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Abstract

The bifurcation of an incompressible neo-Hookean thick hyperelastic plate with a ratio
of thickness to length η and subject to pure bending is considered within a plane-strain
framework. The two incremental equilibrium equations corresponding to a nonlinear pre-
buckling state of strain are reduced to a fourth-order linear eigenproblem that displays a
multiple turning point. It is found that for 0 < η < ∞ the plate experience an Euler-type
buckling instability which in the limit η → ∞ degenerates into a surface instability. Sin-
gular perturbation methods enable us to capture this transition, while direct numerical
simulations corroborate the analytical results.
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1 Introduction

The development of compressive stresses in mechanical structures is well known to be responsi-
ble for Euler-type buckling instabilities. What is less recognised is that such scenarios are likely
to occur in a number of cases that, apparently, are of a completing different nature. A typical
example is the phenomenon of stress concentration in perforated thin elastic plates subjected to
tension. Usually, the holes act as stress concentrators that can be completely or only partially
surrounded by compressed regions. If the pulling forces are sufficiently strong an out-of-plane
bending instability is experienced locally near the sites of the holes. A systematic investigation
of problems of this nature has recently been initiated by Coman et al. [1, 2, 3, 4].

A second example where Euler-type buckling is indirectly encountered is provided by the
pure bending of a thin and short elastic tube. The curved configuration adopted by the tube is
characterised by compressive axial stresses on the concave side, whereas tension will prevail on
the convex part. Experience shows that a regular instability pattern consisting of many little
ripples will develop along the former region, eventually leading to the creation of one or several
kinks that signal the collapse of the tube.

The stability problem of pure bending in thin-walled tubular structures has a long history
and there is a vast mechanical engineering literature dealing with various aspects; some of it is
aptly summarised in the authoritative account of Kyriakides & Corona [5]. On the mathemati-
cal side, noteworthy contributions in the present context are the works by Seide & Weingarten
[6] and those by Tovstik et al. (briefly summarised in [7]). The former investigation is based
on the Donnell-von Kármán buckling equations linearised around a variable-coefficient mem-
brane state of stress. The resulting boundary value problem was analysed numerically with the
help of the Galerkin method, and it was found that the circumferential shape of the buckled
cylinder displays a small dimple on the compressed side. Several versions of the same problem
have been re-considered in [7] from the point of view of asymptotic analysis. Both works just
now mentioned made the simplifying assumption that the rippling pattern is the same at every
point along the axis of the cylinder or, in other words, a solution with separable variables was
a priori postulated. The assumption is sensible for short tubes (which are fairly stiff), but it is
inadequate for modelling the collapse in the elasto-plastic regime for moderate lengths, which
turns out to require a very different approach (cf. [5]).

Our main aim in the present investigation is to re-visit the pure bending of a rubber block
deforming in plane strain, a problem that has several points in common with the tube bending
mentioned above. Unfortunately, the literature in this area has focused mainly on describing
the deformation itself rather than its potential bifurcations. The typical scenario is outlined in
Figure 1: the undeformed configuration is shown in the left-hand sketch and is characterised
by the geometric parameters 2L (length), H (height), and 2A (thickness); the deformed block
appears on the right in the same Figure. The plane-strain hypothesis simplifies the problem
considerably, since one needs deal only with cross-sections (shown shaded) perpendicular to the
vertical axis of the block and situated sufficiently far away from the lower and upper faces.

Pioneering work on pure bending stability was carried out by Triantafyllidis [8], who exam-
ined incremental bifurcation equations for a couple of piecewise power law constitutive models,
including a hypoelastic one. He pointed out that the underlying instability mechanism is a
surface instability similar to that encountered in the plane-strain half-space problems discussed
by Hill & Hutchinson [9] or Young [10]. Haughton [11] performed a similar analysis for hypere-
lastic materials in a three-dimensional context (neo-Hookean, mostly) and allowed for vertical
compression as well. The instability was found to be of Euler-type but his interpretation of
some of the results is wrong (as we shall explain in §3). A novel feature in [11] is the interac-
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Figure 1: Cylindrical bending of a rubber block; left: reference config-

uration, right: current configuration. Shaded areas indicate two generic

cross-sections perpendicular to the vertical axis.

tion between two different modes of instability, one due to pure bending, the other related to
compression. Dryburgh & Ogden [12] introduced thin coatings on the curved boundaries of the
bent block and made comparisons with the uncoated case. Their findings show that, relative to
the latter case, bifurcation is generally promoted by the presence of surface coating, on either
or both curved boundaries, that is the bifurcation occurs at smaller strains. The relative sizes
of the shear moduli for the coating and, respectively the bulk material was found to play an
important role in describing this phenomenon.

The finite elasticity works reviewed above share a common feature in that they all deal with
incompressible materials. So far little is known about the role played by compressibility on the
bifurcation behaviour in pure bending. The reason might be rooted in the absence from the
literature of a manageable closed-form expression for the pre-bifurcation deformation. Aron &
Wang [13, 14] touched upon issues like existence and uniqueness for bending deformations in
unconstrained elastic materials, while Timme et al. [15] used Hencky’s compressible elasticity
model to investigate closed-form solutions for cylindrical bending. They succeeded in deriving
explicit expressions for the bending angle and moment in terms of the circumferential stretches
on the curved boundaries. The solution is quite involved and it seems unlikely to be useful for
anything but numerical calculations. Moreover, the particular Hencky elasticity framework is
restricted by moderate deformations only.

