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Abstract

Graph searching is one of the most popular tool for analyzing the chase for a powerful
and hostile software agent (called the ”intruder”), by a set of software agents (called the
”searchers”) in a network. The existing solutions for the graph searching problem suffer
however from a serious drawback: they are mostly centralized and assume a global syn-
chronization mechanism for the searchers. In particular: (1) the search strategy for every
network is computed based on the knowledge of the entire topology of the network, and (2)
the moves of the searchers are controlled by a centralized mechanism that decides at every
step which searcher has to move, and what movement it has to perform.

This paper addresses the graph searching problem in a distributed setting. We describe
a distributed protocol that enables searchers with logarithmic size memory to clear any
network, in a fully decentralized manner. The search strategy for the network in which the
searchers are launched is computed online by the searchers themselves without knowing the
topology of the network in advance. It performs in an asynchronous environment, i.e., it
implements the necessary synchronization mechanism in a decentralized manner. In every
network, our protocol performs a connected strategy using at most k + 1 searchers, where k
is the minimum number of searchers required to clear the network in a monotone connected
way using a strategy computed in the centralized and synchronous setting.
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1 Introduction

Graph searching [26] is one of the most popular tool for analyzing the chase for a powerful
and hostile agent, by a set of software agents in a network. Roughly speaking, graph searching
involves an intruder and a set of searchers, all moving from node to node along the links of a
network. The intruder is powerful in the sense that it is supposed to move arbitrarily fast, and
to be permanently aware of the positions of the searchers. However, the intruder cannot cross
a node or an edge occupied by a searcher without being caught. Conversely, the searchers are
unaware of the position of the intruder. They are aiming at surrounding the intruder in the
network. The intruder is caught by the searchers when a searcher enters the node it occupies.
For instance, one searcher can catch an intruder in a path (by moving from one extremity of the
path to the other extremity), while two searchers are required to catch an intruder in a cycle
(starting from the same node, the two searchers move in opposite directions). Another typical
example is the n-node square mesh, in which ©(y/n) searchers are necessary and sufficient for
catching an intruder. In addition to network security, graph searching has several other practical
motivations, such as rescuing speleologists in caves [8] or decontaminating a set of polluted
pipes [27]. It has also several applications to the Graph Minor theory as it provides a dynamic
approach to the analysis of static graph parameters such as treewidth and pathwidth [6].

The main question addressed by graph searching is: given a graph G, what is the search
number of G? That is, what is the minimum number of searchers, s(G), required to clear
the graph G, i.e., to capture the intruder? This question is motivated by, e.g., the need for
consuming the minimum amount of computing resources of the network at any time, while
clearing it. The decision problem corresponding to computing the search number of a graph
is NP-hard [26], and NP-completeness follows from [7, 24]. Computing the search number is
however polynomial for trees [25, 26|, and the corresponding search strategy can be computed
in linear time [30]. In fact, the search number of a graph is known to be roughly equal to
the pathwidth, pw, of the graph, and therefore the search number of an n-node graph can be
approximated in polynomial time, up to multiplicative factor O(logn+/logtw) where tw denotes
the treewidth of the graph (see [14], and use the fact that pw/tw < O(logn)).

The graph searching problem has given rise to a vast literature (cf. Section 1.2), in which
several variants of the problem are discussed and solved. Nevertheless, from a distributed
systems point of view, the existing solutions for the graph searching problem (cf., e.g., [25, 26,
30]) suffer from a serious drawback: they are mostly centralized. In particular, (1) the search
strategy for every network is computed based on the knowledge of the entire topology of the
network, and (2) the moves of the searchers are controlled by a centralized mechanism that
decides at every step which searcher has to move, and what movement it has to perform. These
two facts limit the applicability of the solutions. Indeed, as far as networking or speleology is
concerned, the topology of the network is often unknown, or its map unprecise. The topology can
even evolve with time (either slowly as for, e.g., Internet, or rapidly as for, e.g., P2P networks).
Moreover, the mobile entities involved in the search strategy can hardly be controlled by a
central mechanism dictating their actions. All these constraints make centralized algorithms
inappropriate for many practical instances of the graph searching problem.

This paper addresses the graph searching problem in a distributed setting, that is the
searchers must compute their own search strategy for the network in which they are currently
running. This distributed computation must not require knowing the topology of the network
in advance (not even its size), and the searchers must act in absence of any global synchro-
nization mechanism, hence they must be able to perform in a fully asynchronous environment.
Distributed strategies have been proposed for specific topologies only, such as trees [2], hyper-
cubes [16], and rings and tori [15]. In this paper, we address the problem in arbitrary topologies.



The searchers are modeled by autonomous mobile computing entities with distinct IDs. More
precisely, they are labeled from 1 to the current number k of searchers in the network (if a new
searcher has to join the team, it will take number &k + 1). Otherwise searchers are all identical,
and run the same program. The network and the searchers are asynchronous in the sense that
every action of a searcher takes a finite but unpredictable amount of time. Moreover, motivated
by the fact that the intruder models a potentially hostile agent that can, e.g., corrupt the node
memories, the search strategy must perform independently from any local information stored
at nodes a priori, and even independently from the node IDs. We thus consider anonymous
networks, i.e., networks in which nodes do not have labels, or these labels are not accessible to
the searchers. The deg(u) edges incident to any node u are labeled from 1 to deg(u), so that
the searchers can distinguish the different edges incident to a node. These labels are called port
numbers. Every node of the network has a whiteboard in which searchers can read, erase, and
write symbols. (A whiteboard models a specific zone of the local node memory that is reserved
for the purpose of exchanging information between software agents). At every node, the local
whiteboard is assumed to be accessible by the searchers in fair mutual exclusion. Since the
content of the whiteboard at every node accessible by the intruder is corruptible, it is the role
of the searchers to protect information stored at nodes’ whiteboards.

The decisions taken by a searcher at a node (moving via port number p, writing the word
w on the whiteboard, etc.) is local and depends only on (1) the current state of the searcher,
and (2) the content of the node’s whiteboard (plus possibly (3) the incoming port number, if
the searcher just entered the node).

The powerful intruder is assumed to be aware of the edge-labeled network topology, and
thus it does not need the whiteboards to navigate. In fact, as mentioned before, when the
intruder enters a node that is not occupied by a searcher, then it can modify or even remove
the content of the local whiteboard.

All searchers start from the same node ug, called the entrance of the network, or the homebase
of the searchers. This node ug is also a source of searchers, in the sense that if the current team
of searchers realize that they are not numerous enough for clearing the network, then they can
ask for a new searcher, that will appear at the source. Initially, one searcher spontaneously
appears at the source. The size of the team will increase until it becomes large enough to
clear the network. Basically, the searchers are aiming at expanding a cleared zone around their
homebase ug, that is at expanding a connected sub-network of the network G, containing wu,
until the whole network is clear. In particular, as the entrance ug of the network is a critical
node, it has to be permanently protected from the intruder in the sense that the intruder must
never be able to access it.

