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On-line Time-Constrained Scheduling Problem for the Size on k machines

In this paper we consider the problem of scheduling online jobs on k identical machines. Technically, our system is composed of k identical machines and each job is defined by a triplet Γ = (l, r, p), where l denotes its left border, r its right border and p its length. When a job is revealed, it can be rejected or scheduled on one of the k machines. In this last case, it can suppress already scheduled jobs. The goal is to maximize the size of the schedule (i.e. the number of jobs scheduled and not (later) suppressed). We propose an algorithm called OLU W . It is (4 min (β, ⌊log 2 (γ)⌋ + 1))competitive, where β is the number of different job lengths appearing in the on-line input sequence and γ is the ratio between the length of the longest job and the length of the shortest job in the sequence. To the best of our knowledge, OLU W is the first on-line algorithm maximizing the size with guarantees on the competitive ratio for the timeconstrained scheduling problem on k identical machines.

Introduction

We consider the problem of scheduling on-line jobs on k identical machines (for any k ≥ 1). We define a job Γ by the triplet Γ = (l, r, p), where l is the left border, r the right border and p ≤ rl the length of Γ. A job is scheduled on machine j if it occupies machine j on a continuous interval of length p between its two borders. Jobs are independent and two jobs scheduled on the same machine cannot intersect.

Previous works. This problem is known as the Time-Constrained Scheduling Problem (TCSP). The aim is to maximize the weight of the constructed schedule (i.e. the sum of the weight of scheduled jobs). There are several categories of weights: the same for all jobs (corresponding to the maximization of the size of the schedule), equal to the length or arbitrary. In [START_REF] Bar-Noy | Approximating the throughput of multiple machines in real-time scheduling[END_REF], all these variants of TCSP are studied in the off-line setting. As each variant is NP-hard, approximation algorithms are proposed, with constant ap-proximation ratios. But the methods in [START_REF] Bar-Noy | Approximating the throughput of multiple machines in real-time scheduling[END_REF] are off-line, thus they cannot be used for solving our on-line problem.

In the on-line setting (where jobs are revealed and treated one by one) particular variants of TCSP have been studied. The version where a job is an interval (i.e. with tight left and right borders, p = rl) has been extensively studied. In [START_REF] Baille | Online bicriteria interval scheduling[END_REF][START_REF] Baille | On-line simultaneous maximization of the size and the weight for degradable intervals schedules[END_REF][START_REF] Bar-Noy | Bandwidth allocation with preemption[END_REF][START_REF] Faigle | Note on scheduling intervals on-line[END_REF][START_REF] Garay | Efficient on-line call control algorithms[END_REF][START_REF] Woeginger | On-line scheduling of jobs with fixed start and end times[END_REF], algorithms for this model are proposed.

More recently, several papers [START_REF] Adler | Beating the logarithmic lower bound: Randomized preemptive disjoint paths and call control algorithms[END_REF][START_REF] Garay | On-line admission control and packet scheduling with interleaving[END_REF][START_REF] Goldwasser | Patience is a virtue: the effect of slack on competitiveness for admission control[END_REF][START_REF] Naor | Online timeconstrained scheduling in linear networks[END_REF] have investigated variant of on-line TCSP and have proposed algorithms for the case where jobs have not tight left and right borders. But all these papers only consider the particular case of a single machine.

In this paper, we propose the first on-line algorithm solving TCSP for the unit weight model (i.e. for the maximization of the size of the schedule) on k identical machines (in part, our work is more general than previous works on a single machine).

Definitions.

We describe now more precisely our notations. When a job Γ = (l, r, p) is revealed, all informations in the triplet (l, r, p) are revealed. Job Γ is said to be scheduled on machine j if it continuously occupies machine j between l 0 and r 0 with: p = r 0l 0 and l ≤ l 0 ≤ r 0 ≤ r. The resulting numerical interval σ = [l 0 , r 0 ) is called the interval associated to Γ. Note that the length of σ is p and that σ ⊆ [l, r) (i.e. job Γ is scheduled between its two borders on a length p). A schedule S is feasible if on any machine, no scheduled jobs (i.e. their associated intervals) intersect. The size |S| of S is the number of scheduled jobs. In the following, we will denote by S j the sub-part of a schedule S on machine j.

