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An optimal rebuilding strategy for a decremental tree problem

This paper is devoted to the following decremental problem. Initially, a graph and a distinguished subset of vertices, called initial group, are given. This group is connected by an initial tree. The decremental part of the input is given by an on-line sequence of withdrawals of vertices of the initial group, removed on-line one after one. The goal is to keep connected each successive group by a tree, satisfying a quality constraint: The maximum distance (called diameter ) in each constructed tree must be kept in a given range compared to the best possible one. Under this quality constraint, our objective is to minimize the number of critical stages of the sequence of constructed trees. We call "critical" a stage where the current tree is rebuilt. We propose a strategy leading to at most O(log i) critical stages (i is the number of removed members). We also prove that there exist situations where Ω(log i) critical stages are necessary to any algorithm to maintain the quality constraint. Our strategy is then worst case optimal in order of magnitude.

A lot of works have been devoted to the construction of trees spanning a given set of vertices in a graph. For example the Steiner tree problem, where the goal is to span a set (called group) of distinguished vertices (called members) with a minimum weight tree, has been extensively studied. As the problem is NPcomplete, numerous approximation algorithms have been designed (see [START_REF] Ausiello | Complexity and approximation[END_REF][START_REF] Hochbaum | Approximation algorithms for NP-hard problems[END_REF] for example). In [START_REF] Waxman | Routing of multipoint connections[END_REF], Waxman was the first author to present the on-line version of this problem in which vertices to add in, or to remove from, the current group revealed one by one (see [START_REF] Borodin | Online computation and competitive analysis[END_REF] references on on-line problems). In this first paper, he divides the problem into two categories: A model in which "heavy" changes of the current tree are not allowed and a model in which changes are allowed. Then, Imase and Waxman proposed in [START_REF] Imase | Dynamic steiner tree problem[END_REF] two different strategies corresponding to the two models above. In the first one the tree is just incremented or decremented and the degradation of weight is evaluated, whereas in the second one they allow changes in the current tree to maintain a guaranty on the weight. At each stage, they prove that they construct with the first strategy a tree whose weight is at a logarithmic ratio compared to the optimal one (i.e. the weight of a Steiner tree of the current group), and that they construct with the second strategy a tree whose weight is at a constant ratio compared to the optimal one. They give for the second strategy an upper bound of O( √ i) on the number of elementary changes per stage (where i is the number of new members). However, the tree can potentially be changed at each stage; this means that each stage is potentially what we call later a critical stage.

In [START_REF] Raghavan | A rearrangeable algorithm for the construction of delay-constrained dynamic multicast trees[END_REF], a very similar on-line Steiner tree problem with a delay constraint from one node to the others is studied. But the authors only evaluate their method with simulations, and they give no upper bound for the different competitive ratios. Note that in [START_REF] Imase | Dynamic steiner tree problem[END_REF][START_REF] Raghavan | A rearrangeable algorithm for the construction of delay-constrained dynamic multicast trees[END_REF], only the number of elementary changes is taken into account to measure the level of damage due to the allowed changes in the current tree.

In this paper we are concerned with a decremental group problem where the members to remove are revealed on-line one by one. However, we do not focus on the same objective function (the weight of the tree) but on a different measure: The diameter of the current group induced by the current tree. Note that we consider here a model in which changes are allowed because it can easily be shown that any on-line algorithm without critical stage cannot guarantee a constant competitive ratio (for the diameter objective function we consider in this paper). That is why we fix here a "relative budget", called quality constraint, on the diameter and we propose an algorithm minimizing the number of critical stages necessary to guarantee this budget constraint at each stage. Note also that we have proved that our algorithm leads to a constant number of elementary changes per stage in average (but we do not give in this paper the definitions and the proof associated to this problem because of the limitation on the number of pages).

A motivation for such model and objective function is the construction of connection structures for groups of members in networks. An important QoS parameter is latency that is expressed here in terms of maximum distance between users. This maximum distance must be guaranteed (our quality constraint). However, this must be done by minimizing the number of critical stages since they induce perturbations in communications in the current group (implying many re-routing operations between members in the current tree).