Among all search strategies, monotone ones play an important role. A monotone strategy
insures that, once an edge has been cleared, it will always remain clear. Monotone strategies
guaranty a polynomial number of moves: exactly one move for clearing every edge, plus few
moves required by the searchers to set up their positions before clearing the next edge. In the
connected setting (i.e., the cleared part of the network is always connected), the corresponding
graph searching parameter is called monotone connected search number starting at wug (cf.,
[2, 3, 16, 15, 21]), and is denoted by mcs(G, uy).

1.1 Owur results

We describe a distributed protocol, called dist_search, that enables the searchers to clear
any asynchronous network in a fully decentralized manner, i.e., the search strategy is computed
online by the searchers themselves, after being launched in the network without any information
about its topology. This is the first distributed protocol that addresses the graph searching



problem in its whole generality, i.e., for arbitrary network topologies.

The distributed search strategy performed by the searchers in an asynchronous environment
uses a number of searchers that is optimal up to a logarithmic factor. Indeed, we prove that
the number of searchers involved in the strategy computed by our protocol in a network G is
equal to 1 plus the minimum number of searchers required to clear G by a monotone connected
search strategy starting at the homebase ug € V(G), i.e., is equal to mcs(G,ug) + 1. Since it is
known [21] that, for any graph G and for any uy € V(G), we have mcs(G,up) < s(G)[logn],
we get that our protocol uses at most O(logn) times the optimal number of searchers. In fact,
it is conjectured that mecs(G) < 2s(G) for all graph G (cf. [3]). If this holds, then our protocol
uses at most twice the optimal number of searchers.

Note that the searchers clear the graph in a connected way, but not necesseraly in a monotone
way. Moreover, at the end of the clearing of the graph, the description of a monotone connected
search strategy S is written in a distributed way on the node’ whiteboards. We also prove
that S uses at most mcs(G,up) + 1 searchers, that is, a number of searchers very close to the
optimal in a centralized context. It as been proved [16] that, in an asynchronous distributed
environment, we cannot do better, even if the searchers know the topology of the network in
which they are launched.

Our protocol is space-efficient from many respects. First, it requires only O(logk) bits of
memory for each of the k searchers involved in the search. In particular, this amount of memory
is independent from the size n of the network. Second, the amount of information stored at
every whiteboard never exceeds O(m logn) bits, where m is the number of edges of the network.

To obtain our results, we had to address several problems.

e First, since the network is a priori unknown to the searchers, they have to explore it.
However, this exploration cannot be achieved easily because of the potential corruption
of the whiteboards by the intruder. Our protocol insures that exploration and searching
are performed somehow simultaneously, and that the whiteboards of cleared nodes remain
permanently protected unless there is no need to protect the stored information anymore.

e Second, as the searchers asynchronously spread out in the network, they become rapidly
unaware of their relative positions. Our protocol synchronizes the searchers in a non trivial
manner so that an action by a searcher is not ruined by the action of another searcher.

e Finally, to obtain space-efficient solutions, our protocol takes advantage of the access to
whiteboards, to store and read information useful to the searchers: it maintains a stack
at every whiteboard, and every searcher at a node has access only to the top of a stack
stored locally on the current node’s whiteboard, and to few other variables also stored on
the whiteboard.

1.2 Related Works

Graph searching, originated by Parson in [27], has been extensively studied in the literature
(see [6] for a survey). Variants of the problem have been defined by Kirousis and Papadimitriou
in [22, 23], and by Bienstock and Seymour in [7]. The notion of crusade allowed Bienstock
and Seymour to simplify the proof of LaPaugh [24] about monotone graph searching: for any
graph, there exists a minimal search strategy that is monotone (i.e., recontamination does not
help). The notion of connected search strategy has been introduced by Barriere et al. [2, 3]. [2]
describes a linear-time algorithm that computes minimal monotone connected search strategy
for trees. [3] proves that, for any tree T, mcs(T) < 2 s(7') — 2 and this bound is tight. [31]
shows that there exist graphs for which no minimal connected search strategies are monotone.
On the other hand, [2] proves that recontamination does not help for connected search in trees.



Our problem is also very much related to graph exploration and mapping. In absence of
whiteboards, it is known that network exploration is impossible using a finite team of finite
automata [20, 29]. In fact, it is known that no finite team of finite automata is able to explore
all graphs, even if these automata are given powerful communication facilities (cf., e.g., [10]).
However, exploring trees is relatively easy [11], and a pre-computed labeling of the nodes with
only three different labels enables just one finite automaton to explore all graphs [9]. In the
recent paper of Reingold proving that SL = L [28], a log-space constructible universal explo-
ration sequence exploring all d-regular n-node graphs is described. Finally, [4, 5, 19] investigated
exploration of directed graphs.

In [12, 13], the objective of the authors is to determine the position of a blackhole in a
network. A blackhole is an harmful node that destroys any agent visiting that node without
leaving any trace. On the other hand, the blackhole cannot move. [12, 13] have proved that
A + 1 agents are necessary and sufficient to find a blackhole in any network, where A is the
maximum degree of the network.

Several protocols for clearing some specific networks in distributed setting have been pro-
posed in the literature. Flocchini et al. propose protocols that address the graph searching
problem in specific topologies (trees [2], hypercubes [16], tori and chordal rings [15], etc.). For
each of these classes of graphs, the authors propose a protocol using mcs(G) + 1 searchers with
O(logn) bits of memory and whiteboards of O(log n) bits, that monotonously clears the graph in
polynomial time and number of moves. It has been proved that any distributed protocol clear-
ing an asynchronous network in a monotone connected way requires mcs(G) + 1 searchers [16].
Moreover, this result remains valid even if the topology of the network is known in advance.

2 Model, Formal Statement, and Main Result

In this section, we specify our problem, and we state formally our main result.

2.1 Our problem

We summarize our problem setting. A network is an anonymous edge-labeled graph G. The
deg(u) edges incident to any node u are labeled by distinct integers from 1 to deg(u). These
labels are called port numbers. A searcher is a mobile computing entity that can move along
the edges of the network. At every node of the network, there is a whiteboard accessible to the
searchers currently occupying this node. A whiteboard is a zone of the node’s memory reserved
for the searchers to read, write, and erase information. The access to every whiteboard is
assumed to be performed under the control of a fair mutual exclusion mechanism. The decision
taken by a searcher at a node depends on its internal state, the content of the local whiteboard,
and the incoming port number. A decision results in either leaving the node through some
port p, or waiting at the node until it has (again) access to the whiteboard. The searchers
are generated by a unique node ug € V, called the homebase. The homebase is a source of
searchers, in the following sense. New searchers can be generated at the homebase. For a new
searcher to be generated, at least one searcher must be occupying the homebase, and calling
for a new searcher. The ith searcher generated at the homebase is given label i. The searchers
are asynchronous in the sense that every action of a searcher takes a finite but unpredictable
amount of time. When they are launched in a network, they ignore its topology, and have no
information about it (they even ignore its size). The goal of the searchers is to capture an
”intruder”.