Given any on-line sequence of jobs Γ 1 , . . . , Γ n , . . . revealed one by one in this order, any on-line algorithm must construct at each step a feasible schedule on k machines. In our model, when a new job Γ = (l, r, p) is revealed, an on-line algorithm can reject it or schedule it. In this second case, if it schedules Γ as the interval σ on machine number j, it interrupts all the already scheduled intervals intersecting σ on this machine (rejected jobs and interrupted intervals are definitively lost and do not appear in the current and future schedules). In order to evaluate the quality of an on-line scheduling algorithm, we introduce the follow-ing definition of the competitive ratio (see [START_REF] Borodin | Online computation and competitive analysis[END_REF] for references on competitive ratios).

Definition 1 (Competitive ratio)

Let Γ 1 , . . . , Γ n , . . . be any on-line sequence of jobs revealed in this order to online Algorithm A. Let S n be the corresponding schedule on k machines constructed by Algorithm A at step n ≥ 1. Let S n * be the (optimal off-line) maximum size schedule on k machines of the set of jobs {Γ 1 , . . . , Γ n }. Algorithm A has a competitive ratio of c (or is c-competitive) if and only if:

∀n ≥ 1, c • |S n | ≥ |S n * |
Application to networks. Our model can be applied (but is not limited) to the following situation. Consider a link in a communication network, made of k sub-links of identical capacities (for example an optical fiber in which k independent frequencies can be used simultaneously). To schedule on-line requests (revealed one by one) on this link, an online algorithm has to choose which one is accepted and on which sub-link. In this application, one request is defined by a length (corresponding to the duration of transmission of the request on one sub-link), a release date and a deadline (after which completing the request is of no use). Here, we want to maximize the number of accepted requests.

Outline of the paper. In Section 2, we propose an on-line algorithm (called OLU W ), solving TCSP on k identical machines. In Section 3, we prove it is (4 min (β, ⌊log 2 (γ)⌋ + 1))-competitive, where β is the number of different job lengths appearing in the on-line input sequence and γ is the ratio between the length of the longest job and the length of the shortest job in the input sequence. In the particular case of a single machine system (i.e. k = 1), our algorithm has (in order of magnitude) the best possible competitive ratio, since it is proved in [START_REF] Garay | Efficient on-line call control algorithms[END_REF] that even for the interval model, no on-line algorithm has a competitive ratio better than Ω(log γ).

Our algorithm OLU W

We define Algorithm OLU W as follows.

On-line Unit Weight Algorithm -OLU W

Let S be the current schedule made of k sub-schedules S j (1 ≤ j ≤ k), one on each machine number j and let Γ = (l, r, p) be the new revealed job.

IF there exists a machine number j such that there exists an interval σ ⊆ [l, r) of length p satisfying:

(∀σ ′ ∈ S j , σ ∩ σ ′ = ∅) or (∃σ 0 ∈ S j , σ ⊂ σ 0 and 2p(σ) ≤ p(σ 0 ))
THEN interrupt σ 0 (if necessary) and schedule Γ as interval σ on machine j ELSE reject Γ.

Note that at each step, Algorithm OLU W constructs a feasible schedule.

To simplify the notations, for every interval σ, we say that σ satisfies cond j (σ) if and only if (∀σ ′ ∈ S j , σ ∩ σ ′ = ∅) or (∃σ 0 ∈ S j , σ ⊂ σ 0 and 2p(σ) ≤ p(σ 0 )). By using the following algorithm (called IB for Important Borders, running on one machine), finding an interval σ ⊆ [l, r) of length p satisfying cond j (σ) if there exists one (corresponding to lines 4 and 5 of Algorithm OLU W ) can be done in polynomial time for each machine j.

Important Borders Algorithm -IB Let Γ = (l, r, p) be the new revealed job. Let j, 1 ≤ j ≤ k be the number of the machine currently checked. On machine number j:

Let {[l 1 , r 1 ), . . . , [l n , r n )} be the set of intervals already scheduled on machine number j such that 

l < r 1 ≤ l 2 < r 2 ≤ • • • ≤ l n < r n < r. Let l, l 1 , r 1 , l 2 ,
σ = [d, d + p) ⊆ [l, r) satisfying cond j (σ) ELSE there is no interval σ ⊆ [l, r) of length p satisfying cond j (σ).
The following Theorem proves the correctness of Algorithm IB.

