
HAL Id: hal-00341384
https://hal.science/hal-00341384

Submitted on 18 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An optimal rebuilding strategy for a decremental tree
problem

Nicolas Thibault, Christian Laforest

To cite this version:
Nicolas Thibault, Christian Laforest. An optimal rebuilding strategy for a decremental tree problem.
SIROCCO, 2006, United Kingdom. pp.157–170, �10.1007/11780823_13�. �hal-00341384�

https://hal.science/hal-00341384
https://hal.archives-ouvertes.fr

An optimal rebuilding strategy for a

decremental tree problem

Nicolas Thibault, Christian Laforest

Tour Evry 2, LaMI/IBISC, Université d’Evry, 523 place des terrasses, 91000 EVRY
France {nthibaul,laforest}@lami.univ-evry.fr

Abstract. This paper is devoted to the following decremental problem.
Initially, a graph and a distinguished subset of vertices, called initial

group, are given. This group is connected by an initial tree. The decre-
mental part of the input is given by an on-line sequence of withdrawals
of vertices of the initial group, removed on-line one after one. The goal
is to keep connected each successive group by a tree, satisfying a quality

constraint: The maximum distance (called diameter) in each constructed
tree must be kept in a given range compared to the best possible one.
Under this quality constraint, our objective is to minimize the number

of critical stages of the sequence of constructed trees. We call “critical”
a stage where the current tree is rebuilt. We propose a strategy leading
to at most O(log i) critical stages (i is the number of removed members).
We also prove that there exist situations where Ω(log i) critical stages
are necessary to any algorithm to maintain the quality constraint. Our
strategy is then worst case optimal in order of magnitude.

A lot of works have been devoted to the construction of trees spanning a given
set of vertices in a graph. For example the Steiner tree problem, where the goal
is to span a set (called group) of distinguished vertices (called members) with
a minimum weight tree, has been extensively studied. As the problem is NP-
complete, numerous approximation algorithms have been designed (see [1, 3] for
example). In [8], Waxman was the first author to present the on-line version of
this problem in which vertices to add in, or to remove from, the current group
revealed one by one (see [2] references on on-line problems). In this first paper,
he divides the problem into two categories: A model in which “heavy” changes of
the current tree are not allowed and a model in which changes are allowed. Then,
Imase and Waxman proposed in [4] two different strategies corresponding to the
two models above. In the first one the tree is just incremented or decremented
and the degradation of weight is evaluated, whereas in the second one they allow
changes in the current tree to maintain a guaranty on the weight. At each stage,
they prove that they construct with the first strategy a tree whose weight is at
a logarithmic ratio compared to the optimal one (i.e. the weight of a Steiner
tree of the current group), and that they construct with the second strategy a
tree whose weight is at a constant ratio compared to the optimal one. They give
for the second strategy an upper bound of O(

√
i) on the number of elementary

changes per stage (where i is the number of new members). However, the tree can

potentially be changed at each stage; this means that each stage is potentially
what we call later a critical stage.

In [6], a very similar on-line Steiner tree problem with a delay constraint from
one node to the others is studied. But the authors only evaluate their method
with simulations, and they give no upper bound for the different competitive
ratios. Note that in [4, 6], only the number of elementary changes is taken into
account to measure the level of damage due to the allowed changes in the current
tree.

In this paper we are concerned with a decremental group problem where
the members to remove are revealed on-line one by one. However, we do not
focus on the same objective function (the weight of the tree) but on a different
measure: The diameter of the current group induced by the current tree. Note
that we consider here a model in which changes are allowed because it can easily
be shown that any on-line algorithm without critical stage cannot guarantee a
constant competitive ratio (for the diameter objective function we consider in
this paper). That is why we fix here a “relative budget”, called quality constraint,
on the diameter and we propose an algorithm minimizing the number of critical
stages necessary to guarantee this budget constraint at each stage. Note also that
we have proved that our algorithm leads to a constant number of elementary
changes per stage in average (but we do not give in this paper the definitions
and the proof associated to this problem because of the limitation on the number
of pages).

A motivation for such model and objective function is the construction of
connection structures for groups of members in networks. An important QoS pa-
rameter is latency that is expressed here in terms of maximum distance between
users. This maximum distance must be guaranteed (our quality constraint). How-
ever, this must be done by minimizing the number of critical stages since they
induce perturbations in communications in the current group (implying many
re-routing operations between members in the current tree).

