra searcher, compared to the centralized case, is necessary and due to the asynchrony of the network [START_REF] Flocchini | Size Optimal Strategies for Capturing an Intruder in Mesh Networks[END_REF]. In [START_REF] Blin | Distributing Chasing of Network Intruders[END_REF], Blin et al. proposed a distributed protocol that allows mcs(G, v 0) + 1 searchers to clear any unknown asynchronous graph G in a connected way, starting from any homebase v 0 ∈ V (G). In this case, the searchers do not need any a priori information about the graph in which they are placed. However, the search strategy that is actually performed is not monotone and may be performed in exponential time. In [START_REF] Nisse | Graph searching with advice[END_REF], Nisse and Soguet proposed to give to the searchers some information about the graph by putting short labels on the nodes of the graph. They proved that Θ(n log n) bits of information are necessary and sufficient to solve the search problem for any n-node asynchronous graph G, using mcs(G, v 0) + 1 searchers and starting from a homebase v 0 .

Lower Bound

This section is devoted to prove a lower bound on the competitive ratio of any search protocol. For this purpose, we consider a game between an arbitrary search protocol and an adversary. Roughly, the adversary gradually builds the graph, which is actually a ternary tree, as the search protocol clears it in a monotone connected way. The role of the adversary is to force the protocol to use the maximum number of agents to clear the graph. The fact that the adversary can build the graph during the execution of the search protocol is possible since the searchers have no information concerning the graph they are clearing.

We need the following definition. A partial graph is a simple connected graph which can have edges with only one end. Edges with one single end (resp., two ends) are called half-edges (resp., full-edges). Let G = (V, H, F) be a partial graph, where V is the vertex-set of G, H its set of half-edges and F its set of full-edges. Let G -be the graph (V, F). Let G + be the graph obtained by adding a degree-one end to any half-edge of G.

Let us give some definitions and results that will be used in the following. A ternary tree is a tree whose internal vertices have degree at most three. A search strategy that is not constrained to satisfy neither the connected property, nor the monotone property is simply a sequence of moves of the searchers along the edges of a graph that results in clearing the whole graph. s(G) denotes the smallest number of searchers that are necessary to clear a graph G in such a way. The class of trees has particularly been studied regarding graph searching. In particular, the following results have been proved. Theorem 1. Let T be a tree with n ≥ 2 vertices, s(T) ≤ 1 + log 3 (n -1) (Megiddo et al. [START_REF] Megiddo | The complexity of searching a graph[END_REF])

For any v 0 ∈ V (T), mcs(T, v 0) ≤ 2s(T) -1 (Barrière et al. [2])
The remaining part of this section is devoted to the proof of Theorem 2.

Theorem 2. Any search protocol for clearing n-node graphs has competitive ratio Ω(n log n).

Proof. Let P be any search protocol. We prove that there exists a constant c > 0, such that for any n ≥ 5, there exists a n-node ternary tree T (actually, if n is odd, T has exactly one internal vertex of degree two, and none otherwise), such that P uses at least k searchers to clear T in a monotone connected way, starting from any homebase v 0 ∈ V (T), with k ≥ c n log n mcs(T, v 0). Let n ≥ 5. We consider an unknown ternary tree T , that P has to clear starting from v 0 ∈ V (T). Let us describe the game executed turn by turn by P and the adversary A. Initially, the partial graph T p consists of a single vertex, the homebase v 0 , incident to three half-edges. All searchers are placed at v 0 . Then, P and A play alternatively, starting with P. At each round, T p = (V, H, F) corresponds to the part of T that P currently knows. P chooses a searcher and it moves this searcher along an edge e of T p if it does not imply recontamination. Such a move is always possible since P is a search protocol, and thus, it eventually clears T . Note that e may be a half-edge or a full-edge. If e is a full-edge, then A skips its turn. Otherwise, two cases must be considered. Either