The intruder is a malicious mobile computing entity that can move along the edges of
the network. The intruder is arbitrarily fast, and is assumed to be permanently aware of the



positions of the searchers. It is invisible in the sense that the searchers are unaware of the
position of the intruder. On the other hand, the intruder knows the topology of the network
and is assumed to be permanently aware of the positions of the searchers. The intruder is caught
if it meets a searcher at a node or along an edge. The intruder has the ability to corrupt the
nodes, including the content of their whiteboards.

A distributed search protocol is a distributed program executed by the searchers for catching
the intruder. Initially, one searcher is spontaneously generated at the homebase ug, and the
intruder can be placed at any node or edge of the network. The searcher can start moving in
the network or calling for a new searcher. The execution of the search protocol results in a team
of searchers moving in the network, looking for the intruder. A search protocol must perform
without any a priori knowledge about the network. Hence, initially, the searchers ignore in
which network they are running. On the other hand, the intruder is given a precise map of the
edge-labeled network in which it has been placed, and it knows where in the network it has
been placed. Again, all previous works [2, 16, 15] compute the search strategy from the entire
knowledge of the network, and the strategy performs in synchronous steps. In our setting, the
search strategy is computed by the searchers applying the search protocol, in absence of any a
priori knowledge about the network, and in an asynchronous environment.

Clearly, n + 1 searchers can easily capture the intruder in any n-node network (the team of
searchers expand from the homebase until they occupy all the nodes, while one extra searcher
"clear” all the edges). A search protocol is minimal if, for any network G, and for any node
up € V(G), the number of searchers required by the protocol to capture the intruder in G
starting from the homebase u is the smallest for this setting. This paper addresses the problem
of designing a minimal distributed search protocol. This problem has been widely investigated
in the literature in the framework of search games. In the general setting of search games, a
search strategy for a network G is an ordered sequence of search steps resulting in the intruder
being caught, where each step is of one of the following three types:

1. place a searcher at a vertex v € V(G);
2. remove a searcher from a vertex v € V(G);
3. move a searcher along an edge e € E(G).

A k-search strategy is a search strategy in which at most k& searchers are present in the network
at every step. The search number s(G) of a network G is the smallest & for which there exists a
k-search strategy for G. Several search games as been defined in the literature [2, 3, 7, 22, 23, 31].
We consider the most realistic one as far as network security is concerned.

e A search strategy is internal if it does not contain any removal step. Internal search
strategies are desired in communication networks since an agent cannot easily be placed
at or removed from any node.

e A search strategy is monotone if it performs so that the intruder never occupies a node
or an edge that has been previously visited by a searcher. Monotone search strategies are
desired for they insure that the number of searcher moves is polynomial in the size of the
network.

e A search strategy is connected if, at any step, the ”cleared zone” of the network (i.e., the
set of nodes and edges that has been cleared so far, and protected from recontamination
by the intruder) is connected. Connected search strategies are desired because they insure
that communications between the searchers can be performed without risk of corruption
by the intruder. A connected strategy is obviously internal.



If there exists a monotone connected k-search strategy for the network G, then there exists
such a strategy in which the k searchers are initially placed at a same node, and all steps consist
in moving searchers along the edges of the network (cf., e.g., [3]). Hence, in the following, all
our strategies are supposed to be connected. Given a network G, and a node ug € V(G),
the smallest k for which there exists a monotone connected k-search strategy for G where all
searchers are initially placed at ug is denoted by mcs(G, uy).

2.2 Summary of Main Results

Our main result is the design of a provably distributed search protocol, dist_search, for a
team of searchers as defined in Section 2.1. The performances of our protocol are compared to
the ones of monotone connected search strategies. The following theorem summarizes the main
characteristics of dist_search.

Theorem 1 For any connected, asynchronous, and anonymous network G, and any ug € V(G),
dist_search enables capturing an intruder in G using searchers, in a connected way, starting
from the homebase ug, and initially uneware of G. The main characteristics of dist_search
are the following:

e dist_search uses at most k = mcs(G,up) + 1 searchers if mes(G,ug) > 1, and k = 1
searcher if mes(G,up) = 1;

e Ewvery searcher involved in the search strateqy computed by dist_search uses O(logk) bits
of memory;

e During the execution of dist_search, at most O(mlogn) bits of information are stored
at every whiteboard.

Remarks.

e Note that the theorem above implies that for networks searchable by a monotone connected
search strategy using a constant number of searchers, the protocol dist_search can be
implemented using finite state automata.

e The strategy performed by the searchers is connected but not necesseraly monotone.
However, it is easy to check that, once the whole graph has been cleared by searchers
applying dist_search, the description of a search strategy S is stored in a distributed
way on the whiteboards of the nodes of G. S is a monotone connected search strategy for
G, starting from ug, and using at most mcs(G, ug) + 1 searchers. Moreover, an automaton
with at most O(log n) bits of memory can collect S, assuming that no intruders can corrupt
the information on the graph while S is collected.

e Note also that the search strategy S computed by protocol dist_search is optimal in
the following sense. For any k& > 1, there exists a graph G and uy € V(G) such that,
k = mcs(G, up) and for any distributed protocol P for capturing a fugitive in a monotone
connected way, starting from ug, and in asynchronous anonymous settings, P requires
k + 1 searchers [16].

2.3 Sketch of Protocol dist_search and of its proof

Given a connected network G, and X C E(G), we denote by §(X) the nodes in V(G) that are
incident to an edge in X and an edge in E(G) \ X. Given k£ > 1, we call k-configuration any



set X C E(G) such that |0(X)| < k. The k-configuration digraph Cj of G is defined as follows.
V(Cg) is the set of all possible k-configurations. There is an arc from X to X’ in Cj if the
configuration X’ can be reached from X by one step (i.e., place, move or remove a searcher)
of a monotone connected search strategy using at most k& searchers. The objective of Protocol
dist_search is essentially to try, for successive £ = 1,2,..., whether the configuration graph
Ck can be traversed from ) to E(G) under the constraint that the searchers starts at ug. If
yes, then dist_search completes after having captured the intruder using at most k searchers.
Otherwise, dist_search tries with k + 1 searchers.

Remark. This approach is similar to the (centralized) parametrized algorithms of the litera-
ture (cf., e.g., [1, 17, 18]). However, the difficulty of our approach is to discover whether the
configuration digraph Cj can be traversed from () to E(G) in a decentralized manner.