Theorem 1 For every machine number j (1 We now prove that if there exists an interval σ ⊆ [l, r) of length p satisfying cond j (σ), then Algorithm IB finds one. Indeed, suppose, by contradiction, that there exists an interval [l 0 , r 0 ) ⊆ [l, r) of length p (i.e. with r 0l 0 = p) satisfying cond j ([l 0 , r 0 )) and that Algorithm IB finds no interval. Let d 0 ∈ {l, l 1 , r 1 , l 2 , r 2 , . . . , l n , r n } be the largest important border such that d 0 ≤ l 0 . By definition of Algorithm IB, the interval [d 0 , d 0 + p) is checked. Let us now consider the two following cases:

≤ j ≤ k), Algorithm IB finds an interval σ = [d, d + p) ⊆ [l,
• If [l 0 , r 0 ) intersects no interval scheduled on machine j. As d 0 is the largest important border such that d 0 ≤ l 0 and as [l 0 , r 0 ) and [d 0 , d 0 + p) both have length p, [d 0 , d 0 + p) intersects no interval scheduled on machine j. This means that [d 0 , d 0 + p) satisfies cond j ([d 0 , d 0 + p)). Thus, Algorithm IB chooses this interval (contradiction).

• Otherwise, there exists an interval σ scheduled on machine j intersecting [l 0 , r 0 ). As [l 0 , r 0 ) satisfies cond j ([l 0 , r 0 )), we have [l 0 , r 0 ) ⊆ σ. Moreover, as d 0 is the largest important border such that d 0 ≤ l 0 and as [l 0 , r 0 ) and [d 0 , d 0 + p) both have length p, we also have [d 0 , d 0 +p) ⊆ σ. This means that [d 0 , d 0 +p) satisfies cond j ([d 0 , d 0 +p)). Thus, Algorithm IB chooses this interval (contradiction).

Analysis of Algorithm OLU W

In the following, we consider any on-line sequence Γ 1 , . . . , Γ n , . . . as input. In order to analyze its competitive ratio, we will compare S (the schedule given by Algorithm OLU W on k machines at step n for the input sequence Γ 1 , . . . , Γ n ) with S * (the optimal schedule given on k machines at step n for the input set {Γ 1 , . . . , Γ n }).

Main result.

In order to express our main result, we need the following definitions of the parameters β and γ.

Definition 2 For every on-line sequence Γ 1 , . . . , Γ n , we define β as the number of different job lengths appearing in Γ 1 , . . . , Γ n : β = Γ∈Γ1,...,Γn {p(Γ)} Definition 3 For every on-line sequence Γ 1 , . . . , Γ n , we define γ as the ratio between the length of the longest job and the length of the shortest job in Γ 1 , . . . , Γ n :

γ = max p(Γ) p(Γ ′ ) : Γ, Γ ′ ∈ {Γ 1 , . . . , Γ n }
Our main result is the following theorem, expressed with the previous notations, proving that Algorithm OLU W is (4 min (β, ⌊log 2 (γ)⌋ + 1))-competitive.

Theorem 2 4 min (β, ⌊log 2 (γ)⌋ + 1) • |S| ≥ |S * |
In order to prove Theorem 2, we need the following definitions.

Notation 1 For every j, (1 ≤ j ≤ k), let S j (resp. S * j ) be the sub-schedule of S (resp. S * ) on machine number j.

Notation 2

For every machine number j (1 ≤ j ≤ k), let T j be the set of associated intervals scheduled by Algorithm OLU W on machine number j, including the intervals that have been scheduled and later interrupted.

Note that two intervals in T j can overlap, since in general, T j is not a feasible schedule.

Definition 4

For every machine number j (1 ≤ j ≤ k), we define S * A j and S * B j as follows:

• Let S * A j be the sub-schedule of S * j such that S * A j ⊆ S * j and for every σ a ∈ S * A j , there exists σ b ∈ 1≤j≤k T j such that σ a and σ b are associated to the same job Γ (i.e. Γ is scheduled in S * A j as interval σ a and has been accepted and scheduled by Algorithm OLU W as interval σ b ).