In Section 1 we describe more formally our problem. More precisely, in Subsection 1.1 we describe and motivate the constraints (namely the tree and quality constraints) that must be satisfied at each stage. In Subsection 1.2 we give the definitions of a critical stage. In Subsection 2.1 we propose an algorithm satisfying the construction constraints (in Section 2.2). In Subsection 2.3 we prove that our algorithm leads to at most O(log i) critical stages (where i is the number of removed members). We prove in Section 3 that our strategy is worst case optimal in order of magnitude for the number of critical stages criterion by constructing a scenario in which at least Ω(log i) critical stages are necessary for any algorithm to satisfy the quality constraint. These results show that our algorithm is worst case optimal for the number of critical stages.

Definitions and notations

Let G = (V, E, w) be any connected weighted graph representing a network. V is the set of vertices (modeling the nodes of the network), E the set of edges (modeling the set of physical links) and w a positive weight function of the edges (modeling the length of the edges). We denote by d G (u, v) the distance between u and v in G, i.e. the sum of the weights of the edges of a minimum weight path between u and v in G.

Definition 1 (Diameter of a group M ). Let G = (V, E, w) be a graph and let M ⊆ V be a group. We denote the diameter of M in G by

D G (M ) = max{d G (u, v) : u, v ∈ M }.

Construction constraints

In our problem, the graph G = (V, E, w) and an initial group M 0 ⊆ V are given (with M 0 = ∅). For example, in a meeting on network (called net-meeting) this initial group M 0 represents the set of members present at the beginning of the meeting. A structure, noted T 0 = (V 0 , E 0 ), must be created to connect the

members of M 0 (T 0 spans M 0 in G : M 0 ⊆ V 0 ⊆ V , E 0 ⊆ E).
However, members may leave the meeting. These members must be removed from the current group (we underline that they are not removed from the underlying graph G). Let m 0 = |M 0 | be the size of the initial group. Let u 1 , u 2 , . . . , u i , . . . (i ≤ m 0 -1) be the sequence of members to remove. For every i, 1 ≤ i ≤ m 0 -1, we denote by M i = M i-1 \{u i } the i th group, and by m i = |M i | its size. Thus, starting from the initial connection structure T 0 for M 0 , at each stage of withdrawal i, the member u i is removed by updating the current structure T i-1 (spanning M i-1 ) to obtain T i spanning M i .

Note that as the members to remove are revealed one by one, we are in an on-line model. It means that we do not know the future: Neither in which order the members are removed, nor what is the set of members to remove. Hence, each stage can potentially be the last one; this explains why we are interested by giving guarantees at each stage. We need the following definition that presents the best possible connection tree for the group M k , minimizing the diameter parameter.

Definition 2 (Optimal tree). Let G = (V, E, w) be a graph. For every i, 0 ≤ i ≤ m 0 -1, we denote by T * i a tree satisfying

D T * i (M i ) = min{D T (M i ) : T tree spanning M i }.
We are now ready to give the two constraints that each current structure T i must satisfy.

-The tree constraint: For every i, 0 ≤ i ≤ m 0 -1, T i must be a tree, spanning M i , in which all leaves are in M i (we call that a pruned tree). -The quality constraint: Let c ≥ 1 be any fixed constant representing the required level of quality. For every i, 0 ≤ i ≤ m 0 -1, we must have

D Ti (M i ) ≤ c • D T * i (M i ).
As in a net-meeting the current structure T i is used to support the communications between members of M i , the tree constraint is set in order to simplify the mechanisms of routing and duplication of information in T i . Indeed, there is only one route between any pair of members in a tree; moreover as there is no cycle, a simple flooding process can be used to broadcast information from any member. This flooding naturally ends at the leaves that are members (because trees are pruned); there is no need of costly process to control it.

The quality constraint of level c is set to guarantee that the induced diameter of the current group in T i is not too large compared to the best possible diameter in T * i (at most c times the best possible diameter).

In the rest of the paper we say that an algorithm solves our problem if, for any on-line sequence of successive groups M 0 ⊃ • • • ⊃ M i , it returns a sequence of trees T 0 , . . . , T i (T i spanning M i ) satisfying the tree and quality constraints.