In Section 1 we describe more formally our problem. More precisely, in Sub-
section 1.1 we describe and motivate the constraints (namely the tree and quality
constraints) that must be satisfied at each stage. In Subsection 1.2 we give the
definitions of a critical stage. In Subsection 2.1 we propose an algorithm satisfy-
ing the construction constraints (in Section 2.2). In Subsection 2.3 we prove that
our algorithm leads to at most O(log i) critical stages (where i is the number of
removed members). We prove in Section 3 that our strategy is worst case optimal
in order of magnitude for the number of critical stages criterion by constructing
a scenario in which at least Ω(log i) critical stages are necessary for any algo-
rithm to satisfy the quality constraint. These results show that our algorithm is
worst case optimal for the number of critical stages.

1 Definitions and notations

Let G = (V, E, w) be any connected weighted graph representing a network. V

is the set of vertices (modeling the nodes of the network), E the set of edges

(modeling the set of physical links) and w a positive weight function of the edges
(modeling the length of the edges). We denote by dG(u, v) the distance between
u and v in G, i.e. the sum of the weights of the edges of a minimum weight path
between u and v in G.

Definition 1 (Diameter of a group M). Let G = (V, E, w) be a graph and
let M ⊆ V be a group. We denote the diameter of M in G by

DG(M) = max{dG(u, v) : u, v ∈ M}.

1.1 Construction constraints

In our problem, the graph G = (V, E, w) and an initial group M0 ⊆ V are given
(with M0 6= ∅). For example, in a meeting on network (called net-meeting)
this initial group M0 represents the set of members present at the beginning of
the meeting. A structure, noted T0 = (V0, E0), must be created to connect the
members of M0 (T0 spans M0 in G : M0 ⊆ V0 ⊆ V , E0 ⊆ E).

However, members may leave the meeting. These members must be removed
from the current group (we underline that they are not removed from the
underlying graph G). Let m0 = |M0| be the size of the initial group. Let
u1, u2, . . . , ui, . . . (i ≤ m0 − 1) be the sequence of members to remove. For
every i, 1 ≤ i ≤ m0 − 1, we denote by Mi = Mi−1\{ui} the ith group, and by
mi = |Mi| its size. Thus, starting from the initial connection structure T0 for
M0, at each stage of withdrawal i, the member ui is removed by updating the
current structure Ti−1 (spanning Mi−1) to obtain Ti spanning Mi.

Note that as the members to remove are revealed one by one, we are in an
on-line model. It means that we do not know the future: Neither in which order
the members are removed, nor what is the set of members to remove. Hence,
each stage can potentially be the last one; this explains why we are interested
by giving guarantees at each stage.
We need the following definition that presents the best possible connection tree
for the group Mk, minimizing the diameter parameter.

Definition 2 (Optimal tree). Let G = (V, E, w) be a graph. For every i,
0 ≤ i ≤ m0 − 1, we denote by T ∗

i a tree satisfying

DT∗

i
(Mi) = min{DT (Mi) : T tree spanning Mi}.

We are now ready to give the two constraints that each current structure Ti

must satisfy.

– The tree constraint: For every i, 0 ≤ i ≤ m0 − 1, Ti must be a tree,
spanning Mi, in which all leaves are in Mi (we call that a pruned tree).

– The quality constraint: Let c ≥ 1 be any fixed constant representing
the required level of quality. For every i, 0 ≤ i ≤ m0 − 1, we must have
DTi

(Mi) ≤ c · DT∗

i
(Mi).

As in a net-meeting the current structure Ti is used to support the communi-
cations between members of Mi, the tree constraint is set in order to simplify
the mechanisms of routing and duplication of information in Ti. Indeed, there is
only one route between any pair of members in a tree; moreover as there is no
cycle, a simple flooding process can be used to broadcast information from any
member. This flooding naturally ends at the leaves that are members (because
trees are pruned); there is no need of costly process to control it.

The quality constraint of level c is set to guarantee that the induced diameter
of the current group in Ti is not too large compared to the best possible diameter
in T ∗

i (at most c times the best possible diameter).
In the rest of the paper we say that an algorithm solves our problem if, for

any on-line sequence of successive groups M0 ⊃ · · · ⊃ Mi, it returns a sequence
of trees T0, . . . , Ti (Ti spanning Mi) satisfying the tree and quality constraints.

1.2 The criterion to minimize

In this subsection we present the cost associated with any algorithm satisfying
the tree and quality constraints. We first need the following definitions.

Definition 3 (Critical stage). Let A be an algorithm solving our problem.
At stage i, 1 ≤ i ≤ m0 − 1, Algorithm A builds Ti = (Vi, Ei) from Ti−1 =
(Vi−1, Ei−1). Stage i is a critical stage if Ei * Ei−1.