|V (T + p)| < n -1, or |V (T + p)| = n -1.
In the first case, A adds a new end v to e such that v is incident to two new half-edges f and h. That is, the partial graph becomes T p = (V ∪{v}, H new , F new), with H new = (H \ {e})∪{f } ∪{h} and F new = F ∪{e}. In the latter case, A adds a new end v to e such that v is incident to only one new half-edge f . Again, this is possible since P does not know the graph in advance. The game ends when |V (T + p)| = n. At such a round, A decides that the graph T is actually T + p . Let us consider the last round, that is when |V (T + p)| = n. We show that at this round the number k of vertices of T + p occupied by searchers is at least k ≥ n/4. Let us first do the following easy remarks. At each round of the game, T - p is a ternary tree, and T + p is a ternary tree with at least (n + 2)/2 leaves (this can be easily prove by induction on the number of rounds). Moreover, T - p is exactly the clear part of T at this step of the execution of P. In other words, the half-edges of T p corresponds to the contaminated edges that are incident to the clear part of T . Since the execution of P ensures that the strategy performed is monotone, it follows that, at any round of the game, the vertices incident to at least one half-edge are occupied by a searcher. From the previous remarks, it follows that T + p is a ternary tree with at least (n + 2)/4 vertices occupied by a searcher. Indeed, every parent of a leaf in T + p must be occupied by a searcher, and every node is parent of at most two leaves. Thus, P uses at least k ≥ n/4 searchers. By Theorem 1, mcs(T, v 0) ≤ 2(1 + log 3 (n -1)). Therefore,

k ≥ mcs(T, v 0) × n 8(1 + log 3 (n -1))
.

It follows easily that there is a constant c > 0 such that for any n ≥ 5 we have

k ≥ c n log n mcs(T, v 0) ,
which concludes the proof the theorem. ⊓ ⊔

Upper Bound

In this section, we propose a search protocol mc search (for monotone connected search) with competitive ratio O(n log n) for any n-node graph. Combining with the lower bound proved in section 2, it shows that Θ(n log n mcs(G, v 0)) searchers are necessary and sufficient to clear any unknown n-node graph G in a monotone connected way, starting from any homebase v 0 and in decentralized settings.

Before describing the search protocol mc search, we need some definitions. In the following, the depth of a rooted tree T is the maximum length of the paths between the root and any leaf of T . Let v ∈ V (T) that is not the root. Let u be the parent of v, then the edge {u, v} is called the parent-edge of v. A complete ternary tree is defined as follows. The complete ternary tree T 0 of depth 0 consists of a single vertex, called its root. For any k ≥ 1, a complete ternary tree T k of depth k is a ternary tree in which all internal vertices have degree exactly three, and there exists a vertex, called its root, that is at distance exactly k from all leaves. Theorem 3. (Barrière et al. [START_REF] Barrière | Connected and Internal Graph Searching[END_REF])

For any k ≥ 0, mcs(T k) = k + 1.

A graph H is a minor of a graph G if H is a subgraph of a graph obtained by a succession of edge contractions * of G. A well known result is that, for any graph G and any minor H of G, s(G) ≥ s(H). Note that this result is not valid for the search number mcs, i.e., there exist some graph G, and H minor of G such that mcs(H) > mcs(G) [START_REF] Barrière | Connected and Internal Graph Searching[END_REF].

Idea of protocol mc search

Let us roughly describe the search protocol mc search. Let G be a connected n-node graph and v 0 ∈ V (G). The main issue of mc search is to maintain two ⋆ The contraction of the edge e with endpoints u, v is the replacement of u and v with a single vertex whose incident edges are the edges other than e that were incident to u or v.

dynamic rooted trees T and S. At each step, T is a subtree of the clear part of G, and S is a minor of T with same root. Intuitively, S represents the current positions of the searchers in G, and T enables the searchers to move in the clear part of the graph by performing a DFS of T . Initially, S = T = {v 0 } and all searchers are at v 0 .

Roughly speaking, at each step, Protocol mc search tries to clear an edge of G that is chosen such that S becomes as close as possible to a complete ternary tree. If the chosen edge e reaches a new vertex, i.e., a vertex that is not occupied by a searcher yet, e is added to S and labelled M inor. Otherwise, e is labelled Removed, meaning that e has been cleared but it does not belong to S nor T .