A critique of bifurcation phenomena in pure bending was given by Gent & Cho [16] who
pointed out that their experiments did not agree with the theoretical predictions based on the
surface-instability concept proposed in [8]. In particular, they found that the instability occurs
for a smaller degree of compression and the block adopts a configuration with a small number of
sharp creases on the inner surface. To fully explain this observation would require a nonlinear
post-buckling analysis because the bifurcation involved is probably of subcritical type. We note
in passing that Gent & Cho’s creases are, to a certain extent, very similar to those encountered
on the curved surface of severely torsioned stocky rubber cylinders [17]. These phenomena are
likely to be related to the failure at the boundary of the complementing condition (see [18] and
the reference therein), and they fall outside the scope of our study.

With this background in mind, we shall re-consider in the next sections a particular instance
of the pure bending problems taken up in [11, 12]. The aim is to elucidate the nature of the
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instability and to analyse the mathematical structure of the governing boundary value problem
when η ≡ A/L ≫ 1. To avoid “missing the forest for the trees”, the model investigated will
be confined to incompressible neo-Hookean materials. In §2 these assumptions are showed to
yield an eigenproblem for a fourth-order partial differential equation with variable coefficients,
subsequently simplified by seeking a solution with separable variables. Direct numerical sim-
ulations reveal an Euler-type buckling phenomenon for 0 < η < ∞, but in the limit η → ∞
this degenerates into a surface instability. Some erroneous interpretations proposed by previous
investigators (e.g., [8] or [11]) are also corrected here for the first time. As demonstrated in §4,
the transition regime between the two different forms of instabilities can be efficiently captured
by singular perturbation methods. The two contrasting asymptotic methods employed are dis-
cussed separately in §4.1 (WKB) and, respectively, §4.2 (boundary layers). The former would
seem to be the most appropriate because the differential equation in question has variable co-
efficients. However, it transpires that a conventional boundary-layer analysis sheds more light
and helps us to steer clear from the confusion created by the presence of a multiple turning

point . Unlike in the recent studies [1, 2, 3, 4], here turning points play no role whatsoever
(the same is true for the related works [25, 27]). The paper concludes with a discussion of the
results obtained, together with suggestions for further study.

2 Overview of the model

Finite pure bending of incompressible hyperelastic materials is discussed in a number of books
like, for example, [19] or [20]. To make the paper reasonably self-contained, we summarise some
of those ideas below.

The reference configuration of the initially undeformed rectangular cross-section of the hy-
perelastic block is the region (see Figure 2)

BR :=
{

(X1, X2) ∈ R
2

∣

∣ − A ≤ X1 ≤ A, −L ≤ X2 ≤ L
}

.

Supposing that the block is bent (symmetrically with respect to the x1-axis) into a sector
of circular cylindrical tube, the current configuration of the deformed cross-section is easily
represented in polar co-ordinates by the domain

BC :=
{

(r, θ) ∈ R × (0, 2π]
∣

∣ − r1 ≤ r ≤ r2, −ω0 ≤ θ ≤ ω0

}

.

Rivlin [21] showed that for an incompressible elastic material this type of deformation may be
described by the mapping

r = (d + 2X1/ω)1/2, θ = ωX2 , (1)

where d is a quantity determined by the particular constitutive law adopted and ω can serve as
a control parameter as it is related to the angle of bending , ω0 := ωL. Since the plate cannot
be bent into itself, we should require that

0 < ω0 ≤ π , (2)

an assumption used tacitly henceforth. Although the deformation recorded in (1) seems to have
an iconic status among workers in elasticity, it is clear that the kinematics afforded by that
expression are somewhat restricted. The lines X1 = const. become arcs of the circle r = const.,
while the lines X1 = const. are transformed in lines θ = const.; in other words, “cross-sections”



Pure bending & boundary layers 5

(0, L)

(0,−L)
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Figure 2: The undeformed (left) and deformed (right) cross-sections of the

rubber block shown in Figure 1. Bending is symmetric with respect to the

x1-axis so that the two angles marked are congruent and equal to ω0; see

the text for more details.

perpendicular to the vertical symmetry axis of BR, remain orthogonal to the deformed axis of
the current configuration BC . This is somewhat at odds with the commonly accepted point of
view in structural mechanics, according to which pure bending of thick sandwich panels (e.g.,
[24]) is based on models that allow cross-sections to slide relative to the normal to the deformed
axis. Nonetheless, the nonlinear mapping (1) is still a sensible choice for the type of questions
we want to answer, at least in a first approximation.

The bifurcation analysis carried out in this work is based upon linearising the plane-strain
equations of finite elasticity around the nonlinear pre-buckling deformation (1). This approach
to linearised or incremental bifurcations is well established (see [22, 20], for example), so we
shall not rehearse it here. Instead, we limit ourselves to pointing out the key steps that lead to
our eigenproblem.

We shall assume that the constitutive behaviour of the material is characterised by a strain-
energy function W ≡ W (λr, λθ), where the principal stretches λr and λθ are associated with the
Eulerian principal directions er and, respectively, eθ. Due to the incompressibility constraint
these can be written as

λr = λ−1 and λθ ≡ λ := ωr ,

which defines the notation λ. According to [20], the two-dimensional version of the incremental
equations of equilibrium for incompressible elasticity read

div̊s = 0, divů = 0 , (3)

where ů = (̊u(r, θ), v̊(r, θ)) is the incremental displacement field, and s̊ denotes the incremental
nominal stress tensor with components

s̊ij = LijklF̊kl + pF̊ij − p̊δij , i, j ∈ {r, θ} .