We distinguish critical stages from other stages since they generate a lot of
perturbations. Indeed, if i is a critical stage, the communication routes in Ti−1

between members already in the current group Mi−1 have to be changed in Ti.
Potentially all the routing tables of the connecting nodes must be modified. This
generates a heavy traffic to update them. Moreover the current communications
between members of Mi−1 initiated before the changes may be interrupted. That
is why the number of critical stages must be minimized.

On the other hand, the withdrawal of a member by just removing useless
branches in the tree generates only local changes and is not considered as a
critical stage (since in this case Ei ⊆ Ei−1). The update of the routing can just be
done by broadcasting the information of the departure of the leaving member in
the new tree Ti. This does not create any re-routing between the other members.
The aim of this paper is to minimize the total number]CS(T0, . . . , Ti) of critical
stages while respecting the tree and the quality constraints.

2 Our algorithm CS

2.1 Definition of Algorithm CS (Critical Stages)

To define Algorithm CS, we need the following algorithm, called MD for Min-
imum Distance. We denote by MD(M) Algorithm MD applied to group M of
size m to find a particular group M(r∗) of size

⌊

m
2

⌋

+ 1 and what we call its
associated root.

Algorithm MD(M)

1. For each r ∈ M, sort the m vertices of M by

non decreasing value of their distance to r:

r, ur
1, . . . , u

r
m−1 (dG(r, ur

1) ≤ dG(r, ur
2) ≤ · · · ≤ dG(r, ur

m−1)).

Let M(r) =

{

r, ur
1, . . . , u

r

bm
2 c

}

.

2. Return r∗ and its associated group M(r∗) such that

dG

(

r∗, ur∗

bm
2 c

)

= min
{

dG

(

r, ur

bm
2 c

)

: r ∈ M
}

Note that for all r ∈ M , the vertices ur
1, . . . , u

r
m−1 can be sorted by non de-

creasing value of dG(r, ur
k) and the associated group M(r) can be constructed in

polynomial time by using Dijkstra’s algorithm. Thus, Algorithm MD(M) finds
M(r∗) and its associated root r∗ in polynomial time.

The main idea of Algorithm CS is to define particular stages numbers, called
rebuilding stages during which we (totally) reconstruct the current tree (to match
the quality constraint). Between two successive rebuilding stages, a member is
leaving by just removing the dead branches of the current tree (in order to
maintain at each stage a pruned tree to satisfy the tree constraint).

The following sequence (ak) defines the rebuilding stages of our algorithm:
ma0 = m0 is the size of the initial group M0 and for every ak (k ≥ 1),

mak
=

⌊

mak−1

2

⌋

is the size of the group Mak
.

Algorithm CS

– Initially, at stage a0 = 0:
CS builds a shortest path tree spanning the first group M0,

rooted in r0 ∈ M0, where r0 ∈ M0 is the root found by MD(M0).

– After the last rebuilding stage ak:

Let Mak+j be the current group and let uak+j be the jth member

revealed to be removed since the last rebuilding stage ak.

• If mak+j >
⌊mak

2

⌋

(corresponding to j < mak
−

⌊mak

2

⌋

):

Update the tree Tak+j−1 = (Vak+j−1, Eak+j−1) by pruning

potential useless branches.

We obtain the pruned tree Tak+j = (Vak+j , Eak+j) spanning

Mak+j satisfying Eak+j ⊆ Eak+j−1.

• Otherwise, we have mak+j =
⌊mak

2

⌋

(corresponding to j = mak
−

⌊mak

2

⌋

):

This is a rebuilding stage and we have mak+j =
⌊mak

2

⌋

=mak+1
.

Break the current tree and construct Tak+1
, a shortest path

tree spanning Mak+1
, rooted in rak+1

(where rak+1
∈ Mak+1

is

the root found by MD(Mak+1
)). Thus, ak+1 is the new last

rebuilding stage.

The rebuilding stages of CS can be critical stages (because the current tree is
broken and rebuilt). The other stages are non critical because the algorithm only
removes from the current tree useless branches to obtain the new tree.

Note that this algorithm is polynomial because it uses Algorithm MD (MD

is polynomial) and because updating a tree by removing useless branches can be
done in polynomial time.

Note also that by construction, at each stage, the tree constraint is satisfied.
Section 2.2 shows that it also respects the quality constraint for a level of quality
c = 4.

2.2 CS respects the quality constraint

Theorem 1 shows that CS respects the quality constraint with a level of quality
c = 4.