For a fixed k, the objective of dist_search is to organize the movements of the searchers so
that they perform a DFS of C (again, ignoring the topology of G, and in an asynchronous envi-
ronment). This objective is achieved according to an order specified by a virtual stack in which
are stored information related to the moves of the searchers. Roughly, Protocol dist_search
constructs all possible states for the virtual stack, according to a lexicographic order on the
states of the stack. The difficulty of the protocol is to distribute the virtual stack on the white-
boards so that when a searcher visits a node, it finds on the whiteboard enough information
for computing the next step of the search strategy that it should perform. Since the intruder
can corrupt the whiteboards, withdrawals from previously visited nodes must be scheduled so
that to make sure that no information will be lost. Note here that, albeit the search strategy
eventually computed by the searchers is monotone (in the sense that the contents of all the
whiteboards describe a monotone search strategy when the protocol completes), failing search
strategies investigated before (according to the lexicographic order on the states of the virtual
stack) lead to withdrawals, and therefore to recontamination. If all strategies with & searchers
have failed, then the searchers terminate at the homebase, call a new searcher, and restart
searching the network with k + 1 searchers.

The additional searcher used by dist_search, compared to mcs(G, uyp), is used for avoiding
deadlocks such as the one described in [16]. It is also used to schedule the moves of the other
searchers and to transmit information between the searchers. It could be replaced by simple
communication facilities. For instance, if the searchers would have the ability to send to and
read from a mailbox available at the homebase, this additional searcher could be avoided. In
particular, in the Internet, each searcher would just have to keep in its memory the IP address
of the homebase.

The proof of correctness of Protocol dist_search is twofold. First, we prove the correctness
of an algorithm, denoted by A, that uses a centralized stack for traversing the configuration
digraph Cr. The second part of the proof consists in proving a one-to-one correspondence
between every execution of dist_search using a virtual (i.e., decentralized) stack, and every
execution of A using a centralized stack.

3 Search strategy using a centralized stack

In this section, we describe the algorithm A enabling a team of searchers launched in an unknown
network to capture an intruder hidden in this network. Algorithm A is not fully distributed
because it uses a centralized stack whose top is accessible from every node by every searchers.



3.1 Algorithm A

Algorithm A uses the notion of extended moves, that are triples (a;,a;,p) where a; and a;
denote searchers, and p is a port number.

Definition 1 An extended move (a;,a;,p) corresponds to the following: (1) searcher a; joins
searcher aj, and (2) the searcher with the smallest ID among a; and a; leaves the node now
occupied by the two searchers via port p. (Note that i = j is allowed, in which case a; leaves the
node it occupies by port p).

The central stack stores extended moves and thus describes a sequence of operations per-
formed by the searchers. More precisely, reading the stack bottom-up defines a sequence of
operations that describes a partial execution of a search strategy.

Definition 2 For a fix parameter k > 1, a state of the virtual stack s valid if there exists
a monotone connected search strategy using at most k searchers whose partial execution is
described by this state.

By some abuse of terminology, we sometime say that a stack @ is valid, meaning that the
current state S of the stack @ is valid. Given a valid state S of a stack @), we denote by Xg
the configuration induced by S, that is Xg is the set of clear edges after the execution of the
extended moves in S.

The principle of Algorithm A is the same as the one described in Section 2.3. That is, it
tries, for each k = 1,2, ..., every possible monotone connected search strategy using k searchers,
until one reaches a situation in which either the whole network is clear, or all search strategies
have been exhausted. In the latter case, Algorithm 4 proceeds with k + 1 searchers by calling
for a new searcher at the homebase u. From now on, we assume that £ is fixed. The k searchers
are denoted by aq,...,ax, where the ID of a; is simply its index 3. Algorithm A is described
in Figure 1. We detail its structure. Algorithm A returns a boolean possible. If possible is
true then clearing the network with k searchers is possible, in which case the stack @) returned
by Algorithm A is valid, and contains a monotone connected search strategy clearing G with k
searchers.

We say that a searcher is available whenever it does not preserve the clear part of the graph
from recontamination. That is, a searcher that stands at a vertex whose all incident edges are
clear is available. If a vertex of the border of the clear part (a vertex incident to a contaminated
edge and incident to a clear edge) is occupied by several searchers, all of these searchers but one
become available. In Algorithm A, the stack @ is initially empty, and only a; is placed at wyg.
the other searchers ao, ..., a; are available. In addition to the centralized stack @), Algorithm A
uses a global variable state that takes two possible values CLEAR or BACKTRACK whose meaning
will appear clear later on. Finally, Algorithm A uses a boolean variable decided that is false
until either a monotone connected search strategy using k searchers clearing the network is
discovered, or all possible monotone connected search strategies using k searchers have been
considered. Hence the main while-loop of Algorithm A is based on the value of decided (cf.
Figure 1). This main while-loop mainly contains two blocks of instructions. These blocks are
executed depending on the value of state (CLEAR or BACKTRACK).

The algorithm enters one of these two blocks unless all searchers are available, in which
case a search strategy has been found. Initially, a; is placed at uy and is thus not available.
Case CLEAR corresponds to a situation in which Algorithm A has just cleared an edge, i.e., the
last execution of the main while-loop has resulted in pushing some extended move in ). Case
BACKTRACK corresponds to a situation when the last execution of main while-loop has resulted
in popping the stack @, i.e., in recontaminating an edge.



Let us focus on the case state = CLEAR. Algorithm A focuses on specific extended moves,
only those that do not imply recontamination (this is because A eventually computes a monotone
strategy). More formally, let us consider a valid state S of the stack @, i.e., S is a sequence of
extended moves denoted by M;|...|M,. Pushing an extended move M in @ results in a new
state, denoted by S|M. We say that a extended move M is valid according to Q if 8" = S|M is
a valid state. Note that A does not maintain the set X of clear edges and the set of available
searchers. Indeed, given a valid state S of the stack (), one can easily construct Xg by executing
the partial search strategy described by S. A searcher is then awvailable if either it stands at a
node not in §(Xg) or it stands at a node occupied by another searcher, of lower index. There
is therefore a simple characterization of a valid extended move M according to a valid state S

of Q:

e If S =), then M is valid according to @ if and only if either ug is a 1-degree node and
M = (ay,a1,1), or k> 1 and M = (a2, a1,1).

o If S#0, M = (a;,a;,p) is valid according to @ if and only if either s = j, a; stands at a
node u € §(Xg), and p is the only contaminated port of node u, or 7 # j, a; is available,
a; stands at a node u € §(Xs), and p is a contaminated port of node w.

The first instruction of the case state = CLEAR consists in checking whether there exists a
valid extended move according to (). The key issue is to choose which extended move to apply,
among all possible valid extended moves. For this choice, the extended moves are ordered in
lexicographic order.