• Let S * B j be the sub-schedule of S * j such that S * B j ⊆ S * j and for every σ a ∈ S * B j , there is no σ b ∈ 1≤j≤k T j such that σ a and σ b are associated to the same job Γ (i.e. Γ is scheduled in S * B j as interval σ a but has been rejected by Algorithm OLU W ).

Note that we have S * A j ∩ S * B j = ∅ and S * A j ∪ S * B j = S * j . Definition 5 (The function f ) Let j be any machine number (1 ≤ j ≤ k). Let Γ x be the new revealed job scheduled in the optimal solution as interval x on machine j and rejected by OLU W (i.e. x ∈ S * B j ). Let S j be the current sub-schedule of S on machine j when Γ x is revealed and let T j be the set of all associated intervals scheduled by Algorithm OLU W on machine number j before Γ x is revealed (including the intervals that have been scheduled and later interrupted). Note that both S j and T j are considered here as they currently are when job Γ x is revealed. Let Y x = {y ∈ S j : (p(y) < 2p(x) and x ⊆ y) or (x ∩ y = ∅ and x y)}. We define the function f as follows

f : S * B j → T j x → y = [l y , r y ) such that y ∈ Y x and l y = min{l y ′ : y ′ ∈ Y x }
Note that we want y be such that l y = min{l y ′ : y ′ ∈ Y x } just to ensure that there is only one y = f (x). We now introduce some technical Lemmas in order to prove Theorem 2.

Lemma 1 For every machine number j (1 ≤ j ≤ k), for every interval x ∈ S * B j , we have |{y : y = f (x)}| = 1 Proof. Let Γ x be the new revealed job scheduled in S * B j as interval x. Let S j be the current sub-schedule of S on machine j when Γ x is revealed. Since x ∈ S * B j , Γ x has been rejected by Algorithm OLU W . In particular, this means that Algorithm OLU W has rejected Γ x of machine j. Thus, by definition of OLU W and by Theorem 1, there exists y 0 ∈ S j such that (p(y 0 ) < 2p(x) and x ⊆ y 0 ) or (x∩y 0 = ∅ and x y 0 ). If there exist several such y 0 , choose the one with the minimum left border. By definition of f , we have y 0 = f (x), thus |{y : y = f (x)}| = 1.

Lemma 2 Let j be any machine number (1 ≤ j ≤ k). Let Γ x be the new revealed job scheduled in S * B j as interval x. Let S j be the current sub-schedule of S on machine j when Γ x is revealed and let T j be the set of all associated intervals scheduled by Algorithm OLU W on machine number j before that Γ x is revealed (including the intervals that have been scheduled and later interrupted). For every interval y ∈ T j , we have

|{x : y = f (x)}| ≤ 3
Proof. By contradiction, suppose that there exists y ∈ T j such that |{x : y = f (x)}| ≥ 4. We denote by {x 1 = [l 1 , r 1 ), x 2 = [l 2 , r 2 ), . . . , x n = [l n , r n )} (with n ≥ 4) the set of intervals such that 1≤l≤n {x l } = {x : y = f (x)}, ordered by increasing left borders (i.e.

l 1 < l 2 < • • • < l n ). As y = f (x), we have x ∩ y = ∅ (1) Moreover, since x ∈ S * B j ⊆ S * j , for every a, b (1 ≤ a ≤ b ≤ n), we have x a ∩x b = ∅ (because S *
j is a valid schedule on one machine). Thus, we have

r 1 ≤ l 2 < r 2 ≤ l 3 < • • • < r n-1 ≤ l n (2) 
By ( 1) and ( 2), we obtain

∀l, 2 ≤ l ≤ n -1, x l ⊂ y (3) 
Without loss of generality, suppose that p(x 2 ) = min p(x) : x ∈ 2≤l≤n-1 {x l } . Thus, we have

(n -2)p(x 2 ) ≤ n-1 l=2 p(x l ) ⇒ 2p(x 2 ) ≤ n-1 l=2 p(x l ) (because n ≥ 4) ⇒ 2p(x 2 ) ≤ p(y)
(by ( 3) )

This contradicts the fact that y = f (x 2 ) (indeed, by definition of f , we have p(y) < 2p(x 2 ) ). 