Theorem 1. Let G = (V, E, w) be a graph. For any sequence of withdrawals, at
every stage i, 0 ≤ i ≤ m0 − 1 (i is the number of removed members), let T ∗

i be
an optimal (off-line) tree spanning Mi for the diameter. CS respects the quality
constraint with a level of quality c = 4, i.e. for every i, 0 ≤ i ≤ m0 − 1, we have

DTi
(Mi) ≤ 4DT∗

i
(Mi).

Proof.

– If i is a stage of rebuilding. In this case, i = ak. Let u0, v0 ∈ Mak
be such

that dTak
(u0, v0) = DTak

(Mak
) (where Tak

is the tree spanning Mak
rooted

in r∗ built by CS at stage ak). We have

DTak
(Mak

) = dTak
(u0, v0) ≤ dTak

(u0, r
∗) + dTak

(r∗, v0)

(by triangular inequality)

= dG(u0, r
∗) + dG(r∗, v0) ≤ 2DG(Mak

)

(because Tak
is a shortest path tree rooted

in r∗ and because u0, v0, r
∗ ∈ Mak

)

≤ 2DT∗

ak
(Mak

) ≤ 4DT∗

ak
(Mak

)

(because for every tree T spanning

a group M , DG(M) ≤ DT (M))

– Otherwise ak is not a stage of rebuilding. Let j, 1 ≤ j < mak
−

⌊mak

2

⌋

be the
number of removed vertices after the last rebuilding, happening at stage ak

(i.e. j is such that mak+j ≥
⌊mak

2

⌋

+ 1). Let M(r∗) = {r∗, ur∗

1 , . . . , ur∗

bmak
2 c}

be the set returned by MD(Mak
). As Mak+j ⊂ Mak

(by definition of the
sequence of withdrawals) and M(r∗) ⊆ Mak

with mak+j ≥
⌊mak

2

⌋

+ 1 and

|M(r∗)| =
⌊mak

2

⌋

+ 1, we have Mak+j ∩ M(r∗) 6= ∅. Thus, there exists

v ∈ Mak+j ∩ M(r∗). As v ∈ M(r∗), v = r∗ or v = ur∗

l , with l ≤
⌊mak

2

⌋

. As

r∗, ur∗

1 , . . . , ur∗

bmak
2 c are sorted by non decreasing value of their distance to

r∗ (see definition of Algorithm MD), we have

dG(r∗, v) ≤ dG

(

r∗, ur∗

bmak
2 c

)

(1)

Moreover, as Algorithm MD(Mak
) finds r∗ and M(r∗) such that

dG

(

r∗, ur∗

bmak
2 c

)

= min

{

dG

(

r, ur

bmak
2 c

)

: r ∈ Mak

}

, for every

r0 ∈ Mak+j ⊂ Mak
we have

dG

(

r∗, ur∗

bmak
2 c

)

≤ dG

(

r0, ur0

bmak
2 c

)

(2)

As mak+j ≥
⌊mak

2

⌋

+1 and as r0, ur0

1 , . . . , ur0

mak
−1 are sorted by non decreas-

ing value of their distance to r0, there exists ur0

l ∈ Mak+j with
⌊mak

2

⌋

≤ l ≤
mak+j − 1 such that

dG

(

r0, ur0

bmak
2 c

)

≤ dG

(

r0, ur0

l

)

(3)

By (1), (2), (3) and as r0 and ur0

l are in Mak+j , by definition of the diameter,
we obtain

∃v ∈ Mak+j ∩ M(r∗) : dG(r∗, v) ≤ DG(Mak+j) (4)

Let u0 ∈ Mak+j and v0 ∈ Mak+j be such that dTak+j
(u0, v0) = DTak+j

(Mak+j)
(where Tak+j is the tree spanning Mak+j built by CS at stage ak + j).
We have

DTak+j
(Mak+j) = dTak+j

(u0, v0) = dTak
(u0, v0)

(since, by definition of Algorithm CS,

we have Tak+j ⊆ Tak
)

≤ dTak
(u0, r∗) + dTak

(r∗, v0)

(by triangular inequality)

= dG(u0, r∗) + dG(r∗, v0)

(because Tak
is a shortest path tree rooted in r∗)

≤ dG(u0, v) + dG(v, r∗) + dG(r∗, v) + dG(v, v0)

(by triangular inequality, using vertex v of (4))

≤ 4DG(Mak+j)

(because v ∈ Mak+j , u0 ∈ Mak+j ,

v0 ∈ Mak+j and by (4))

≤ 4DT∗

ak+j
(Mak+j)

(because for every tree T spanning

a group M , DG(M) ≤ DT (M))