Here p̊ is the increment in the Lagrange multiplier p ≡ p(r, θ) (the “hydrostatic pressure”),
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while F̊ij represent the components of the incremental deformation gradient,

F̊ =

[

ů,r
1
r (̊u,θ −v̊)

v̊,r
1
r (̊u + v̊,θ )

]

.

Finally, Lijkl are the components of the fourth-order tensor of instantaneous incremental moduli
which, in Eulerian principal axes has 15 independent non-zero such components (cf. [20])

Liijj = λiλjWij , (4a)

Lijij =







λ2
i (λiWi − λjWj)

λ2
i − λ2

j

if i 6= j, λi 6= λj ,

1
2(Liiii − Liijj + λiWi) if i 6= j, λi = λj ,

(4b)

Lijji = Ljiij = Lijij − λiWi , (4c)

with Wi ≡ ∂W/∂λi, Wij ≡ ∂2W/∂λiλj, and the summation convention does not apply.
Direct calculations show that the system of equations (3) can be reduced to

r2p̊,r = r [r(L′

1111 − L′

1122 + p,r ) + L1111 + L2222 − 2L1122] ů,r

+ r2(L1111 − L1122)̊u,rr +L2121 (̊u,θθ −v̊,θ ) + rL2112v̊,rθ , (5)

rp̊,θ = (rL′

1212 + L1212)(rv̊,r +ů,θ −v̊) + r2L1212v̊,rr

+ r(L2112 + L1122 − L2222)̊u,rθ . (6)

To avoid overdoing the notation we have used the correspondence r → 1 and θ → 2 for
the incremental moduli, and have indicated their derivatives with respect to r by dashes. A
further simplification is afforded by the incompressibility condition which allows us to deduce
the existence of a potential φ ≡ φ(r, θ) such that

ů =
1

r

∂φ

∂θ
, v̊ = −

∂φ

∂r
. (7)

The upshot of this observation is that the two equations (5,6) can now be combined into a
single partial differential equation for the potential function. After some routine (but lengthy)
manipulations, we end up with

4
∑

j=1

Lj[φ] = 0 , (8)

with Lj partial differential operator of the j-th order defined according to

L4 := α r4 ∂4

∂r4
+ 2βr2 ∂4

∂r2∂θ2
+ γ

∂4

∂θ4
,

L3 := 2r3(rα)′
∂3

∂r3
+ 2r3

(

β

r

)′
∂3

∂r∂θ2
,

L2 := r4

[

α′′ +
(α

r

)′
]

∂2

∂r2
− r2

[

α′′ +

(

α + 2β

r

)′

−
γ

r2

]

∂2

∂θ2
,
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L1 := −r3

[

α′′ +
(α

r

)′
]

∂

∂r
,

and

α(r) := L1212 , γ(r) := L2121 , β(r) :=
1

2
(L1111 + L2222) − (L1122 + L2112) .

The form (8) of the bifurcation equation is valid for any choice of incompressible hyperelastic
material but, as it stands, the model is not easily amenable to analytical work. Before further
simplifications are implemented, we must address the issue of boundary conditions for (8).

The two curved boundaries of BC are taken to be traction-free, a constraint which demands

αr3φ,rrr −(2β + α)(φ,θθ −rφ,rθθ ) = 0 , for (r, θ) ∈ {r1, r2} × (0, 2π] , (9a)

φ,θθ +rφ,r −r2φ,rr = 0 , for (r, θ) ∈ {r1, r2} × (0, 2π] . (9b)

These conditions can be obtained as a particular case of the calculations of Dryburgh & Ogden
[12], to which the reader is referred for more information.

Next, we look for separable solutions of the bifurcation equation (8) in the form

φ(r, θ) = Φ(r) cos(mθ) , (10)

where m ∈ N is the azimuthal mode number related to the number of ripples on the compressed
side of the rubber block, while Φ(r) is the infinitesimal amplitude of this cosine rippling pattern.
Several types of boundary conditions are possible for the straight boundaries of BC . Following
[11, 12] we consider zero incremental displacement in the radial direction and vanishing normal
traction. It can be shown that these conditions are satisfied as long as

m =
nπ

ωL
, (11)

for some positive n ∈ Z. With this information in hand, all that remains to be done is to choose
a constitutive model and carry out the simplification of (8) with the help of the assumed form
solution recorded in (10).

The bulk material is modelled by a simple neo-Hookean strain-energy function specialised
to plane-strain elasticity,

W (λr, λθ) =
1

2
τ(λ2

r + λ2
θ − 2),

τ being the ground-state shear modulus of the material. As shown by Rivlin [21] and subse-
quently discussed by others [8, 11, 12], for this particular choice of constitutive law the constant
d in (1) is determined by

d =
L2

ω2
0

(1 + 4η2ω2
0)

1/2 .

On making use of (10) in (8) results in an ordinary differential equation which, when expressed
in the non-dimensional variables

ρ :=
r

L
, µ := nπ , η :=

A

L
,

can be cast as

Φ′′′′ + P(ρ)Φ′′′ + Q(ρ)Φ′′ + R(ρ)Φ′ + S(ρ)Φ = 0, on ρ1 < ρ < ρ2 . (12)
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Above, the dashes denote derivatives with respect to ρ and

P(ρ) := −
2

ρ
, Q(ρ) :=

[

3

ρ2
− µ2

(

ω2
0ρ

2 +
1

ω2
0ρ

2

)]

,

R(ρ) := −
1

ρ

[

3

ρ2
+ µ2

(

ω2
0ρ

2 −
3

ω2
0ρ

2

)]

, S(ρ) := µ4 .