Definition 3 Let M = (a;,aj,p) and M' = (ay,aj,p') be two extended moves. We define
M < M' if and only if either (i <i'), or (i =4, and j < j'), or (i =14, j =7, and p <p').

If there is an extended move that is valid according to () then Algorithm A chooses the
one that has minimum lexicographic order among all extended moves that are valid according
to @. If there is no extended moves that are valid according to @, then A switches to the
state BACKTRACK. For this purpose, the last move in () is popped out, and stored in the
global variable M;,,;. If fact, if Q = (), then backtracking is not possible, and A decides that k
searchers are not sufficient to clear the network.

Let us now focus on the case state = BACKTRACK. A considers the move Mj,. If there is
an extend move M = M, that is valid according to the stack, then A performs the smallest
such move by pushing M in the stack, and going back to state CLEAR. Otherwise A carries on
backtracking by popping out the last extended move from the stack.

3.2 Proof of correctness of Algorithm A

Lemma 1 After any execution of the while-loop in Algorithm A, the state of the stack is valid.

Proof. Initially, the stack is empty, corresponding to the strategy in which a; is occupying
node ug, and hence is valid. Assume that the state of ) before executing the while-loop is valid,
and consider the state of () after the loop. There are two cases depending on whether a push
or a pop is performed. These two cases do not depend on the value of state. The result of the
push is a valid state because only extended moves that are valid according to ) are pushed in
Q. The result of the pop is also valid state since it corresponds to the partial search strategy
described by @ before the loop, in which the last extended move is removed. ]

The next lemma requires to order the states of the stack, the same way, we ordered extended
moves.
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— The Algorithm A —

Input: k > 1 searchers ay,as, - -, a; and a node ug of a graph G.
a; is placed at ug; as,- -, ap are available.
Output: a boolean possible, and a stack () of extended moves.
begin
Q < 0;

state <— CLEAR;
decided + false;
while not decided do
if all searchers are available then
decided < true;
possible < true;
else
/* case state = CLEAR */
if state = CLEAR then
if there exists a valid extended move according to ) then
(ai,a;,p) < minimum valid extended move according to Q;
push(a;, a‘jvp);
else
if Q # 0 then
Migst <+ pOP();
state <~ BACKTRACK;
else
decided < true;
possible + false;
endif
endif
/* case state = BACKTRACK */
else
Let Mjqst = (ai,ajvp);
if there exists a valid extended move according to @ larger than (a;, a;,p) then
(aj,a’;,p") < minimum valid extended move according to @, and larger than (a;, a;, p);
push(a;,a},p');
state <~ CLEAR;
else
if Q # 0 then M;,s; + pop();
else
decided < true;
possible «+ false;
endif
endif
endif
endif
endwhile
return(possible, Q);
end.

Figure 1: The Algorithm A
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Definition 4 Given two states of the stack Q S = M| ---|M, and 8" = M{|---|M],, we define
S < 8" if and only if there exists i < min{r,r'} such that M; < M; and, for any j < i, M; = M].

The order on the stacks defined above is a total order. Since the extended move pushed in the
stack in the case CLEAR of Algorithm A is the minimum extended move according to the current
state of the stack, we get that the sequence of stacks constructed by Algorithm A respects this
total order. Precisely, we have:

Lemma 2 All valid states constructed bt Algorithm A is compatible with the total order of
Definition 4, in the sense that if r is the first exzecution of the while loop at which some state S
appears, then all valid states S’ < S appeared before, and no valid state S" = S appeared before.

We say that a valid sequence of extended moves is complete if the corresponding search
strategy clears the whole network. The following is a direct consequence of Lemma 2

Lemma 3 Let S = M|...|M, be a sequence of extended moves corresponding to a partial
execution of a search strategy using at most k searchers. FEither there exists a complete sequence
S’ of extended moves with S" < S, or Algorithm A eventually computes state S of the stack.

Lemma 4 If mcs(G,ug) > k then Algorithm A returns (false, D) for k.

Proof. Let S be the maximum valid sequence of extended moves according to the order of
Definition 4. Since the graph cannot be cleared using k searchers, starting from wg, for any
valid sequence S’ < S, S’ is not complete. By Lemma 3, Algorithm A eventually computes
the state S of the stack. After that, the algorithm always remains in the case BACKTRACK and
it successively pops all extended moves out of the stack. Thus, we reach the situation where
Q = () and there is no more valid extended move. Thus, Algorithm A returns (false, ). [ |

Lemma 5 Assume mcs(G,ug) = k. Let S be the smallest complete sequence of valid extended
moves corresponding to a monotone connected search strateqy starting from wug. Algorithm A
returns (true, Q) for k, where @ is in state S.

Proof. By Lemma 3, since S is the smallest complete sequence of valid extended moves,
Algorithm A computes S. At this step of Algorithm A, all nodes of the graph are clean. Thus,
all the searchers are available, and therefore Algorithm A returns (true, Q). [

As a direct consequence of the previous lemmas, we get:

Theorem 2 Algorithm A completes for k = mcs(G,up), and then the stack @Q describes a
monotone connected search strategy starting at ug and using k searchers.

4 Fully Distributed Search Strategy

In this section, we describe the main features of protocol dist_search. In this description, we
assume that searchers are able to communicate by exchanging messages of size O(logk) bits
where k is the number of searchers currently involved in the search. With this facility, we
will show that dist_search captures the intruder with mcs(G,ug) searchers. Using an addi-
tional searcher for implementing the communications between the mcs(G,ug) other searchers,
dist_search captures the intruder with mes(G, ug) + 1 searchers. Assuming that the searchers
can communicate by exchanging messages is only for the purpose of simplifying the presentation.
The fact that an additionnal searcher can implement the communications between searchers will
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appear clear while describing the protocol dist_search. The main reasons for which this can
be done is that finding its way in the clear part of the network is easy thanks to the information
stored on the whiteboards. The sender of a message is always the searcher that has performed
the last action, and an action is always the result of a reception of a message.

Moreover, for the sake of simplicity, we assume that two searchers on the same node can
”see” each other and exchange their states. This is not a restrictive assumption since this can
be implemented with the whiteboards, but it would unnecessarily complicate the presentation.

First, we describe the data structure used by dist_search.

4.1 Data Structure of dist_search

Every searcher has a state variable that can take k + 2 different values where k is the current
number of searchers. These k+2 states are: CLEAR, BACKTRACK, and (HELP, j), for j = 1,... k.
Initially, all searchers are in state CLEAR. During the execution of the protocol

e a searcher is in state CLEAR if it has just cleared an edge;

e a searcher is in state BACKTRACK if it has just backtracked through an edge that it has
previously cleared;

e a searcher is in state (HELP, j) if it is aiming at joining searcher j to help it clearing the
network (i.e., one of the two searchers will guard a node, while the other will clear an edge
incident to this node).