In conclusion, for every i, 0 ≤ i ≤ m0 − 1, we obtain DTi
(Mi) ≤ 4DT∗

i
(Mi). ut

2.3 CS leads to O(log i) critical stages

Theorem 2. Let G = (V, E, w) be a graph. For any sequence of withdrawals,
let T0, . . . , Ti (0 ≤ i ≤ m0 − 1) be the sequence of trees constructed by CS. We
have

]CS(T0, . . . , Ti) ≤ blog2(2i)c = O(log i)

Proof. Two cases may occur:

– If i < m0 −
⌊

m0

2

⌋

, by definition of CS, there is no rebuilding stage. Thus,
CS(T0, . . . , Ti) = 0.

– Otherwise, i ≥ m0 −
⌊

m0

2

⌋

≥ m0

2 and we obtain

m0 ≤ 2i (5)

Moreover, by definition of the sequence (ak) and CS, if there are p re-
buildings (that are critical stages), then p is such that

map+1 < m0 − i ≤ map
⇒ m0 − i ≤ m0

2p (by definiton of sequence (ak),
∀k, mak

≤ m0

2k)

⇒ m0 − i ≤ 2i
2p (by (5))

⇒ 1 ≤ 2i
2p (by definition, i ≤ m0 − 1)

⇒ p ≤ blog2(2i)c (because p is an integer)

⇒ p ≤ O(log i)
ut

3 Lower bound for the number of critical stages of any

algorithm

In this section, we prove that for any algorithm respecting the tree constraint
and the quality constraint, for any sufficiently large i, there exists a particular
sequence of withdrawals leading to at least Ω(log i) critical stages. To prove that,
we describe the graph G in Section 3.1. Then, we define the particular on-line
sequence of withdrawals in Section 3.2 and prove the main result in Section 3.3.

3.1 Description of the graph G

Let k, d, 0 ≤ k ≤ d and 3 ≤ p be any integer. We define graphs G
p
k = (V p

k , E
p
k , w

p
k)

recursively on k as follows:

– G
p
0 = (V p

0 , E
p
0 , w

p
0) is the cycle of length p such that ∀e ∈ E

p
0 , w

p
0(e) = 2d.

– ∀k, 1 ≤ k ≤ d, we define G
p
k = (V p

k , E
p
k , w

p
k) as follows. ∀v ∈ V

p
k−1, let Cv =

(V C
v , EC

v , wC
v) be a cycle of length p such that v ∈ V C

v ,
(

V C
v \{v}

)

∩V
p
k−1 = ∅

and wC
v (e) = 2d−k

pk .

G
p
k = (V p

k , E
p
k , w

p
k) is the graph such that:

• V
p
k = V

p
k−1 ∪

⋃

v∈V
p

k−1
V C

v

• E
p
k = E

p
k−1 ∪

⋃

v∈V
p

k−1
EC

v

• ∀e ∈ E
p
k−1, w

p
k(e) = w

p
k−1(e) and ∀e ∈ ⋃

v∈V
p

k−1
EC

v , w
p
k(e) = wC

v (e).

See Figure 1 for an illustration of G
p
k (with k = 2 and p = 4). We can now

PSfrag replacements

edge of weight 2d = 4

edge of weight 2
d−1

p
= 1

2

edge of weight 2
d−2

p2 = 1

16

v

cycle of level 2

G0(v)

Fig. 1. The graph G4

2

define the graph G = (V, E, w). Let c ≥ 1 be the constant corresponding to the
required level of quality and let d be a positive integer sufficiently large such that

i ≤
∣

∣

∣
V

d6c+2e
d

∣

∣

∣
− 1 (where i is the number of removed vertices and V

d6c+2e
d = M0

is the initial group). We set G = G
d6c+2e
d .

Definition of a cycle of level k.
We say that a cycle C = (V C , EC , w) (subgraph of G) is of level k (0 ≤ k ≤ d)

if each edge e ∈ EC has weight w(e) = 2d−k

pk . See Figure 1 for an illustration of

such cycle (Note that G4
2 is too small to be a possible graph of the form G

d6c+2e
d ,

but this is just an illustration).

Definition of the subgraphs Gk(v).
Let v be any vertex of the graph G (v ∈ V). Let k be the smallest index such
that Ck = (V C

k , EC
k , w) is the cycle of level k containing v (v ∈ V C

k). We define
Gk(v) = (Vk(v), Ek(v), w) the subgraph induced by every vertices and edges
which can be reached from vertex v by going through edges of weight strictly

less than 2d−k

pk (i.e. by going through edges of cycles of level strictly more than

k). See Figure 1 for an illustration of such subgraph.