Note that the inner and, respectively, the outer curved surfaces of the current configuration
become

ρ1,2 =
1

ω0

[

(1 + 4η2ω2
0)

1/2 ± 2ηω0

]1/2
, (13)

while the principal stretch in the eθ-direction assumes the simple form

λ = ω0ρ . (14)

The solution of (12) is found subject to the non-dimensional boundary conditions obtained
from (9) via (10),

Φ′′′ − µ2

(

ω2
0ρ

2 +
2

ω2
0ρ

2

)

Φ′ +
µ2

ρ

(

ω2
0ρ

2 +
2

ω2
0ρ

2

)

Φ = 0 , for ρ = ρ1,2 , (15a)

Φ′′ −
1

ρ
Φ′ +

µ2

ω2
0ρ

2
Φ = 0 , for ρ = ρ1,2 . (15b)

The normal-mode approach has reduced the bifurcation analysis to the study of a standard
ordinary eigenproblem for Φ(ρ) and ω0 ∈ (0, π). While for structural mechanics problems (e.g.,
[23]) this route is free of pitfalls, in finite elasticity it is only deceptively so. The danger is that
the bent block might develop shear bands or other material instabilities before the compressed
inner surface starts to wrinkle. Such occurrences are heralded by a loss of ellipticity in the
partial differential equation (8); unfortunately, they remain undetected by (12). Conveniently,
the use of a neo-Hookean constitutive law precludes any form of material instabilities (note
that L4 is strongly elliptic in this case). Such exotic effects, however, were accounted for in [8],
but it was found that the surface instability was always the first to occur.

3 Numerical experiments

The stability of the bent rubber block is now investigated numerically, the starting point being
the eigenproblem (12,15) formulate in §2. Our first objective is to find out the dependence of
the critical bending angle ω0 in terms of the aspect ratio η ≡ A/L. It is expected that an Euler-
type buckling instability is experienced for 0 < η < ∞, but in the limit η → ∞ this behaviour
degenerates into a surface instability. Such behaviour is consistent with the results of Dryburgh
& Ogden [12] and Haughton [11], although it appears that earlier investigators [8] reported only
surface instabilities for some other choices of constitutive behaviour. Unfortunately, a direct
comparison with those results is not possible here but, intuitively, one would expect that the
finite thickness of the block should set a length-scale for the instability pattern.

A rather peculiar feature of our eigenproblem is the dependence of the mode number m
in (11) on the bending angle. In order to identify the former quantity for a given η, we shall
plot the principal stretch on the curved inner boundary ρ = ρ1 in terms of this number, the
critical value of m being that associated with the largest λ1 ≡ λ(ρ1, η; n) when n ∈ N. This
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Figure 3: Plot of the critical stretch λ1 ≡ λ(ρ1) against the mode number m ≡ n/ω0,
as obtained by direct numerical integration of the eigenproblem (12,15) for a sample
of aspect ratios η. The maximum principal stretch for each individual case considered
is marked by a small circle and corresponds to the points: P1 (η = 1.0), P2 (η = 3.0),
P3 (η = 5.0), P4 (η = 10.0), P5 (η = 15.0), and P6 (η = 20.0). These maxima are
attained for n = 1, except for P1 which corresponds to n ≈ 2.43.

procedure is carried out in Figure 3 where we consider a sample of values for η (see the caption
for details): the horizontal axis records the mode number n/ω0 while the vertical axis shows
λ1. Strictly speaking, n ∈ N but we shall take this parameter to be a positive real number and
notice that the eigenvalue of the problem (12,15), ω0, will depend on this quantity as well as
on η, i.e., ω0 ≡ ω0(η, n). For η = 1 we find the curve shown with a continuous line and which
consists of two sloping parts separated by a peak, P1 (corresponding to n ≈ 2.43). Henceforth,
we shall refer to this curve as C1. Note that the right-hand part is monotonic decreasing and
unbounded but here only a segment of that curve is shown. The neutral stability curves for
the other values of η = ηj > 1 considered are Cj := {(λ1(ρ1; ηj, n), n/ω0) | n ∈ R+} and they
all turn out to be part of C1. The remark made above regarding C1 applies for these curves as
well. For the sake of clarity in Figure 3 the curves are shifted and shown separately as dashed
lines, but their top endpoints (P2 ÷ P6) are marked on C1 as well. All such points correspond
to the choice n = 1.

The feature illustrated in Figure 3 is generic and not restricted to the particular values of
η > 1 chosen. A first observation is that the number of ripples on the compressed side of the
block increases with the non-dimensional thickness η. When this latter quantity is reasonably
large (η >≈ 3) the critical mode number given by (11) always corresponds to n = 1. Thus,
the behaviour of a very thick block can be understood in two different ways: (i) assuming
that n = 1 and η ≫ 1 or, conversely, (ii) fixing η = O(1) and letting n ≫ 1. In the former
case the critical mode number will simply be π/ω(η, 1), whereas in the latter one the following
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observation helps: if η1, η2 > 0 are two given, sufficiently large aspect ratios with η1 < η2, then

1

ω0(η2, 1)
=

η2

ω0(η1, η2)
.