The criterion to minimize

In this subsection we present the cost associated with any algorithm satisfying the tree and quality constraints. We first need the following definitions.

Definition 3 (Critical stage).

Let A be an algorithm solving our problem.

At stage i, 1 ≤ i ≤ m 0 -1, Algorithm A builds T i = (V i , E i ) from T i-1 = (V i-1 , E i-1 ). Stage i is a critical stage if E i E i-1 .
We distinguish critical stages from other stages since they generate a lot of perturbations. Indeed, if i is a critical stage, the communication routes in T i-1 between members already in the current group M i-1 have to be changed in T i . Potentially all the routing tables of the connecting nodes must be modified. This generates a heavy traffic to update them. Moreover the current communications between members of M i-1 initiated before the changes may be interrupted. That is why the number of critical stages must be minimized.

On the other hand, the withdrawal of a member by just removing useless branches in the tree generates only local changes and is not considered as a critical stage (since in this case E i ⊆ E i-1 ). The update of the routing can just be done by broadcasting the information of the departure of the leaving member in the new tree T i . This does not create any re-routing between the other members. The aim of this paper is to minimize the total number CS(T 0 , . . . , T i ) of critical stages while respecting the tree and the quality constraints.

Our algorithm CS

Definition of Algorithm CS (Critical Stages)

To define Algorithm CS, we need the following algorithm, called MD for Minimum Distance. We denote by MD(M ) Algorithm MD applied to group M of size m to find a particular group M (r * ) of size m 2 + 1 and what we call its associated root.

Algorithm MD(M ) 1. For each r ∈ M , sort the m vertices of M by non decreasing value of their distance to r:

r, u r 1 , . . . , u r m-1 (d G (r, u r 1 ) ≤ d G (r, u r 2 ) ≤ • • • ≤ d G (r, u r m-1 )). Let M (r) = r, u r 1 , . . . , u r m 2 .
2. Return r * and its associated group M (r * ) such that

d G r * , u r * m 2 = min d G r, u r m 2 : r ∈ M
Note that for all r ∈ M , the vertices u r 1 , . . . , u r m-1 can be sorted by non decreasing value of d G (r, u r k ) and the associated group M (r) can be constructed in polynomial time by using Dijkstra's algorithm. Thus, Algorithm MD(M ) finds M (r * ) and its associated root r * in polynomial time.

The main idea of Algorithm CS is to define particular stages numbers, called rebuilding stages during which we (totally) reconstruct the current tree (to match the quality constraint). Between two successive rebuilding stages, a member is leaving by just removing the dead branches of the current tree (in order to maintain at each stage a pruned tree to satisfy the tree constraint).

The following sequence (a k ) defines the rebuilding stages of our algorithm: m a0 = m 0 is the size of the initial group M 0 and for every a k (k ≥ 1),

m a k = ma k-1 2
is the size of the group M a k .

Algorithm CS

-Initially, at stage a 0 = 0: CS builds a shortest path tree spanning the first group M 0 , rooted in r 0 ∈ M 0 , where r 0 ∈ M 0 is the root found by MD(M 0 ). -After the last rebuilding stage a k :

Let M a k +j be the current group and let u a k +j be the j th member revealed to be removed since the last rebuilding stage a k .

• If m a k +j > ma k 2 (corresponding to j < m a k - ma k 2 
): Update the tree T a k +j-1 = (V a k +j-1 , E a k +j-1 ) by pruning potential useless branches. We obtain the pruned tree

T a k +j = (V a k +j , E a k +j ) spanning M a k +j satisfying E a k +j ⊆ E a k +j-1 . • Otherwise, we have m a k +j = ma k 2 (corresponding to j = m a k - ma k 2 
): This is a rebuilding stage and we have m a k +j = ma k 2

= m a k+1 . Break the current tree and construct T a k+1 , a shortest path tree spanning M a k+1 , rooted in r a k+1 (where r a k+1 ∈ M a k+1 is the root found by MD(M a k+1 )). Thus, a k+1 is the new last rebuilding stage.