At some step of the execution of Protocol mc search, it might happen that some vertices of S are not "useful" to let S be the densest possible ternary tree. Such vertices are those vertices of S with degree two or less in S, and whose all incident edges (in G) have been cleared. Let v be such a vertex and e its parent-edge. Protocol mc search is aiming at "contracting" e. There are two cases according whether v is a leaf of S or not. In the first case, e is labelled Removed. In the latter case, e will be used by the searchers to circulate between the different components of S in G. For this purpose, e is labelled T ree. As a consequence, edges labelled M inor and T ree induce a tree T that enables the searchers to circulate in the clear part of G, by performing a DFS. Especially, T enables the searchers to reach all vertices of S.

We will show in the next sections that Protocol mc search eventually clears G in a monotone connected way, starting from v 0 , and using N > 0 searchers. Moreover, mc search organizes the moves of the searchers in such a way that the following three properties are satisfied at any step. These three properties enable to show that N = O(n log n × mcs(G, v 0)).

1. T and S have maximum degree three, 2. the vertex-set of S is the set of vertices of G occupied by a searcher at this step, and 3. S has depth k ≥ 1 only if there exists a previous step when S was the complete ternary tree T k-1 .

Let us consider k to be the maximum depth of S during the clearing of G. By properties 1,2 and 3,

N ≤ |V (T k)| = |V (T k)| log |V (T k)| × log |V (T k)|.
Moreover, by property 3,

T k-1 is minor of G, thus s(T k-1) ≤ s(G) ≤ mcs(G, v 0) and |V (T k-1)| ≤ 2|V (G)|. By Theorems 1 and 3, log |V (T k)| = O(k) = O(mcs(T k-1)) ≤ O(s(T k-1)) ≤ O(s(G)) ≤ O(mcs(G, v 0)).
Finally, since the function x log x is strictly increasing, and

|V (T k)| = 3 |V (T k-1)| + 1 ≤ 3 |V (G)| + 1 = 3 n + 1, we obtain: N = O(n log n × mcs(G, v 0)).

Protocol mc search

In this section, we describe the main features of protocol mc search that is described in Figure 1. For the purpose of simplifying the presentation, we assume in this figure that searchers are able to communicate by exchanging messages of size O(log n) bits. This assumption can be implemented by an additional searcher. This extra searcher will be used to schedule the moves of the other searchers and to transmit few information between the searchers. For this purpose, the extra searcher performs a DFS of the tree T that enables it to reach any other searcher. First, we describe the data structure used by mc search.

Every searcher has a state variable ℓeveℓ ∈ {0, • • • , n}. Roughly, this variable indicates the distance between the vertex currently occupied by the searcher and the root, in the tree S. Initially, any searcher has ℓeveℓ = 0.

The whiteboard of every vertex v ∈ V (G) contains one vector status v . For any edge e ∈ E(G) incident to v, status v [e] takes a value in L = {Contaminated, Removed, T ree, M inor}. Initially, for any vertex v and any edge e, status v [e] = Contaminated. To simplify the presentation, we assume that each edge e = {u, v} ∈ E(G) has only one label ℓ(e) = status v [e] = status u [e] ∈ L. This also may be implemented by the extra searcher. Moreover the whiteboard of every vertex v contains a boolean root v which is either true if v is the current root of S or false.

The protocol is divided in O(|E(G)|) phases. At each phase, at least an edge is relabelled. Note that any edge labelled Contaminated (resp., M inor, resp., T ree) can be labelled M inor or Removed (resp., T ree or Removed, resp., Removed). The edges labelled Removed are not relabelled, which proves that Protocol mc search terminates.

Let us define some notations. At any step, T is the subgraph of G induced by the edges labelled M inor or T ree. In the next section, we prove that T is indeed a tree. S is the minor of T obtained by contracting all edges labelled T ree. Initially, T is rooted at v 0 . Finally, for any vertex v ∈ V (G), m v , t v , r v , c v denote the number of edges incident to v that are respectively labelled M inor, T ree, Removed, Contaminated.