Searcher a; has an extra boolean variable terminated that is used to indicate whether the graph
is clear. This occurs when searcher a; has tried helping all others searchers and none of them
stand at a vertex incident to a contaminated edge.

The messages that searchers can exchange are of four types: start, move, help and sorry.

e start is an initialization message, that is only used to start Protocol dist_search (only
searcher a; receives this message, at the very beginning of the protocole execution).

o If a searcher i receives a message (move, j) from searcher a;, then it is the turn of searcher
a; to proceed. (As it should appear clear later, the searchers schedule themselves so that
exactly one searcher performs an action at a time).

e If a searcher a; receives a message (help,j) from searcher a;, then a; is currently just
arriving at the same node as a; to help a;. (Note that a; and a; could use the whiteboard
to communicate, and this type of messages is just used for a purpose of unification with
the other message types).

e If a searcher a; had received a message (move,j) or (help,j) from searcher a; and, after
having possibly performed several actions, it turns out that these actions are useless, then
a; sends a message (sorry,i) back to searcher a;.

The whiteboard of every node contains a local stack, and two vectors direction|] and
cleared_port[]. The protocol insures that, after the node has been visited by a searcher,
direction|0] indicates the port number to take for reaching the homebase, and, for i > 0,
direction[i] is the port number of the edge that searcher a; has used to leave the current node
the last time it was at this node. At node v, for any 1 < p < deg(v), cleared_port[p] = 1 if and
only if the edge corresponding to the port number p is clear, otherwise cleared _port[p| = 0.

When a searcher at a node v decides to perform any action, it saves a trace of this action
in the local stack. A trace is a triple (X, a,z) where X is a symbol, ¢ is a searcher’s ID, and x
is either a port number, or a searcher’s ID, depending on symbol X. More precisely:
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(CC,i,p) means that p is the only contaminated (C) port, and searcher a; decided to clear
(C) the edge that corresponds to p;
(
t

CJ,i,p) means that some searcher joined (J) a; at this node, and a; decided to clear (C)
he edge that corresponds to p;

(JJ,%,j) means that searcher a; decided to join (J) searcher a;;

(RT,1, j) means that searcher a; received (R) a message (move, j) or (help, j) from searcher
aj;

(ST,i,7) means that searcher a; decided to send (S) a message to searcher a;

(AC,i,p) means that searcher a; arrived (A) at v by port p after clearing (C) the corre-
sponding edge;

(AH,i,p) means that searcher a; arrived (A) at v by port p in order to join another (H)
searcher.

4.2 The algorithm dist_search

The protocol dist_search organizes the movements of the searchers, and the messages ex-
changed between them, in a specific order. Based on a lexicographic order of the searchers’
actions, dist_search orders them to always execute the smallest action that can be performed.
As for Algorithm A, the principle of dist_search is to try every possible monotone connected
search strategy using k searchers, until either the whole graph is clear, or no searcher can move
without implying recontamination. In the latter case, the searcher that made the last move
backtracks, and dist_search tries the next action according to the lexicographic order on the
actions.

The termination of dist_search is insured as follows. The graph is cleared at time ¢ if and
only if all searchers are occupying clear nodes at this time, i.e., nodes whose all incident edges
are clear. This configuration is identified by the searchers because searcher a; tries to help
all the other searchers, from ao to a, but none of them need help. Conversely, the searchers
identify that k searchers are not sufficient to clear the graph when they are all occupying the
homebase, and try to pop the local stack that is empty. In this case, a; calls for a new searcher,
and the k + 1 searchers are ready to try again capturing the intruder from the homebase.

A skeleton of the protocol dist _search is given in Figures 2-4. More precisely, Figure 2
describe the global behavior of a searchers, using subroutines described in Figures 3-4. A
searcher reacts to either the reception of a message (cf. left part of Figure 2), or to its arrival
at a node (cf. right part of Figure 2). The message type start is uniquely for the purpose
of the initialization: initially, searcher a; receives a message start (and hence calls procedure
decide()).

We now describe the protocol dist_search as it appears on Figure 2

If searcher a; receives a message (move, j), then, by definition of such a message, it simply
means that it is the turn of a; to proceed. Therefore, a; writes on the whiteboard of the node
where it is currently standing that it received a message from searcher a; giving it turn to
proceed. For this purpose, a; pushes (RT),i,7) in the local stack. The nature of the next actions
of a; depends on the result of procedure decide(). Before describing this latter procedure, let us
list all other cases depending on the message received by a;. If a; receives a message (help, )
then it means that a; has just arrived at the same node as a; to help it. Thus, a; pushes
(RT,i,j) in the local stack, and clears the edge with the smallest port number p among all
contaminated edges incident to the node where a; is standing. This action is performed by
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Program of searcher i at node v. /* Searcher i arrives at node v by port p */
Case:
begin state = CLEAR
/* Searcher ¢ receives a message */ if no other searcher is at v then
Case: erase whiteboard;
message = start direction[0] « p;
decide(); cleared_port[p] « 1;
message = (move,j) push(AC,i,p);
push(RT,i,j); if i # 1 then
decide(); push(ST,i,1);
message = (help,j) send message (move, i) to 1;
push(RT,1,j); else decide();
p < smallest contaminated port; state = (HELP,j)
clear_edge(CJ, i, p) push(AH,i,p);
message = (sorry,j) join(j);
back(); state = BACKTRACK
back();
end

Figure 2: Skeleton of Protocol dist_search

calling procedure clear_edge(C'J, i, p). Finally, if a; receives a message (sorry, j), then it means
that a; had sent a message (move,7) or a message (help, ) to a; but a; could not do anything,
or all actions a; attempted lead to backtracking. Therefore, a; calls procedure back() to figure
out which searcher it can help next.

The action of searcher a; arriving at some node v by port p depends on its local state. In
state (HELP, j), a; aims at joining a; to help it clearing the network. Hence a; pushes (AH,i,p)
in the local stack to indicate that it arrived here by port p in order to join another searcher,
and then calls procedure join() to figure out what to do next in order to join a;. In state
BACKTRACK, a; simply calls procedure back() to carry on its backtracking. The case where a;
arrives at a node v in state CLEAR is more evolved. If there is no other searcher at v then q;
erases the whiteboard since it was accessible to the intruder, and thus its content is meaningless
(when a searchers erases a whiteboard, it reset all local variables to 0, and the local stack
to ). Then a; sets direction|[0] to p to indicate that it arrived here via port p, and sets
cleared_port[p] to 1 to indicate that the edge of port p is clear. a; then pushes (AC, 1, p) in the
local stack at v to indicate that indeed a; arrived at v by port p after clearing the corresponding
edge. At this point, the behavior of a; depends on whether 7 = 1 or not. While a; simply calls
decide() to figure out what to do next, a; for ¢ > 1 proposes to a; to proceed next. For this
purpose, a; sends a message (move,i) to a;. Of course, to keep trace of this action, a; pushes
(ST,i,1) in the local stack.