Comparing this with (11) assertion (ii) should now be obvious.
It is instructive to gain some insight into the behaviour of the critical eigenfunctions as-

sociated with the Pj ’s marked on Figure 3. This information is included in Figure 4 where,
for the sake of brevity, we show the radial and azimuthal displacements only for P1 ÷ P4, as
obtained from the two equations in (7). The localisation of the deformation near the curved
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Figure 4: The eigenfunctions associated with the critical points Pj in Figure 3:
(a) P1 (η = 1.0), (b) P2 (η = 3.0), (c) P3 (η = 5.0), and (d) P4 (η = 10.0). In each
plot the continuous line denotes ρ−1Φ(ρ) (radial displacement), while the dashed
line is used for Φ′(ρ) (azimuthal displacement). The range for these functions is
ρ1 ≤ ρ ≤ ρ2 and they are suitably normalised so that their maximum amplitude is
unity.

inner surface of the bent block when η increases is clearly obvious. The stress concentration
phenomenon revealed by these plots is to be expected because the thicker the rubber block, the
more difficult is to bend it, that is, the instability will be likely to occur for small values of the
bending angle. Hence, curvature effects will only be “felt” in the immediate proximity of the
bent inner surface. In the remaining of the paper we show that this behaviour is ideally suited
for a singular perturbation analysis.

At this juncture some remarks on the method used to identify the critical mode number
are appropriate. At first sight, our work in Figure 3 might appear a little awkward. The
coincidence of the curves Cj (j = 2, . . . , 6) with C1 could have been inferred by taking into
account that the principal stretch λ1 is independent of n and depends only on the product ω0η
– see (13) and (14). However, we believe that the longer route taken here has the advantage of
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clarifying some of the vague statements made by Haughton in [11]. He misinterpreted the role
played by n ∈ N in formula (11) and, in Figure 5 of his paper, he varied both n and η ending
up with a wrong statement as to the behaviour of the neutral stability curves for the bending
problem. For convenience we reproduce that scenario in our Figure 5. Although a different
formulation of the eigenproblem was used in [11] (without recourse to any potential function),
the results we show are the same (as they should be since the height of the rubber block in
[11] was fairly large, H/A = 10). The only exception is the unusual feature seen in that paper
for n = 1, which we did not find with our model. Triantafyllidis [8] seems to have committed
a different error by excluding ω0 from what he refers to as “wave-number” (see Figure 7 in his
work). That might explain why he did not find an Euler-type buckling instability.

0.5 1 1.5 2 2.5 3 3.5

0.54

0.545

0.55

0.555

0.56

L/A ≡ η−1

λ
1

Figure 5: A plot of critical values of λ1 ≡ λ(ρ1) against undeformed length L/A for
mode numbers n = 1 ÷ 10 (see also Figure 5 in reference [11]). The arrow indicates
the direction of increasing n.

The response curves shown in Figure 5 are reminiscent of similar situations encountered
in the buckling of thin-walled structures (e.g., [23]). In that particular type of situation n
represents the number of half-waves of the instability pattern and plots like the one shown
above can be used to infer the wavelength of the buckling pattern from knowledge of some
aspect ratio (related recent work on thin-film instabilities can be found in [1, 2, 3, 4]). However,
in the present context such extrapolations appear to provide misleading information for obvious
reasons. Also, in the limit A/L → ∞ the critical principal stretch would have to be equal to
the value 0.544 predicted by Biot’s analysis for a neo-Hookean half-plane in compression (cf.
[16, 22]). This is clearly not the case in Figure 5 but, on the other hand, the earlier results of
Figure 3 do anticipate this expectation.
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4 Stress concentration for n ≫ 1

The mathematical structure of the boundary-value problem derived in §2 is akin to a number of
situations investigated recently in the literature by Fu et al. [25, 26] and Haughton & Chen [27].
Broadly speaking, these authors encountered a particular occurrence of turning points (e.g.,
[28]) or repeated roots in the characteristic equations associated with bifurcation analyses for
everted cylindrical/spherical shells. It was stated that such special points could aid in detecting
sites of high-stress concentration within elastic solids. Furthermore, in light of the recent work
on edge-buckling of thin films [1, 2, 3, 4], it would appear very reasonable to conclude that Fu’s
observation might go a long way towards explaining the localised behaviour seen in Figure 4.
That this is not true we are going to see in §4.2, but before we pursue those issues it is important
to gain an understanding of the relevance of WKB techniques in the present context. According
to the previous interpretation of the parameters η ≡ A/L and n (defined in equation (11)), the
bifurcation of a thick rubber block (η ≫ 1) can be understood by taking η = 1 and allowing
n ≫ 1. This is precisely what we do in the remainder of the paper.

4.1 WKB approach

The WKB method is a simple and efficient tool for dealing with variable-coefficient linear
differential equations containing certain small or large parameters. We shall exploit the presence
of µ ≡ πn ≫ 1 in our eigenproblem to describe the dependence of ω0 (or λ1) on this large
parameter.

A WKB solution of (12) is sought in the form

Φ(ρ) = Y (ρ) exp

(

µ

∫ ρ

ρ1

S(ξ) dξ

)

, (16a)

Y (ρ) = Y0(ρ) +
1

µ
Y1(ρ) +

1

µ2
Y2(ρ) + . . . (16b)

where S ≡ S(ρ) is one of the roots of the characteristic equation

S4 −

(

ω2
0ρ

2 +
1

ω2
0ρ

2

)

S2 + 1 = 0 ,

and Yj(ρ) (j = 0, 1, . . . ) are functions that are to be determined sequentially by substituting
the ansatz (16) into (12), and then solving the differential equations obtained by setting to
zero the coefficients of like powers of µ. The above bi-quadratic has four real roots that will be
labelled

S
(±)
1 (ρ) := ±ω0ρ, S

(±)
2 (ρ) := ±

1

ω0ρ
,

and they lead to a set of linearly independent (approximate) solutions for (12). Given our
experience with the direct numerical simulations of §3, it is expected that only the exponentials
corresponding to S

(−)
1,2 (ρ) need to be used in order to capture the through-thickness localised

behaviour. The superscripts “1” and “2” will be used to identify quantities associated with
these characteristic exponents in (16).