Let us describe a phase of the execution of Protocol mc search. A phase starts by the election of the searcher that will perform the move or the labelling of an edge. The elected searcher is an arbitrary searcher with minimum ℓeveℓ and that occupies a vertex v ∈ V (G) satisfying one of the following four conditions, that we detail below. Case a:

t v + m v ≤ 2 and c v ≥ 1, Case b: m v = 1, t v = 0 and c v = 0, Case c: m v + t v = 2, m v > 0, c v = 0 and v is not the root, Case d: m v +t v = 2, c v =
0 and v is the root. We prove below that, while the graph is not clear, at least one vertex occupied by a searcher satisfies one of these conditions.

We will prove that, at any phase, any searcher actually occupies a vertex of S. Therefore, this election can easily be implemented by the extra searcher performing a DFS of T . Moreover, that can be done with O(log n) bit of memory, since the extra searcher only needs to remember the minimum ℓeveℓ of a searcher satisfying one of the above conditions that it meets during this DFS.

Once the extra searcher has performed this DFS and has gone back to the root, let k be the minimum ℓeveℓ satisfying one of the conditions, it has met. Then, the extra searcher performs a new DFS to reach a searcher A with ℓeveℓ = k at a vertex v ∈ V (G) satisfying one of the conditions. We consider the four cases.

Case a. t v + m v ≤ 2 and c v ≥ 1. That is, v has degree at most two in T and it is incident to a contaminated edge e. This case is aiming at adding an edge to T and S for letting S to be as close as possible to a complete ternary tree.

In this case, the extra searcher has led another searcher B from the root to v during its second DFS. The searcher B, followed by the extra searcher, clears e and reaches its other end u ∈ V (G). Either there is an other searcher at u, i.e., u belongs to S, or not, i.e., u / ∈ V (T). In the first case, the extra searcher labels e with Removed, i.e. e is clear but it does not belong to T . Then, B and the extra searcher goes back to the root. In the second case, the extra searcher labels e with M inor, i.e. e is added to S and T . Then, B remains at u to guard it, and

B takes ℓeveℓ = k + 1. Case b. m v = 1, t v = 0 and c v = 0. That is, v has degree one in T and S,
and it is incident to no contaminated edge. This case is aiming at removing a leaf from S and T , because no other edge incident to this vertex might be added to T . This corresponds to relabelling Removed the edge e incident to v in S that was labelled M inor. Moreover, let P be the maximal-inclusion path in T , such that v is an end of P , all edges of P are labelled T ree and all internal vertices in P have degree two in T , then all these edges are relabelled Removed, which corresponds to removing all the vertices of P from T . In this case, searcher A traverses the edge e labelled M inor, labelling it Removed. Let u be the other end of e. Once e has been removed from T , if u has degree one in T and its incident edge f in T has label T ree, f is removed in a similar way. This process is done recursively while it is possible. Note that u cannot be incident to a contaminated edge, otherwise, the protocol ensures that another searcher with ℓeveℓ < k would have stand at u. To conclude this case, the extra searcher and searcher A go back to the root and takes ℓeveℓ = 0. Again, it is possible thanks to a DFS of T . Case c. m v + t v = 2, m v > 0, c v = 0 and v is not the root. That is, v has degree two in T and at least one in S and it is incident to no contaminated edge. This case is aiming at contracting an edge e in S. That corresponds to relabelling T ree an edge incident to v in S that was labelled M inor. We prove that the parent-edge of such vertex is actually labelled M inor.

In this case, searcher A traverses the edge e labelled M inor, labelling it T ree. Then, searcher A goes back to the root and takes ℓeveℓ = 0. Since, this case correspond to the contraction of e in S, we need to update, i.e., to decrease by one, the level of any searcher standing at a descendant of v. For this purpose, the extra searcher can perform a DFS of T v the subtree of T rooted in v. Finally, the extra searcher goes back to the root.

Case d. m v + t v = 2, c v = 0 and v is the root. That is, v has degree two in T and it is incident to no contaminated edge. This case is aiming at contracting an edge in S. There are two cases according whether v is incident to an edge labelled M inor, or not. If v is incident to an edge labelled M inor, let e be this edge. Otherwise, let w be the vertex that is one of the two vertices closest to v in T and such that m w > 0, let e be the edge labelled M inor incident to w, and let u be the other end of e. Note that we will prove that such a vertex w has degree two in T and is incident to exactly one edge labelled M inor. This case is aiming at contracting the edge e in S. That corresponds to relabelling the edge e with T ree. This case also modifies the position of the root.