The rebuilding stages of CS can be critical stages (because the current tree is broken and rebuilt). The other stages are non critical because the algorithm only removes from the current tree useless branches to obtain the new tree.

Note that this algorithm is polynomial because it uses Algorithm MD (MD is polynomial) and because updating a tree by removing useless branches can be done in polynomial time.

Note also that by construction, at each stage, the tree constraint is satisfied. Section 2.2 shows that it also respects the quality constraint for a level of quality c = 4.

CS respects the quality constraint

Theorem 1 shows that CS respects the quality constraint with a level of quality c = 4.

Theorem 1. Let G = (V, E, w) be a graph. For any sequence of withdrawals, at every stage i, 0 ≤ i ≤ m 0 -1 (i is the number of removed members), let T * i be an optimal (off-line) tree spanning M i for the diameter. CS respects the quality constraint with a level of quality c = 4, i.e. for every i, 0 ≤ i ≤ m 0 -1, we have

D Ti (M i ) ≤ 4D T * i (M i ). Proof. -If i is a stage of rebuilding. In this case, i = a k . Let u 0 , v 0 ∈ M a k be such that d Ta k (u 0 , v 0 ) = D Ta k (M a k ) (
where T a k is the tree spanning M a k rooted in r * built by CS at stage a k ). We have

D Ta k (M a k ) = d Ta k (u 0 , v 0 ) ≤ d Ta k (u 0 , r * ) + d Ta k (r * , v 0 ) (by triangular inequality) = d G (u 0 , r * ) + d G (r * , v 0 ) ≤ 2D G (M a k ) (because T a k is a shortest path tree rooted in r * and because u 0 , v 0 , r * ∈ M a k ) ≤ 2D T * a k (M a k ) ≤ 4D T * a k (M a k ) (because for every tree T spanning a group M , D G (M ) ≤ D T (M )) -Otherwise a k is not a stage of rebuilding. Let j, 1 ≤ j < m a k - ma k 2
be the number of removed vertices after the last rebuilding, happening at stage a k (i.e. j is such that m a k +j ≥

ma k 2 + 1). Let M (r * ) = {r * , u r * 1 , . . . , u r * ma k 2 }
be the set returned by MD(M a k ). As M a k +j ⊂ M a k (by definition of the sequence of withdrawals) and

M (r * ) ⊆ M a k with m a k +j ≥ ma k 2 + 1 and |M (r * )| = ma k 2 + 1, we have M a k +j ∩ M (r * ) = ∅. Thus, there exists v ∈ M a k +j ∩ M (r * ). As v ∈ M (r * ), v = r * or v = u r * l , with l ≤ ma k 2 . As r * , u r * 1 , . . . , u r * ma k 2
are sorted by non decreasing value of their distance to r * (see definition of Algorithm MD), we have

d G (r * , v) ≤ d G r * , u r * ma k 2 (1) 
Moreover, as Algorithm MD(M a k ) finds r * and M (r * ) such that

d G r * , u r * ma k 2 = min d G r, u r ma k 2 : r ∈ M a k , for every r 0 ∈ M a k +j ⊂ M a k we have d G r * , u r * ma k 2 ≤ d G r 0 , u r 0 ma k 2 (2) 
As m a k +j ≥ ma k 2

+ 1 and as r 0 , u r 0 1 , . . . , u r 0 ma k -1 are sorted by non decreasing value of their distance to r 0 , there exists u r 0 l ∈ M a k +j with

ma k 2 ≤ l ≤ m a k +j -1 such that d G r 0 , u r 0 ma k 2 ≤ d G r 0 , u r 0 l (3) 
By ( 1), ( 2), (3) and as r 0 and u r 0 l are in M a k +j , by definition of the diameter, we obtain

∃v ∈ M a k +j ∩ M (r * ) : d G (r * , v) ≤ D G (M a k +j ) (4) Let u 0 ∈ M a k +j and v 0 ∈ M a k +j be such that d Ta k +j (u 0 , v 0 ) = D Ta k +j (M a k +j )
(where T a k +j is the tree spanning M a k +j built by CS at stage a k + j).