3.2 Definition of the sequence of withdrawals M0 ⊃ · · · ⊃ Mi

Let A be any online algorithm respecting the tree and quality of level c con-
straints. We use an adaptive adversary to define the sequence of withdrawals in
the graph G = (V, E, w) defined above.

We first define a generic sequence of withdrawals of vertices. Note that we
do not specify each elementary stage of withdrawal, but only the “main” stages
interesting for our analysis (stages of the form i = α(k, b)). For every k ≥ 0, for
every b ∈ {0, 1}, for every i = α(k, b) (0 ≤ α(k, b) ≤ m0 − 1), let Ti be the tree
spanning Mi constructed by Algorithm A at stage i. Note that at each stage,
we have α(k, b) = |M0| − |Mα(k,b)| (0 ≤ α(k, b) ≤ m0 − 1). The sequence of
withdrawals is defined as follows. We set p = d6c + 2e.

Basic Cases:

– At stage α(0, 0) = 0, we have

Mα(0,0) = V

As Tα(0,0) is a tree spanning Mα(0,0), it is necessarily made up of, amongst
other things, all the edges of the cycle C0 = (V C

0 , EC
0 , w), except one

edge e0. Let v1
0 and v2

0 be the two vertices connected by e0. The adap-
tive adversary now removes (one by one) from Mα(0,0) all the vertices in
⋃

v∈V C
0 \{v1

0 ,v2
0}

V1(v) in order to obtain Mα(0,1).

– At stage α(0, 1), we have

Mα(0,1) = V1(v
1
0) ∪ V1(v

2
0)

The adaptive adversary now removes (one by one) from Mα(0,1) all the
vertices in V1(v

1
0) in order to obtain Mα(1,0) (note that the adversary

chooses arbitrarily to remove all the vertices in V1(v
1
0) rather than in

V1(v
2
0)).

Main Cases:

– At stage α(k, 0). Let Ck = (V C
k , EC

k , w) be the cycle of level k such that
V C

k ⊂ Mα(k−1,1). We have

Mα(k,0) =
⋃

v∈V C
k

Vk+1(v)

As Tα(k,0) is a tree spanning Mα(k,0), it is necessarily made up of, amongst
other things, all the edges of the cycle Ck, except one edge ek. Let v1

k and
v2

k be the two vertices connected by ek. The adaptive adversary now re-
moves (one by one) from Mα(k,0) all the vertices in

⋃

v∈V C
k

\{v1
k
,v2

k
} Vk+1(v)

in order to obtain Mα(k,1).

– At stage α(k, 1), we have

Mα(k,1) = Vk+1(v
1
k) ∪ Vk+1(v

2
k)

The adaptive adversary now removes (one by one) from Mα(k,1) all the
vertices in Vk+1(v

1
k) in order to obtain Mα(k+1,0) (note that the adversary

chooses arbitrarily to remove all the vertices in Vk+1(v
1
k) rather than in

Vk+1(v
2
k)).

We specify with α(k, b) only the “main” stages of the sequence of withdrawals,
corresponding to the stages where the adaptive adversary has to make a choice.
Indeed, between two successive “main” stages α(k, 0) and α(k, 1) (resp. α(k, 1)
and α(k + 1, 0)), the vertices are removed one by one in any order. Note that
we stop removing vertices after the last “main” stage, when exactly i vertices
have been removed. See Figure 2 for an illustration of the six first “main” stages
α(0, 0), α(0, 1), α(1, 0), α(1, 1), α(2, 0) and α(2, 1), where the successive trees
are built by an arbitrary algorithm (Note that G4

2 is too small to be a possible

graph of the form G
d6c+2e
d , but this figure is just an illustration of a sequence of

withdrawals).

PSfrag replacements

v1

0 v2

0

α(0, 0)

v1

0 v2

0

α(0, 1)

v1

1

v1

1

v2

1

v2

1

α(1, 0)

v1

1

v2

1
α(1, 1)

v1

2 v2

2

α(2, 0)

v1

2 v2

2

α(2, 1)

Fig. 2. Illustration of the sequence of withdrawals on graph G4

2

3.3 Any algorithm leads to Ω(log i) critical stages

Lemmas 1 and 2 are preliminary technical results (Lemma 1 is trivial. A proof
can be found in [5]).

Lemma 1 Let G = (V, E, w) be any graph. For every M ⊆ V , there exists a
tree T off spanning M such that

DT off (M) ≤ 2DG(M)

The following Lemma is central in our analysis. It describes sub-sequences of
withdrawals where at least one rebuilding/critical stage occurs.