The determinantal equation that follows by imposing the boundary conditions (15) at ρ = ρ1

on the WKB solutions Φ(1) and Φ(2) has the form

U1(ρ1)V2(ρ1) − U2(ρ1)V1(ρ1) = 0 , (17)
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where

Uj(ρ) := Φ(j)′′′ − µ2

(

ω2
0ρ

2 +
2

ω2
0ρ

2

)

Φ(j)′ +
µ2

ρ

(

ω2
0ρ

2 +
2

ω2
0ρ

2

)

Φ(j) , (18)

Vj(ρ) := Φ(j)′′ −
1

ρ
Φ(j)′ +

µ2

ω2
0ρ

2
Φ(j) , j = 1, 2 . (19)

When calculating Φ(j) (j = 1, 2) we shall ignore terms of order O(µ−2) and higher in the
ansatz (16b). These solutions are fixed by routinely solving a series of non-homogeneous linear
differential equations. The various multiplicative and additive constants in the expressions of
those functions can be chosen (without loss of generality) to be unity or, respectively, equal to
zero. The final results are

Y
(1)
0 (ρ) =

ρ

(1 − ω4
0ρ

4)1/2
, Y

(1)
1 (ρ) = −

5ω8
0ρ

8 + 10ω4
0ρ

4 − 3

4ω0ρ2(1 − ω4
0ρ

4)2
Y

(1)
0 (ρ) ,

Y
(2)
0 (ρ) =

ρ2

(1 − ω4
0ρ

4)1/2
, Y

(2)
1 (ρ) =

3ω0(ω
4
0ρ

4 + 1)

2(1 − ω4
0ρ

4)2
Y

(2)
0 (ρ) ,

and thus,

Φ(j)(ρ) ≈

{

Y
(j)
0 (ρ) +

1

µ
Y

(j)
1 (ρ)

}

exp

(

µ

∫ ρ

ρ1

S
(−)
j (ξ) dξ

)

, j = 1, 2 . (20)

It must be noted that Y
(j+1)
j (j = 0, 1) blow up when ρ = ρ ≡ ω−1

0 ∈ (ρ1, ρ2); in the language
of differential equations this represents a (multiple) turning point of the differential equation
(12). Such points are usually defined as those values of the independent variable for which
some of the roots of the characteristic equation coalesce. For this particular example, both
S

(+)
1 (ρ) = S

(+)
2 (ρ) and S

(−)
1 (ρ) = S

(−)
2 (ρ), i.e., two pairs of roots merge. Strictly speaking,

the validity of the above formulae for Y
(j+1)
j (j = 0, 1) requires |ρ − ρ| ≫ µ−1/2. Although ρ

depends on the unknown eigenvalue, our numerical experiments suggest that the turning point
remains confined to the central part of the interval (ρ1, ρ2).

On making use of (20) into (17), we are able to expand the determinantal equation in
decreasing integral powers of µ ≫ 1,

Γ0(λ1) + Γ1(ω0, λ1)
1

µ
+ Γ2(ω0, λ1)

1

µ2
+ · · · = 0 , (21)

with

Γ0(z) := 8z2(z2 + 1)2(z3 − z2 + z + 1)(z3 + z2 + z − 1) ,

Γ1(ω0, z) := 2ω0(4z
12 + 15z10 + 23z8 + 8z4 − 7z2 − 3) ,

and

Γ2(ω0, z) :=
ω2

0

(z2 + 1)2(z2 − 1)4

(

6z22 − 18z20 − 37z18 − 477z16 − 1118z14

− 930z12 − 600z10 − 4z8 − 120z6 − 140z4 + 45z2 + 33
)

.
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The solution of (21) yields approximations for both the critical bending angle ω0, and the
principal stretch λ1. For the sake of brevity we record only the final results here

ω0 = Ω0 +
Ω1

µ
+

Ω2

µ2
+ . . . , (22)

Ω0 = 0.771844 , Ω1 = −1.305565 , Ω2 = 15.39664 ,

and

λ1 = Λ0 +
Λ1

µ
+

Λ2

µ2
+ . . . , (23)

Λ0 = 0.543689 , Λ1 = 0.385922 , Λ2 = −4.184333 .

As one would expect, Λ0 ≈ 0.544 represents the critical value of the principal stretch for the
surface instability of a compressed neo-Hookean half-space (cf. [22]); the next-order corrections
in formula (23) account for the finite size of the rubber block. To assess the usefulness of the
two asymptotic results (22) and (23), a set of comparisons with direct numerical simulations is
recorded in Table 1. The agreement is excellent for both ω0 and λ1; in particular, we find that
the relative accuracy (RA) associated with ω0 ranges between 1.4% (n = 7) and 0.8% (n = 20).
The approximation of λ1 is even better, for RA is at most 0.4% (n = 7) in all cases considered.

The WKB analysis laid out above has the advantage of producing a robust approximation
for ω0 (or λ1) with minimum effort. The presence of the turning point, however, is worrying
because it tends to obscure the true nature of the localised behaviour exhibited by (12). It is not
immediately clear whether such behaviour has anything to do with the turning point and, thus,
a change of tack is imperative. It will shortly become obvious that conventional boundary-
layer techniques are better suited for understanding the underlying mathematical structure
responsible for the scenario depicted in Figure 4. The details of that particular approach are
highlighted next.