We have

D Ta k +j (M a k +j ) = d Ta k +j (u 0 , v 0 ) = d Ta k (u 0 , v 0 ) (since, by definition of Algorithm CS, we have T a k +j ⊆ T a k ) ≤ d Ta k (u 0 , r * ) + d Ta k (r * , v 0 ) (by triangular inequality) = d G (u 0 , r * ) + d G (r * , v 0 ) (because T a k is a shortest path tree rooted in r * ) ≤ d G (u 0 , v) + d G (v, r * ) + d G (r * , v) + d G (v, v 0 ) (by triangular inequality, using vertex v of (4)) ≤ 4D G (M a k +j ) (because v ∈ M a k +j , u 0 ∈ M a k +j , v 0 ∈ M a k +j and by (4)) ≤ 4D T * a k +j (M a k +j ) (because for every tree T spanning a group M , D G (M ) ≤ D T (M )) In conclusion, for every i, 0 ≤ i ≤ m 0 -1, we obtain D Ti (M i ) ≤ 4D T * i (M i ).

CS leads to O(log i) critical stages

Theorem 2. Let G = (V, E, w) be a graph. For any sequence of withdrawals, let T 0 , . . . , T i (0 ≤ i ≤ m 0 -1) be the sequence of trees constructed by CS. We have CS(T 0 , . . . , T i ) ≤ log 2 (2i) = O(log i)

Proof. Two cases may occur:

-If i < m 0 -m0 2 
, by definition of CS, there is no rebuilding stage. Thus, CS(T 0 , . . . , T

i ) = 0. -Otherwise, i ≥ m 0 -m0 2 ≥ m0
2 and we obtain

m 0 ≤ 2i (5) 
Moreover, by definition of the sequence (a k ) and CS, if there are p rebuildings (that are critical stages), then p is such that

m ap+1 < m 0 -i ≤ m ap ⇒ m 0 -i ≤ m0 2 p (by definiton of sequence (a k ), ∀k, m a k ≤ m0 2 k ) ⇒ m 0 -i ≤ 2i 2 p
(by ( 5))

⇒ 1 ≤ 2i 2 p (by definition, i ≤ m 0 -1) ⇒ p ≤ log 2 (2i) (because p is an integer) ⇒ p ≤ O(log i)

Lower bound for the number of critical stages of any algorithm

In this section, we prove that for any algorithm respecting the tree constraint and the quality constraint, for any sufficiently large i, there exists a particular sequence of withdrawals leading to at least Ω(log i) critical stages. To prove that, we describe the graph G in Section 3.1. Then, we define the particular on-line sequence of withdrawals in Section 3.2 and prove the main result in Section 3.3.

Description of the graph G

Let k, d, 0 ≤ k ≤ d and 3 ≤ p be any integer. We define graphs G p k = (V p k , E p k , w p k ) recursively on k as follows:

-G p 0 = (V p 0 , E p 0 , w p 0 ) is the cycle of length p such that ∀e ∈ E p 0 , w p 0 (e) = 2 d . -∀k, 1 ≤ k ≤ d, we define G p k = (V p k , E p k , w p k ) as follows. ∀v ∈ V p k-1 , let C v = (V C v , E C v , w C v ) be a cycle of length p such that v ∈ V C v , V C v \{v} ∩ V p k-1 = ∅ and w C v (e) = 2 d-k p k . G p k = (V p k , E p k , w p k )
is the graph such that:

• V p k = V p k-1 ∪ v∈V p k-1 V C v • E p k = E p k-1 ∪ v∈V p k-1 E C v • ∀e ∈ E p k-1 , w p k (e) = w p k-1 (e) and ∀e ∈ v∈V p k-1 E C v , w p k (e) = w C v (e).
See Figure 1 for an illustration of G p k (with k = 2 and p = 4). We can now 

= (V C , E C , w) (subgraph of G) is of level k (0 ≤ k ≤ d) if each edge e ∈ E C has weight w(e) = 2 d-k
p k . See Figure 1 for an illustration of such cycle (Note that G 4 2 is too small to be a possible graph of the form G 6c+2 d , but this is just an illustration). w) the subgraph induced by every vertices and edges which can be reached from vertex v by going through edges of weight strictly less than 2 d-k p k (i.e. by going through edges of cycles of level strictly more than k). See Figure 1 for an illustration of such subgraph.