Lemma 2 Let c ≥ 1 be any constant (representing the required level of quality).
For every k ≥ 0, let T ∗

α(k,0), T
∗
α(k,0)+1, . . . , T

∗
α(k,1) be the trees respectively span-

ning Mα(k,0), Mα(k,0)+1, . . . , Mα(k,1) optimal for the diameter and let Tα(k,0),

Tα(k,0)+1, . . . , Tα(k,1) be any trees respectively spanning Mα(k,0), Mα(k,0)+1, . . . ,

Mα(k,1). If for every i, α(k, 0) ≤ i ≤ α(k, 1), we have DTi
(Mi) ≤ c · DT∗

i
(Mi),

then

]CS(Tα(k,0), Tα(k,0)+1, . . . , Tα(k,1)) ≥ 1.

Proof. We prove Lemma 2 by contradiction. Suppose that there exists k ≥ 0
such that for every i, α(k, 0) ≤ i ≤ α(k, 1), the quality constraint is satisfied and
there is no critical stage, i.e. there exists k ≥ 0 such that for every i, α(k, 0) ≤ i ≤
α(k, 1), we have DTi

(Mi) ≤ c ·DT∗

i
(Mi) and Tα(k,0) ⊇ Tα(k,0)+1 ⊇ · · · ⊇ Tα(k,1).

These trees are made up of, amongst other things, all edges of the cycle Ck ⊂
G, except one edge, noted ek. We insist on the fact that, because there is no criti-
cal stage, this edge ek is always the same in all trees Tα(k,0), Tα(k,0)+1, . . . , Tα(k,1).

Let us focus now on stage α(k, 1), where Mα(k,1) = Vk+1(v
1
k)∪ Vk+1(v

2
k). We

lower bound DTα(k,1)

(

Mα(k,1)

)

and upper bound DT∗

α(k,1)

(

Mα(k,1)

)

to show that

at this particular stage, the quality constraint is not satisfied. This leads to the
wanted contradiction and proves the Lemma.

– Lower bound of DTα(k,1)

(

Mα(k,1)

)

.

As the two extremities v1
k and v2

k of the edge ek are separated by a path

made of p − 1 = d6c + 1e edges of weight 2d−k

pk in Tα(k,1) we have

DTα(k,1)

(

Mα(k,1)

)

≥ (p − 1)
2d−k

pk
≥ (6c + 1)

2d−k

pk
(6)

– Upper bound of DT∗

α(k,1)

(

Mα(k,1)

)

.

In order to upper bound DT∗

α(k,1)

(

Mα(k,1)

)

, we first upper bound DG

(

Mα(k,1)

)

.

By construction of the graph G, two cases may occur:

1. If k = d, there is no cycle of level k + 1 in G. Thus, we have

DG

(

Mα(k,1)

)

= w(ek) =
2d−k

pk
≤ 3

2d−k

pk

2. If k ≤ d − 1, we have

DG

(

Mα(k,1)

)

≤ DG

(

Vk+1(v
1
k)

)

+ dG(v1
k, v2

k) + DG

(

Vk+1(v
2
k)

)

≤
∑

e∈Ek+1(v1
k
)

w(e) + w(ek) +
∑

e∈Ek+1(v2
k
)

w(e)

(because for every graph or subgraph

G = (V, E, w), DG(V) ≤
∑

e∈E

w(e))

=

d
∑

l=k+1

2d−l

pl
pl−k +

2d−k

pk
+

d
∑

l=k+1

2d−l

pl
pl−k

≤ 2

pk

d
∑

l=k+1

2d−l +
2d−k

pk
≤ 2

2d−k

pk
+

2d−k

pk
= 3

2d−k

pk

Moreover, by Lemma 1, there exists a tree T off
α(k,1) spanning Mα(k,1) such that

DT off
α(k,1)

(Mα(k,1)) ≤ 2DG(Mα(k,1)). Thus, as T ∗
α(k,1) is a tree spanning Mα(k,1)

optimal for the diameter, we have

DT∗

α(k,1)
(Mα(k,1)) ≤ DT off

α(k,1)
(Mα(k,1)) ≤ 2DG(Mα(k,1)) ≤ 6

2d−k

pk
(7)

By (6) and (7), we obtain

DTα(k,1)

(

Mα(k,1)

)

DT∗

α(k,1)

(

Mα(k,1)

) ≥
(6c + 1) 2d−k

pk

6 2d−k

pk

≥ c +
1

6
> c

This result contradicts the assumption that the quality constraint is satisfied.
Thus, Lemma 2 is proved by contradiction. ut

The following Theorem shows that if the tree constraint and the quality con-
straint are satisfied, any algorithm leads to Ω(log i) critical stages, where i is
the number of removed vertices.