In this case, all searchers standing at v (the root) are aiming at traversing the edge e and at labelling it T ree. If e is incident to v, it can easily be done. Otherwise, the searchers choose one of the two edges incident to v and traverse all edges labelled T ree that they meet until reaching a vertex incident to an edge labelled M inor, i.e., the vertex w. Then, they traverse e = {w, u} and relabelled it T ree. In both cases, the searchers reach the vertex u that becomes the new root, i.e., the booleans root v and root u are updated. Again, we need to update, i.e., to decrease by one, the level of any searcher standing at a descendant of v in the subtree containing u. This can be done by the extra searcher as in the previous case. Finally, the extra searcher goes back to the new root.

Correctness of Protocol mc search

This section is devoted to prove the following theorem.

Theorem 4. Let G be a connected n-node graph and v 0 ∈ V (G). Protocol mc search enables O(n log n mcs(G, v 0)) searchers to clear G in a monotone connected way, starting from v 0 .

Proof. The difficult part of the proof consists in showing that not too many searchers are used. Thus, let us first prove that Protocol mc search clears G in a monotone connected way. Initially, all edges are labelled Contaminated and the label of an edge e becomes M inor or Removed as soon as e is traversed by a searcher. Moreover, after this traversal, each of its ends is occupied by a searcher (Case a). The strategy is obviously monotone since a searcher is removed from a vertex v if either v is occupied by an other searcher (Case a), or no contaminated edge is incident to v, i.e. c v = 0, (Cases b, c and d). Therefore, the strategy is monotone and connected since it is monotone and starts from a single vertex v 0 . Finally, Protocol mc search eventually clears G. Indeed, at each step, an edge is labelled, and any edge is relabelled at most three times: M inor, T ree, and Removed in this order. Thus, no loop can occur. Moreover, we prove below that T is a tree. Therefore, at any step, at least the searchers occupying its leaves satisfy the conditions of the cases a, b, c, or d. Thus, while there remains a contaminated edge, a searcher will eventually be called to clear this edge.

The remaining part of the section is devoted to prove that Protocol mc search uses at most O(n log n mcs(G, v 0)) searchers. For this purpose, it is sufficient to prove the three properties described in section 3.1. More precisely, we prove the following lemma.

Lemma 1. Let us consider a phase of the execution of Protocol mc search. Let T be the subgraph of G induced by the edges labelled M inor or T ree. Let S be the minor of T when all edges labelled T ree have been contracted.

1. T and S are rooted trees with maximum degree at most three, 2. the vertex-set of S is the set of vertices of G occupied by a searcher at this phase, and 3. S has depth k ≥ 1 only if there exists a previous step when S was the complete ternary tree T k-1 .

The proof is by induction on the number of phases of the execution of Protocol mc search. Initially, the result is obviously valid. Let p > 0 be a phase of the execution of mc search and let us assume that the result is valid for any previous phase. Let T ′ be the subgraph of G induced by the edges labelled M inor or T ree after phase p -1, and S ′ the minor corresponding to the contraction of edges labelled T ree.

First we prove that S and T are acyclic. Note that, by definition, for any vertex v ∈ V (G), m v + t v is the degree of v in T ′ . According to the induction hypothesis, T ′ is a tree with maximum degree at most three. Let v be a vertex incident to at least one edge labelled Contaminated and that is not occupied by a searcher. By monotonicity of the strategy, all edges incident to v are labelled Contaminated. Thus, such a vertex does not belong to T ′ . Let us show that after phase p, T is a tree with maximum degree three. We consider the four cases (a),(b),(c) and (d).