Definition of the subgraphs G

k (v). Let v be any vertex of the graph G (v ∈ V ). Let k be the smallest index such that C k = (V C k , E C k , w) is the cycle of level k containing v (v ∈ V C k ). We define G k (v) = (V k (v), E k (v),

Definition of the sequence of withdrawals

M 0 ⊃ • • • ⊃ M i
Let A be any online algorithm respecting the tree and quality of level c constraints. We use an adaptive adversary to define the sequence of withdrawals in the graph G = (V, E, w) defined above.

We first define a generic sequence of withdrawals of vertices. Note that we do not specify each elementary stage of withdrawal, but only the "main" stages interesting for our analysis (stages of the form i = α(k, b)). For every k ≥ 0, for every b ∈ {0, 1}, for every

i = α(k, b) (0 ≤ α(k, b) ≤ m 0 -1), let T i be the tree spanning M i constructed by Algorithm A at stage i. Note that at each stage, we have α(k, b) = |M 0 | -|M α(k,b) | (0 ≤ α(k, b) ≤ m 0 -1)
. The sequence of withdrawals is defined as follows. We set p = 6c + 2 .

Basic Cases:

-At stage α(0, 0) = 0, we have

M α(0,0) = V
As T α(0,0) is a tree spanning M α(0,0) , it is necessarily made up of, amongst other things, all the edges of the cycle C 0 = (V C 0 , E C 0 , w), except one edge e 0 . Let v 1 0 and v 2 0 be the two vertices connected by e 0 . The adaptive adversary now removes (one by one) from M α(0,0) all the vertices in

v∈V C 0 \{v 1 0 ,v 2 0 } V 1 (v) in order to obtain M α(0,1) .
-At stage α(0, 1), we have

M α(0,1) = V 1 (v 1 0 ) ∪ V 1 (v 2 0 )
The adaptive adversary now removes (one by one) from M α(0,1) all the vertices in V 1 (v 1 0 ) in order to obtain M α(1,0) (note that the adversary chooses arbitrarily to remove all the vertices in

V 1 (v 1 0 ) rather than in V 1 (v 2 0 )).
Main Cases:

-At stage α(k, 0). Let C k = (V C k , E C k , w) be the cycle of level k such that V C k ⊂ M α(k-1,1)
. We have

M α(k,0) = v∈V C k V k+1 (v)
As T α(k,0) is a tree spanning M α(k,0) , it is necessarily made up of, amongst other things, all the edges of the cycle C k , except one edge e k . Let v 1 k and v 2 k be the two vertices connected by e k . The adaptive adversary now removes (one by one) from M α(k,0) all the vertices in v∈V

C k \{v 1 k ,v 2 k } V k+1 (v) in order to obtain M α(k,1) .
-At stage α(k, 1), we have

M α(k,1) = V k+1 (v 1 k ) ∪ V k+1 (v 2 
k ) The adaptive adversary now removes (one by one) from M α(k,1) all the vertices in V k+1 (v 1 k ) in order to obtain M α(k+1,0) (note that the adversary chooses arbitrarily to remove all the vertices in V k+1 (v 1 k ) rather than in V k+1 (v 2 k )). We specify with α(k, b) only the "main" stages of the sequence of withdrawals, corresponding to the stages where the adaptive adversary has to make a choice. Indeed, between two successive "main" stages α(k, 0) and α(k, 1) (resp. α(k, 1) and α(k + 1, 0)), the vertices are removed one by one in any order. Note that we stop removing vertices after the last "main" stage, when exactly i vertices have been removed. See Figure 2 for an illustration of the six first "main" stages α(0, 0), α(0, 1), α(1, 0), α(1, 1), α(2, 0) and α(2, 1), where the successive trees are built by an arbitrary algorithm (Note that G 4 2 is too small to be a possible graph of the form G 6c+2 d , but this figure is just an illustration of a sequence of withdrawals).
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Any algorithm leads to Ω(log i) critical stages

Lemmas 1 and 2 are preliminary technical results (Lemma 1 is trivial. A proof can be found in [START_REF] Laforest | A good balance between weight and distances for multipoint trees[END_REF]).