Remark. Before entering into the details of the procedures mentioned above, note that the
actions are ordered. For instance, if several incident edges can be cleared then the cleared one
is with the smallest port number. Similarly, after clearing an edge, a; proposes to the smallest
searcher a; to proceed next. As we will see in the details of the procedures decide() and back(),
protocol dist_search always tries to perform the smallest action. This is in particular the role
of procedure next_searcher(i) described on the right hand side of Figure 3.
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Procedure next_searcher()

Procedure next_searcher() aims at determining which searcher a; proceeds next. In the case
where q; is the searcher with smallest index occupying the node, j = i+ 1. Otherwise, i.e., a; is
not the searcher with smallest index occupying the node, j is the smallest index > 7 such that
a; is not occupying the same node as a;. Once j is found, a; offers to a; to proceed next, by
sending it a message (move,i). As always, a trace of this action is kept at the current node by
pushing (ST,4,7) in the local stack. If there is no a; with j > 4 not occupying the same node

as a;, then a; calls back() for the purpose of backtracking.

The procedures clear_edge() and move() described in the left side of Figure 3 execute clearing
an edge, and traversing an edge, respectively. (Of course, clearing an edge requires traversing

it).

clear_edge(action X, searcher_ID i, port p)
/¥ X e {CC;CJ}*/
begin
push(X, i, p);
cleared port[p] «+ 1;
state <— CLEAR;
move(p, i);
end

move (port_number p, searcher_ID i)
begin

direction[i] « p;

leave the current vertex by port number p;
end

next_searcher (searcher_ID i)
begin
J—i+1;
if i is not the smallest searcher at node v then
while (j is at node v) and (j < k) do
J< i+
if j <k then
push(ST,i,j);
send (move, i) to j;
else
back()
end

Figure 3: Procedures clear_edge, next_searcher and move.

Procedure clear_edge():

The searcher executing Procedure clear_edge(X, 1, p) first pushes the trace (X, i, p) on the local
stack, sets cleared port[p] to 1 for specifying that the edge of port p is clear, resets its local
state to CLEAR, and finally leaves the node through port p to clear the corresponding edge.

Procedure move():

The searcher a; executing Procedure move(p, i) simply leaves the current node via port p. But
before doing so, it sets direction[i] = p to specify that, in order to reach a; from that node,
one should take port p.

We now describe procedures decide(), back(), and join() detailed in Figure 4.

Procedure decide()

Procedure decide() is called at a node when the concerned searcher aims at deciding what search
action it has to perform. Let v be the node where searcher a; applies decide().

If node v is clear, or at least another searcher ay, ¢ < 7, stands at v, then a; is not required
to guard node v. Thus a; tries to help another searcher. According to the order mentioned
above, a; tries to help the searcher with the smallest ID. Hence, a; applies join(2) if i = 1, and
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back ()
begin
state < BACKTRACK;
msg < pop();
case:
msg = (RT,1,7)
send (sorry,i) to j;
msg = (JJ,i])
if (i =k and j =i — 1) then back();
else if (i # k and j = k) then
next_searcher(i);
else
ifj+1#4ithen/+ j+1;
else [+ j + 2;
push(JJ,i,¥);
join();
msg = (CC,1,p)
cleared_port[p] « 0;
if i = k then back()
else next_searcher(i);
msg = (CJ,i,p)
cleared_port[p] « 0;
if 3¢ the smallest contaminated port
with ¢ > p then clean_edge(CJ,1i,q);
else
msg2 < pop();
if msg2 = (AH,i,p) then move(p,i);
else msg2 = (RT,i,j) then
send (sorry,i) to j;
msg = (AC, i, p)
cleared_port[p] < 0;
move(p,i);
msg = (AH,i,p)
move(p,i);
back();
msg = ()
k—k+1;
initialisation(k);
end

decide()
begin
if node v is clear
or there is another searcher £ < i at v then
if i = 1 then
Je 2
terminated < true;
else j « 1;
push(J i, j);
join(j);
else if 3 unique contaminated port p then
clear_edge(CC,1i,p);
else if i # k then
next_searcher(i);
else back();

end

join(searcher_ID j)
begin
state < (HELP, j);
if j is present at v then
if v is clean then
if ¢ = 1 and terminated and j = k
then ”The graph is clear”;
else back();
else
if ¢ = 1 then terminated < false;
Let g be the smallest contaminated port;
if j < i then
push(ST, 1, j);
send (help,i) to j;
else
clear_edge(CJ,1,q);
else
p < direction[j];
if p=0do p «+ direction|0];
move(p,1);
end

Figure 4: Procedures back, decide, and join.

join(1) otherwise. (The internal boolean variable terminated of a; is set to true if i = 1; recall
that this variable is used to insure termination of Protocol dist_search).

If there is a single contaminated edge incident to v, then searcher a; clears it by applying
procedure clear_edge.

Otherwise (i.e., a; is the searcher with smallest ID currently standing at vertex v, and v has
more than one incident contaminated edge), a; cannot move since the protocol insures that it
is the searcher with smallest ID at a node that preserves it from recontamination. Therefore, if
i = k (i.e., all searchers have tried to progress, but none of them can) then searcher a; applies
back() in order to backtrack. On the other hand, if i < k then a; applies next_searcher(i) to
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let another searcher the chance to progress.

Procedure back()

Procedure back() is called for the purpose of backtracking, yielding recontamination in some
cases. Let v be a vertex where searcher a; applies Procedure back(). Searcher a; first updates its
state to BACKTRACK, and pops the top of the local stack, stored in the local variable msg. The
behaviour of a; then depends on msg, and leads to eight cases. These eight cases correspond
to the as many different types of traces let at the top of the stack.

e Case msg = (RT,i,j): it means that searcher a; had sent a message to a; to let it a
chance to progress. Since a; applies back(), it means that a; actually cannot do anything
now (note however that a; might have done something before, and later backtracked).
Thus, a; sends message (sorry,i) to a; in order to decline, and to let a; the possibility to
do something else.

e Case msg = (JJ,4,7): it means that, at some previous step of the strategy, searcher a;,
standing at vertex v, had decided to help searcher a;. Since a; applies back(), it means
that its attempt to help searcher a; did not succeded. Several situations must then be
considered:

If there is another searcher that a; has not tried to help yet (i.e., j < k and 7 # k, or,
i =k and j < k — 1), then q; tries to help among those the searcher that has smallest ID
(denoted by ay), by applying join(¥).