Case a. Either an edge e = {v, u} is added to T ′ , i.e., T = (V (T ′)∪{u}, E(T ′)∪ {e}), or T ′ remains unchanged, i.e., T = T ′ . Since, v ∈ V (T ′) and u / ∈ V (T ′), T is a tree in both cases. Moreover, m v + t v ≤ 2, thus v has degree at most two in T ′ . Thus T has maximum degree at most three. Case b. m v + t v = 1, thus v is a leaf of T . Let u ′ ∈ V (T ′) be the neighbor of v and e = {u ′ , v} that is labelled M inor. First e is relabelled Removed, thus v is removed from T ′ . Then, if u ′ is of degree one in T ′ \ {v} and its incident edge f in T ′ \ {v} is labelled T ree, f is relabelled Removed, i.e. u ′ is removed from T ′ \ {v}. This process is repeated recursively. Thus, T is a tree obtained from T ′ by recursively removing leaves of T ′ . Hence, the maximum degree of T is at most three. Cases c and d. At most one edge of T ′ is relabelled T ree, thus T ′ = T . In the proof of the Claim (see above) we prove that exactly one edge of T ′ is relabelled T ree.

It follows that T is a tree with maximum degree at most three. Since S is a minor of T , S is a tree.

Before proving that the maximum degree of S is three, we prove the second property. We prove by induction on p that the vertices occupied by a searcher are exactly: the root, and those vertices the parent-edge of which is labelled M inor.

Initially, the result is obviously valid. Let p > 0 be a phase of the execution of mc search and let us assume that the result is valid for any previous phase. We consider the four cases a, b, c and d. Let V ′ M be the set of vertices such that their parent-edge are labelled M inor after the phase p -1.

Case a.

An edge e = {v, u} labelled Contaminated is the only edge to be relabelled. It is relabelled either Removed or M inor. In the first case, S = S ′ and the searchers occupy exactly the same vertices than after the phase p-1, thus the property holds. In the second case, u is a leaf of T , and e is the parent edge of u. Thus S = (V (S ′) ∪ {u}, E(S ′) ∪ {e}). Moreover the vertices occupied by a searcher are exactly V (S ′) ∪ {u}. Thus the property holds. Case b. Let e = {v, u} be the edge adjacent to v labelled M inor. e is the only edge relabelled from M inor to Removed. All the other relabelled edges are labelled from T ree to Removed. Thus V M = V ′ M \ {v}. Indeed note that if the root changes, the parent-edge of each vertex in V ′ M \{v} does not change. If the root does not change, then S = (V (S ′) \ {u}, E(S ′) \ {e}). Moreover the vertices occupied by a searcher are exactly V (S) and the property holds. If the root changes to w, S = (V M ∪ {w}, E(S ′) \ {e}), the vertices occupied by a searcher are exactly V (S) and the property holds. Case c. The parent-edge e of the vertex v is the only edge relabelled, and according to induction hypothesis it is relabelled from M inor to T ree. Thus S = (V (S ′) \ {v}, E(S ′) \ {e}). Moreover the vertices occupied by a searcher are exactly V (S), thus the property holds. Case d. Let e be an edge that is closest to v in T ′ such that e is labelled M inor.

We will prove in the next proof that such an edge always exists. If this edge does not exist nothing happens and the property holds. Let u be the vertex such that e is its parent-edge. The edge e is the only edge relabelled, it is relabelled from M inor to T ree. Thus V M = V ′ M \ {u}. Indeed the root changes such that the parent-edge of each vertex in V M does not change and u is the new root. The root changes to u, thus S = (V M ∪ {u}, E(S ′) \ {e}). Moreover the vertices occupied by a searcher are exactly V M ∪ {u} and the property holds. Thus, at phase p, the vertex-set of S is the set of vertices of G occupied by a searcher at this phase.

In order to prove that S has maximum degree at most three, we need the following claim:

Claim. Let v ∈ V (T) incident to an edge e labelled T ree, and such that e is not its parent-edge. Let T v be the subtree of T obtained by removing e from T and that does not contain v. There exists an edge f = {u, w} labelled M inor, such that f is the parent edge of w, u has degree two in T , and the subtree P of T v obtained by removing f from T v and that contains u consists of a path of edges labelled T ree.