4.2 Boundary-layer analysis

To begin, we introduce the stretched variable X = O(1) such that ρ = ρ1 + Xµ−1, and look for
solutions of (12) with

W (X) = W0(X) + W1(X)
1

µ
+ W2(X)

1

µ2
+ . . . , (24a)

ω0 = Ω0 +
Ω1

µ
+

Ω2

µ2
+ . . . , (24b)

ρ1 = ∆0 +
∆1

µ
+

∆2

µ2
+ . . . . (24c)

Although (24b) and (24c) are not independent, it helps to expand ρ1 in the form suggested
here. Of course, when solving the governing equations for the coefficients Wj(X) (j = 0, 1, . . . )
one has to remember formula (13) and replace the ∆k’s with their expressions in terms of the
Ωj (j = 0, 1, . . . , k).

On substituting (24) into (12) we find a hierarchy of differential equations

LBL[Wk] =
k−1
∑

i=0

3
∑

j=1

A
(k)
ij

djWi

dXj
(k ≥ 0) , (25)
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Table 1: Comparisons between direct numerical simulations of the eigenproblem
(12,15) and the asymptotic results recorded in the formulae (22) and (23). The
bending angle and the azimuthal stretch on the inner boundary associated with the
former set of values are denoted by ωnum and, respectively, λnum

1 . The corresponding
asymptotic quantities are identified as ωasy

0 and λasy
1 .

n ωnum
0 ωasy

0 λnum
1 λasy

1

7 0.744313103 0.733652725 0.555301084 0.552585690
8 0.744272309 0.736778030 0.554325988 0.552419947
9 0.744928414 0.739453964 0.553494699 0.552104104
10 0.745886633 0.741762924 0.552780068 0.551733662
11 0.746957132 0.743772049 0.552160229 0.551352710
12 0.748046186 0.745533828 0.551618218 0.550981720
13 0.749107553 0.747090530 0.551140475 0.550629796
14 0.750119338 0.748474960 0.550716526 0.550300415
15 0.751072409 0.749714126 0.550337796 0.549994245
16 0.751964384 0.750829238 0.549997574 0.549710574
17 0.752796399 0.751837997 0.549690282 0.549448050
18 0.753571374 0.752754745 0.549411416 0.549205075
19 0.754293016 0.753591537 0.549157200 0.548980000
20 0.754965302 0.754358139 0.548924583 0.548771235

in which

LBL :=
d4

dX4
−

(

ζ2
0 +

1

ζ2
0

)

d2

dX2
+ 1

is the boundary-layer (BL) differential operator and ζ0 := ∆0Ω0. The quantities A
(k)
ij ≡ A

(k)
ij (X)

will be defined as we go along, with the convention that A
(0)
ij ≡ 0. In contrast to the WKB

analysis the general solution of each one of the equations in (25) is trivially found, for LBL has
constant coefficients.

The equations (25) are solved subject to two types of boundary conditions. The first set is
obtained from (15) with the help of the ansatz (24), and can be cast in the general form

H1[Wk] =
k−1
∑

i=0

∑

j=0,1

B
(k)
ij

djWi

dXj
, for X = 0 , (26a)

H2[Wk] =
k−1
∑

i=0

∑

j=0,1

C
(k)
ij

djWi

dXj
, for X = 0 , (26b)

where

H1 :=
d3

dX3
−

(

ζ2
0 +

2

ζ2
0

)

d

dX
and H2 :=

d2

dX2
+

1

ζ2
0

;

the remark made for the A
(k)
ij ’s applies to the boundary coefficients B

(k)
ij and C

(k)
ij as well.

The second set of boundary conditions is motivated by the numerical experiments illustrated
in Figure 4 and involves the requirement that

djWi

dXj
→ 0 as X → ∞ , (27)
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for i ≥ 0, j = 0, . . . , 3. It might also be worth pointing out that the solution of equation
(12) is exponentially small in the outer layer (cf.§4.1), so that (27) can be viewed as matching
conditions between the inner and the outer solutions.

The leading order problem for W0(X) is homogeneous and consists of the differential equa-
tion (25) for k = 0, together with the boundary conditions (26). Rejecting the exponentially
growing contributions and imposing the normalisation condition W0(X = 0) = 1, it follows
that

W0(X) =
2

1 − ζ4
0

exp(−ζ0X) −
1 + ζ4

0

1 − ζ4
0

exp(−X/ζ0) . (28)

When this function is substituted into the boundary conditions, one obtains an algebraic equa-
tion,

ζ8
0 + 2ζ4

0 − 4ζ2
0 + 1 = 0 ,

whose only acceptable solution is ζ0 ≈ 0.543689. The result is identical to Λ0 found in §4.1 and
the same turns out to be true for Ω0 in (24b).

The next order problem corresponds to taking k = 1 in (25) and (26). The coefficients that
appear in these equations are

A
(1)
01 :=

1

∆0ζ2
0

(ζ4
0 − 3) , A

(1)
02 :=

2

ζ3
0

(∆0Ω1 + ∆1Ω0 + Ω0X)(ζ4
0 − 1) , A

(1)
03 :=

2

∆0
,

B
(1)
00 := −

Ω0

ζ3
0

(ζ4
0 + 2) , B

(1)
01 :=

2

ζ3
0

(∆0Ω1 + ∆1Ω0)(ζ
4
0 − 2) ,

C
(1)
00 :=

2

ζ3
0

(∆0Ω1 + ∆1Ω0) , C
(1)
01 :=

1

2
A

(1)
03 .