Lemma 1 Let G = (V, E, w) be any graph. For every M ⊆ V , there exists a tree T off spanning M such that

D T off (M ) ≤ 2D G (M )
The following Lemma is central in our analysis. It describes sub-sequences of withdrawals where at least one rebuilding/critical stage occurs.

Lemma 2 Let c ≥ 1 be any constant (representing the required level of quality).

For every k ≥ 0, let T * α(k,0) , T * α(k,0)+1 , . . . , T * α(k,1) be the trees respectively spanning M α(k,0) , M α(k,0)+1 , . . . , M α(k,1) optimal for the diameter and let T α(k,0) , T α(k,0)+1 , . . . , T α(k,1) be any trees respectively spanning M α(k,0) , M α(k,0)+1 , . . . , M α(k,1) . If for every i, α(k, 0) ≤ i ≤ α(k, 1), we have

D Ti (M i ) ≤ c • D T * i (M i ), then CS(T α(k,0) , T α(k,0)+1 , . . . , T α(k,1) ) ≥ 1.
Proof. We prove Lemma 2 by contradiction. Suppose that there exists k ≥ 0 such that for every i, α(k, 0) ≤ i ≤ α(k, 1), the quality constraint is satisfied and there is no critical stage, i.e. there exists k ≥ 0 such that for every i, α(k, 0)

≤ i ≤ α(k, 1), we have D Ti (M i ) ≤ c • D T * i (M i ) and T α(k,0) ⊇ T α(k,0)+1 ⊇ • • • ⊇ T α(k,1
) . These trees are made up of, amongst other things, all edges of the cycle C k ⊂ G, except one edge, noted e k . We insist on the fact that, because there is no critical stage, this edge e k is always the same in all trees T α(k,0) , T α(k,0)+1 , . . . , T α(k,1) .

Let us focus now on stage α(k, 1), where

M α(k,1) = V k+1 (v 1 k ) ∪ V k+1 (v 2 k )
. We lower bound D T α(k,1) M α(k,1) and upper bound D T * α(k,1) M α(k,1) to show that at this particular stage, the quality constraint is not satisfied. This leads to the wanted contradiction and proves the Lemma.

-Lower bound of D T α(k,1) M α(k,1) .

As the two extremities v 1 k and v 2 k of the edge e k are separated by a path made of p -1 = 6c + 1 edges of weight 2 d-k p k in T α(k,1) we have

D T α(k,1) M α(k,1) ≥ (p -1) 2 d-k p k ≥ (6c + 1) 2 d-k p k (6) 
-Upper bound of D T * α(k,1) M α(k,1) . In order to upper bound D T * α(k,1) M α(k,1) , we first upper bound D G M α(k,1) . By construction of the graph G, two cases may occur:

1. If k = d, there is no cycle of level k + 1 in G. Thus, we have D G M α(k,1) = w(e k ) = 2 d-k p k ≤ 3 2 d-k p k 2. If k ≤ d -1, we have D G M α(k,1) ≤ D G V k+1 (v 1 k ) + d G (v 1 k , v 2 k ) + D G V k+1 (v 2 k ) ≤ e∈E k+1 (v 1 k )
w(e) + w(e k ) +

e∈E k+1 (v 2 k )
w(e)

(because for every graph or subgraph

G = (V, E, w), D G (V ) ≤ e∈E w(e)) = d l=k+1 2 d-l p l p l-k + 2 d-k p k + d l=k+1 2 d-l p l p l-k ≤ 2 p k d l=k+1 2 d-l + 2 d-k p k ≤ 2 2 d-k p k + 2 d-k p k = 3 2 d-k p k
Moreover, by Lemma 1, there exists a tree T off α(k,1) spanning M α(k,1) such that