By ( 4) and ( 5), we obtain

|S * B j | ≤ 3|T j | (6) 
Two cases may happen:

• If |S * | ≤ 4 k j=1 |S * A j |.
By definition of S * A j , ∀σ a ∈ S * A j , ∃σ b ∈ 1≤j≤k T j such that σ a and σ b come from the same job Γ. Thus, we have 

|S * | = k j=1 |S * A j | + k j=1 |S * B j | ⇒ |S * | ≤ |S * | 4 + k j=1 |S * B j | ⇒ 3 4 |S * | ≤ k j=1 |S * B j | ⇒ |S * | ≤ 4 3 k j=1 |S * B j | ⇒ |S * | ≤ 4 k j=1 |T j | (by (6))
Lemma 4 For every machine number j (1 ≤ j ≤ k), we have

min (β, ⌊log 2 (γ)⌋ + 1) • |S j | ≥ |T j | Proof.
For every σ ∈ S j , we define the sequence of associated intervals "rooted" in σ by R(σ) = x 1 , x 2 , . . . , x i where σ = x i and i is the largest integer such that for every l (1 ≤ l ≤ i -1), x l has been replaced by x l+1 during the execution of Algorithm OLU W . By definition of OLU W , we have 

p(x 1 ) ≥ 2p(x 2 ) ≥ 2 2 p(x 3 ) ≥ • • • ≥ 2 i-1 p(x i ) ⇒ p(x 1 (σ)) p(x i (σ)) ≥ 2 i-1 ⇒ γ ≥ 2 i-1 (because γ = max p(Γ) p(Γ ′ ) : Γ, Γ ′ ∈ Γ 1 , . . . , Γ n

Conclusion

We have proposed a (4 min(β, ⌊log 2 (γ)⌋ + 1))competitive on-line algorithm (called OLU W ), solving TCSP on k identical machines, where β is the number of different job lengths appearing in the on-line input sequence and γ is the ratio between the length of the longest job and the length of the shortest job in the input sequence (note that Algorithm OLU W do not need to know neither β nor γ beforehand). We underline the fact that in many situations (corresponding to "homogeneous" jobs), this competitive ratio is constant. For example, when β = c (with c any constant), Algorithm OLU W is 4c-competitive. When γ = 2 c ′ (with c ′ any constant), Algorithm OLU W is (4c ′ + 4)competitive.

Lemma 3 |S * | ≤ 4 kj=1( 4 )

 344 |T j | Proof. By Lemma 1, for every machine j (1 ≤ j ≤ k), we have {x : y ∈ T j and y = f (x)} = S * B j . Thus, we have |{x : y ∈ T j and y = f (x)}| = |S * B j | By Lemma 2, we have |{x : y ∈ T j and y = f (x)}| ≤ 3|T j |

•

  If |S * | ≥ 4 k j=1 |S * A j |. By definition of S * A j and S * B j , we have S * A j ∩ S * B j = ∅ and S * A j ∪ S * B j = S * j . Thus, we obtain:

and x 1 8 )Proof of Theorem 2 . 4 kj=1 |T j | ≤ 4 k

 18244 and x i are intervals associated to jobs in {Γ 1 , . . . ,Γ n }) ⇒ ⌊log 2 (γ)⌋ ≥ |R(σ)| -1 (because |R(σ)| = i is an integer) Thus, we obtain ⌊log 2 (γ)⌋ + 1 ≥ |R(σ)|(7)By definition of β, we haveβ = Γ∈{Γ1,...,Γn} {p(Γ)} ≥ σ ′ ∈R(σ) {p(σ ′ )} = |R(σ)| (because, by definition of OLU W , p(x 1 ) > p(x 2 ) > • • • > p(x i ) )Thus, we obtainβ ≥ |R(σ)| (By definition of S j , T j and R(σ), we have:σ∈Sj R(σ) = T j ⇒ σ∈Sj R(σ) = |T j | ⇒ σ∈Sj |R(σ)| ≥ |T j | ⇒ σ∈Sj min (β, ⌊log 2 (γ)⌋ + 1) ≥ |T j |(by (7) and (8)) ⇒ min (β, ⌊log 2 (γ)⌋ + 1) • |S j | ≥ |T j |We are now able to give a proof of Theorem 2. By Lemmas 3 and 4, we have |S * | ≤ j=1 min (β, ⌊log 2 (γ)⌋ + 1) • |S j | = 4 min (β, ⌊log 2 (γ)⌋ + 1) • |S|