Theorem 3. Let c ≥ 1 be any constant. For any algorithm A, for every suf-
ficiently large i, there exists a graph G0, there exists M0 ⊃ · · · ⊃ Mi, such
that if Algorithm A returns a sequence of trees T0, . . . , Ti respectively spanning
M0 ⊃ · · · ⊃ Mi respecting the quality constraint of level c, then

]CS(T0, . . . , Ti) = Ω(log i)

Proof. Let c ≥ 1 be any constant. We set p = d6c + 2e. Let i be the number
of removed vertices. There exists d and G0 (where G0 is graph G, defined in
Section 3.1), there exists M0 ⊃ · · · ⊃ Mi (the sequence defined in Section 3.2)
such that

α(d − 1, 1) ≤ i ≤ α(d, 1) ≤ |V | = pd

Thus, we have i ≤ pd ⇒ logp i ≤ d ⇒ logp i ≤ d. And as p = d6c + 2e
is a constant, we have d ≥ Ω(log i). Moreover, by Lemma 2, we have



















]CS(Tα(0,0), Tα(0,0)+1, . . . , Tα(0,1)) ≥ 1
]CS(Tα(1,0), Tα(1,0)+1, . . . , Tα(1,1)) ≥ 1

...
]CS(Tα(d−1,0), Tα(d−1,0)+1, . . . , Tα(d−1,1)) ≥ 1

⇒]CS(Tα(0,0), . . . , Tα(d−1,1)) ≥ d

⇒]CS(T0, . . . , Ti) ≥ d (because i ≥ α(d − 1, 1))

⇒]CS(T0, . . . , Ti) ≥ Ω(log i) (because d ≥ Ω(log i))

ut
Theorem 2 and Theorem 3 show that Algorithm CS is worst case optimal in
order of magnitude for the number of critical stages criterion.

4 Conclusion

We have proposed an algorithm, called CS, solving an on-line covering problem
of members by respecting the following quality constraint: For each stage of
withdrawal, the diameter between members induced by the built tree is at most
a constant time the best possible value. Moreover, our algorithm is easy to use.
Indeed, for a stage of withdrawal, either it breaks the tree and rebuilds a new
one which is a tree of shortest paths (only O(log i) times, where i is the number
of removed members), or it just updates the current tree by removing useless
branches (in all the other cases).

Moreover, our algorithm is worst case optimal in order of magnitude for
the number of critical stages: It leads to O(log i) critical stages and we showed
that any algorithm leads to Ω(log i) critical stages in the worst case. We also
have proved that the number of elementary changes per stage (see equivalent
definition in [4]) is constant in average. Due to space limitation, we do not include
these results. Note that we only consider the decremental problem because the
incremental problem (adding new members in the current tree) considering the
diameter as quality constraint is trivial. Indeed, plugging each new member
with a shortest path to the initial member leads to 0 critical stage with a level
of quality c = 2. We also have results with another objective function than
the diameter. Indeed, concerning the average distance between members of the
groups, we proved similar results in [7] for the incremental version of the problem.
We are now currently working on mixing additions and withdrawals.

Acknowledgments

The authors wish to thank the anonymous referees for their very useful com-
ments.

References

1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti Spac-

camela, and M. Protasi, Complexity and approximation, Springer, 1999.
2. A. Borodin and R. El-Yaniv, Online computation and competitive analysis, Cam-

bridge University press, 1998.
3. D. Hochbaum, Approximation algorithms for NP-hard problems, PWS publishing

compagny, 1997.
4. M. Imase and B. Waxman, Dynamic steiner tree problem, SIAM J. Discr. Math.,

4 (1991), pp. 369–384.
5. C. Laforest, A good balance between weight and distances for multipoint trees, in

International Conference On Principles Of DIstributed Systems 2002, pp. 195–204.
6. S. Raghavan, G. Manimaran, and C. S. R. Murthy, A rearrangeable algorithm

for the construction of delay-constrained dynamic multicast trees, IEEE/ACM (SIG-
COMM), ACM Press, 7 (1999).

7. N. Thibault and C. Laforest, An optimal rebuilding strategy for an incremental

tree problem, submitted in 2004 to journal of interconnection networks.
8. B. Waxman, Routing of multipoint connections, IEEE Journal on Selected Areas

in Communications, 6 (1988), pp. 1617–1622.