The first-order correction Ω1 in the expansion (24b) of the eigenvalue ω0 is recovered by enforc-
ing the Fredholm solvability condition on the non-homogeneous problem satisfied by W1(X).
The task is simplified by the observation that the homogeneous problem for W0(X) is self-
adjoint. Standard calculations show that this constraint amounts to

C
(1)
01

{

dW0

dX
(0)

}2

+
{

C
(1)
00 − B

(1)
01

}

W0(0)
dW0

dX
(0) − B

(1)
00 {W0(0)}2

=

∫

∞

0

W0(ξ)
3

∑

j=1

A
(1)
0j

djW0

dXj
(ξ) dξ . (29)

Notice that the integral on the right-hand side in (29) is evaluated analytically, and thus the
solvability condition will reduce to a linear equation in Ω1. The solution Ω1 ≈ −1.305562 is,
for all practical purposes, identical to the WKB result obtained earlier.

The pattern of the boundary-layer approach for the pure bending problem is now clear: at
each step one will have to impose a solvability condition for finding Ωj that features in (24b),
and then solve (exactly) a non-homogeneous fourth-order boundary-value problem in order to
get Wj(X). The algebraic manipulations become increasingly unwieldy as we move to further
orders, but symbolic algebra packages help considerably. We have imposed the solvability
condition for the W2-problem and found that the value of Ω2 predicted agrees with Ω2 to
within five significant digits; for completeness, the coefficients needed to set up that problem
are recorded below

A
(2)
11 :=

Ω0

ζ3
0

(

ζ4
0 − 3

)

, A
(2)
12 := A

(1)
02 , A

(2)
13 := A

(1)
03 ,
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A
(2)
01 :=

1

ζ4
0

[

Ω2
0(X + ∆1)(ζ

4
0 + 9) + 2Ω1(ζ

4
0 + 3)ζ0

]

, A
(2)
03 := −

2

∆2
0

(X + ∆1) ,

A
(2)
02 :=

1

ζ4
0

{

2∆0Ω0(∆0Ω2 + ∆2Ω0)(ζ
4
0 − 1) +

[

Ω2
0(X + ∆1)

2 + ∆2
0Ω

2
1

]

(ζ4
0 + 3)

+ 4Ω1(X + ∆1)(ζ
4
0 + 1)ζ0 − 3Ω2

0ζ
2
0

}

,

B
(2)
00 := −

1

ζ4
0

[

∆1Ω
2
0(ζ

4
0 − 6) + 2Ω1(ζ

4
0 − 2)ζ0

]

,

B
(2)
01 :=

1

ζ4
0

[

2(∆0Ω2 + ∆2Ω0)(ζ
4
0 − 2)ζ0 + (∆2

0Ω
2
1 + ∆2

1Ω
2
0)(ζ

4
0 + 6) + 4∆1Ω1(ζ

4
0 + 2)ζ0

]

,

B
(2)
10 := B

(1)
00 , B

(2)
11 := B

(1)
01 .

C
(2)
00 = −

1

ζ4
0

[

3(∆2
0Ω

2
1 + ∆2

1Ω
2
0) − 2ζ0(Ω0∆2 + ∆0Ω2 − 2∆1Ω1)

]

,

C
(2)
01 = −

∆1

∆2
0

, C
(2)
10 = C

(1)
00 , C

(2)
11 = C

(1)
01 .

It might appear that our boundary-layer approach is a by-product of adopting the simple neo-
Hookean form for the constitutive response of the bulk material. However, this impression is
only apparent, for choosing a strain-energy function of the form

W (λr, λθ) ∝ (λq
r + λq

θ) , (q > 0) ,

the same mathematical structure persists. In this case the interpretation of the asymptotic
results become more difficult because now loss of elliptiticy will be encountered for some value
of q 6= 2; such issues will be discussed elsewhere [29].

5 Concluding remarks

We have re-examined the bifurcations in cylindrical bending of a thick rubber block under
the assumption of plane-strain deformation. The constitutive behaviour was taken to be that
of a neo-Hookean incompressible solid, the reason for this being twofold: we wanted to (a)
exclude any material instabilities and, (b) simplify our equations as much as possible. The
outcome turned out to be a simple fourth-order eigenproblem with variable coefficients. Direct
numerical simulations and singular perturbation methods were employed to unravel the origins
of the rippling pattern triggered on the compressed face of the block, when the bending angle
is sufficiently large. It has been shown in §3 that previous investigators [8, 11] misinterpreted
the definition of the so-called “mode number” and thus made several erroneous statements. In
particular, we want to re-iterate here that blocks of a large but finite thickness will always
experience an Euler-type buckling instability with a well defined number of ripples. It is only
in the limit of an infinitely thick block that one finds the degenerate surface instability. Our
results deal with the neo-Hookean material, but it is believed that the above statement remains
valid in other cases as well. It seems quite unlikely that the choice of constitutive law would
have any dramatic repercussions on the overall arguments presented in this paper.

Our work has also demonstrated that the use of WKB methods in the context of incre-
mental elasticity is unnecessary and even misleading. The multiple turning point featuring
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in the present eigenproblem has little to do with the tendency of the rippling deformation to
confine itself near the inner curved surface of the block. Interestingly though, a simple-minded
boundary-layer analysis was able to expose the nature of the localisation in a trivial way. In
spite of the original complexity of the problem, we found that if the rubber block is sufficiently
thick, its possible bifurcations from the cylindrical configuration are governed by constant-
coefficient differential equations – easily solvable in closed form. This has important overall
implications since preliminary calculations indicate that the problems taken up in [25, 26, 27])
are amenable to a similar boundary-layer analysis. We shall report the corresponding details
in a forthcoming study [29].
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