Obviously, T v contains at least one edge labelled M inor because all leaves of T are labelled M inor. Indeed, when a leaf is added to T , its incident edge is labelled M inor (Case a) and, when a leaf and its incident edge e labelled M inor are removed, the whole path of edges labelled T ree at which e is attached are removed (Case b).

We now prove that, for any vertex u ∈ V (T) that is not the root, such that all its incident edges in T are labelled T ree, u has degree two in T . Since we have proved that a leaf can only be incident to an edge labelled M inor, u has degree at least two in T . For purpose of contradiction, let us assume that u has degree three in T . Let us consider the phase of the execution of mc search such that the last edge incident to u and labelled Contaminated has been relabelled. From this phase, the degree of u in T might only have decreased. It follows that this vertex cannot have satisfied conditions corresponding to Cases b,c, or d. Thus, u has never been the root otherwise it would still be the case. Moreover, the parent-edge of u has never been relabelled contradicting the fact that it is labelled T ree. Hence, such a vertex u has degree exactly two in T .

Let f be the edge labelled M inor that is the closest to v in T v . Let u be the end of f that is closest to v. Obviously, u is not the root and its parent-edge is labelled T ree. It only remains to prove that u has degree exactly two in T . Similarly to the previous paragraph, we assume, for purpose of contradiction, that u has degree three in T . Again, this leads to the fact that its parent-edge could not have been relabelled, a contradiction. Thus, u has degree two and it is incident to an edge labelled M inor and another edge labelled T ree. Moreover, all internal vertices of the path between u and v have degree two in T and they are incident to edges labelled T ree. This concludes the proof of the Claim. ⋄ Now, let us prove that S has maximum degree at most three. According to the induction hypothesis, S ′ has maximum degree at most three. To prove that the maximum degree of S is at most three, the four cases a, b, c and d must be considered by taking into account the previous claim. Indeed using the Claim, we get that the degree in S of a node v is actually equal to m v + t v , i.e., its degree in T . The induction consists to prove that at the end of the phase p, for all node v ∈ S, m v + t v ≤ 3 according to the case a, b, c and d. The formal proof is omitted due to lack of space and can be found in [START_REF] Ilcinkas | The cost of monotonicity in distributed graph searching[END_REF].

To conclude the proof of the lemma, let us prove the third property. First, for any searcher occupying a vertex v of S, its level is the distance between v and the root. Let k ≥ 1 and let us consider the first phase p at which the depth of S becomes k. The phase p consists of the clearing of a contaminated edge e = {u, v} with u ∈ V (S) occupied by a searcher with level k -1, and v ∈ V (G) \ V (T). Since the move performed at phase p is executed by the searcher with smallest level, it means that no searcher with level less than k -1 can move. That is, all internal vertices of S have degree three and S has depth k -1, i.e. S = T k-1 . This concludes the proof of the lemma and of the theorem.

⊓ ⊔

⋆ Additional supports from the project Fragile of the ACI Sécurité Informatique, and from the project

Initially all searchers stand at v0 with ℓeveℓ = 0. T = (v0, ∅) with v0 as root. During the execution of mc search, T is the tree that consists of edges labelled T ree or M inor. Let e be the edge incident to v labelled M inor.

Description

Label e Removed and let u its other end; if v is the root then u becomes the new root; all searchers standing at v go to u; endif While mu = 0, tu = 1, cu = 0 do Let f be the edge incident to u labelled T ree. Label f Removed; Let u ′ the other end of f and A goes to u ′ ; if u is the root then u ′ becomes the new root and all searchers standing at u go to u ′ ; endif u ← u ′ ; EndWhile Searcher A goes to the root;

Let e be the parent-edge of v and u its other end; Label e with T ree; Let Tv be the subtree of T obtained by removing e and containing v; Any searcher occupying a vertex of Tv decreases its ℓeveℓ by one; Searcher A goes to the root;

(Case d) Let e be an edge that is closest to v in T such that e is labelled M inor; Let u be the vertex such that e is its parent-edge; Label e with T ree; Let T ′ be the subtree of T obtained by removing e and that does not contain v; Any searcher occupying a vertex of T ′ decreases its ℓeveℓ by one; u becomes the new root; All searchers that were standing at v go to u; endWhile