D T off α(k,1) (M α(k,1) ) ≤ 2D G (M α(k,1)
). Thus, as T * α(k,1) is a tree spanning M α(k,1) optimal for the diameter, we have

D T * α(k,1) (M α(k,1) ) ≤ D T off α(k,1) (M α(k,1) ) ≤ 2D G (M α(k,1) ) ≤ 6 2 d-k p k (7) 
By ( 6) and ( 7), we obtain

D T α(k,1) M α(k,1) D T * α(k,1) M α(k,1) ≥ (6c + 1) 2 d-k p k 6 2 d-k p k ≥ c + 1 6 > c
This result contradicts the assumption that the quality constraint is satisfied. Thus, Lemma 2 is proved by contradiction.

The following Theorem shows that if the tree constraint and the quality constraint are satisfied, any algorithm leads to Ω(log i) critical stages, where i is the number of removed vertices.

Theorem 3. Let c ≥ 1 be any constant. For any algorithm A, for every sufficiently large i, there exists a graph G 0 , there exists M 0 ⊃ • • • ⊃ M i , such that if Algorithm A returns a sequence of trees T 0 , . . . , T i respectively spanning

M 0 ⊃ • • • ⊃ M i respecting the quality constraint of level c, then CS(T 0 , . . . , T i ) = Ω(log i)
Proof. Let c ≥ 1 be any constant. We set p = 6c + 2 . Let i be the number of removed vertices. There exists d and G 0 (where G 0 is graph G, defined in Section 3. ⇒ CS(T 0 , . . . , T i ) ≥ Ω(log i) (because d ≥ Ω(log i))

Theorem 2 and Theorem 3 show that Algorithm CS is worst case optimal in order of magnitude for the number of critical stages criterion.

Conclusion

We have proposed an algorithm, called CS, solving an on-line covering problem of members by respecting the following quality constraint: For each stage of withdrawal, the diameter between members induced by the built tree is at most a constant time the best possible value. Moreover, our algorithm is easy to use. Indeed, for a stage of withdrawal, either it breaks the tree and rebuilds a new one which is a tree of shortest paths (only O(log i) times, where i is the number of removed members), or it just updates the current tree by removing useless branches (in all the other cases). Moreover, our algorithm is worst case optimal in order of magnitude for the number of critical stages: It leads to O(log i) critical stages and we showed that any algorithm leads to Ω(log i) critical stages in the worst case. We also have proved that the number of elementary changes per stage (see equivalent definition in [START_REF] Imase | Dynamic steiner tree problem[END_REF]) is constant in average. Due to space limitation, we do not include these results. Note that we only consider the decremental problem because the incremental problem (adding new members in the current tree) considering the diameter as quality constraint is trivial. Indeed, plugging each new member with a shortest path to the initial member leads to 0 critical stage with a level of quality c = 2. We also have results with another objective function than the diameter. Indeed, concerning the average distance between members of the groups, we proved similar results in [START_REF] Thibault | An optimal rebuilding strategy for an incremental tree problem[END_REF] for the incremental version of the problem. We are now currently working on mixing additions and withdrawals.
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1 ⇒

 1 [START_REF] Ausiello | Complexity and approximation[END_REF], there existsM 0 ⊃ • • • ⊃ M i (the sequence defined in Section 3.2) such that α(d -1, 1) ≤ i ≤ α(d, 1) ≤ |V | = p d Thus, we have i ≤ p d ⇒ log p i ≤ d ⇒ log p i ≤ d.And as p = 6c + 2 is a constant, we have d ≥ Ω(log i). Moreover, by Lemma 2, we have α(0,0) , T α(0,0)+1 , . . . , T α(0,1) ) ≥ 1 CS(T α(1,0) , T α(1,0)+1 , . . . , T α(1,1) ) ≥ 1 . . .CS(T α(d-1,0) , T α(d-1,0)+1 , . . . , T α(d-1,1) ) ≥ CS(T α(0,0) , . . . , T α(d-1,1) ) ≥ d ⇒ CS(T 0 , . . . , T i ) ≥ d (because i ≥ α(d -1, 1))
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