Otherwise, if i = k (i.e., all searchers have tried to progress, but none of them could) then
searcher a; applies back() again in order to backtrack again. But if i < k then searcher q;
applies next_searcher(i) to let another searcher the chance to progress.

e Case msg = (CC,i,p): it means that a; is the searcher with smallest ID at vertex v, and
v has a single incident contaminated edge, with port p. Since, a; applies back(), it means
that a; just backtracked from clearing this edge, letting it be recontaminated. Hence, a;
cannot do anything else. Thus, either 7 = k (i.e., all searchers have tried to progress, but
none of them could) and then searcher a; applies back() again in order to backtrack again,
or, i < k and then searcher a; applies next_searcher(i) to let another searcher the chance
to progress.

e Case msg = (CJ,i,p): it means that a; just backtracked from clearing the edge corre-
sponding to port number p, letting it be recontaminated. Moreover, this clearing involved
another searcher a; (with j > 7). Two cases are then possible depending on whether
searcher a; had come at v to help searcher a; or the other way around. The former case
is called Case 1, and the latter Case 2.

If there is an edge that a; has not tried to clear yet (i.e., a contaminated edge with port
number ¢ > p), then searcher a; applies Procedure clear_edge(CJ,i,q) to clear this edge
(CJ indicates that such a move is possible because of the presence of another searcher at
v).

Otherwise, p is the largest port number associated to a contaminated edge. Therefore, in
Case 1, searcher a; had tried to help a; (resp., in Case 2, a; had tried to help a;) without
success. In both cases, a; has to backtrack again, and thus, it pops the top of the local
stack in a local variable called msg2. If msg2 = (AH,i,q), then we are in Case 1, and
thus searcher a; goes back through the edge from which it had come (i.e., the edge with
port number ¢q). If msg2 # (AH,1i,q), then the only possible case is msg2 = (RT,1,j),
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which corresponds to Case 2. That is, searcher a; had come at v to help searcher a;, and,
since ¢ < j, searcher a; had sent the message (help,j) to a; (cf. Procedure join()). In
this latter case, searcher a; informs searcher a; that its help has been unsuccessfull, by
sending message (sorry,i) to a;.

e Case msg = (AC,4,p): it means that searcher a; had come to this vertex by the edge with
port number p, after clearing this edge. Since searcher a; is applying back(), a; backtracks,
i.e., goes back through the same edge letting this edge be recontaminated.

e Case msg = (AH,i,p): it means that searcher a; had come to this vertex by the edge
with port number p, in order to help a searcher (i.e., this edge was already clear). Since
searcher a; is applying back(), a; backtracks its move by going back through the same
edge it came from.

o Case msg = (ST,1,7): it means that searcher a; had send a message to searcher a;, and
that a; just had sent to a; the message (sorry, j), meaning that a; could not do anything
more. Thus, a; applies back() in order to backtrack again.

e Case msg = : it means that all actions that searchers might have done before have
been backtracked. Note that only searcher a; can be in such a situation. Since it is in
state BACKTRACK, it means that all strategies using k searchers have been tried without
success. Thus, the protocol carries on with one more searcher.

Procedure join()

Let v be a vertex where searcher a; applies join(j). Applying this procedure means that searcher
a; has decided to help searcher a;. First, a; updates its state to (HELP, j).

If a; is standing at v then the behaviour of searcher a; depends on whether v is clear or not.
If v is clear, 1 = 1, terminated is true, and j = k, then searcher a; has tried to help all the
searchers but none of them need its help. Thus, the whole graph is clear. Else, but still under
the assumption that v is clear, searcher a; backtracks its attempt of helping a; by applying
back(), since a; does not need any help. The last subcase is when a; is standing at a node v
that is not clear. In this case, the searcher of smallest ID between a; and a; has to clear the
contaminated edge with smallest port number (say ¢) incident to v. If i < j, then searcher
a; applies clear_edge(CJ,i,q) to clear the edge (C'J meaning that this cleaning can be done
thanks to the presence of another searcher). If i > j, then searcher a; sends (help,i) to aj, in
order to let searcher a; know that it can clear some edge thanks to the presence of a;.

If a; is not standing at v, then a; tries to join searcher a; by following it (if a; has already
visited node v), or by going to the homebase, which is possible thanks to the local vector
direction. Procedure join() uses indications on whiteboards. Recall that if a; was at a node,
the whiteboard contains in direction[j] the port number through which a; left that node.
Agent a; returns to the homebase using direction[0] until it passes through a node where
direction[j] is set, in which case a; starts following this direction to eventually find a;.

5 Proof of Correctness of dist_search

At any step of dist_search there is only one operation performed, on only one of the stacks
distributed over all nodes of the network. Indeed, only the searcher who has just received a
message can perform an action, and in particular modify a stack. Thus we can define a central-
ized virtual stack, Qyirtual, Where we push or pop all the moves performed by the searchers, at
the same time they are pushed or popped in and out of the distributed stacks.
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Precisely, a move is a pair (a; = a;,p), to be interpreted as follows.

o If i # j, then (a; — aj,p) means that a; leaves its current node by port p with the
objective of joining a;;

e The move (a; — a;,p) means that a; leaves its current node by port p, clearing the
corresponding edge.

An extended move corresponds to a sequence of moves. From the interpretation above, the
extended move (a;,a;,p) is equivalent to the move (a; — a;,p), and if i # j then the extended
move (a;,a;,p) is equivalent to the sequence of moves

(a'i — a’japl)a (a'i — ajap2)a ceey (ai — ajapé)’ (min{a’iaaj} — min{aiaa’j}ap)

where p1,...,p is a sequence of port numbers corresponding to a path (in the cleared part of
the graph) between the node occupied by a; and the node occupied by a; when the extended
move (a;,a;,p) is considered.

Quirtua; 18 updated in the following way. At every execution of the Procedure move(), we
push or pop a move in Qe as follows. If a; applies move(p,i) during the execution of
Procedure clear_edge(X,i,p), then the move (a; — a;,p) is pushed in Quirtuar- If a; applies
move(p, ) during the execution of Procedure join(j), then the move (a; — a;,p) is pushed
in Quirtual, Wwhere p is the port number set during the execution of join(), before the call of
procedure move(). Finally, if a searcher applies move(p,i) during the execution of Procedure
back(), then Quirtuar i popped.

With this definition of Qy;rtuar, Wwe show that the stack @) of the centralized algorithm A,
and the virtual stack Quirtua are equivalent in the following way. Let Q = M;|---|M, be a
valid sequence of extended moves (possibly empty). We define the following notions:

o Quirtual 18 strongly equivalent to Q if Quirtuar = Si1|---|Sr, such that, for any 1 < j <,
S; is a sequence of moves equivalent to Mj.

o Quirtual 18 weakly equivalent to Q if Quirtuar = Si|---|Sr|Sr4+1, such that, for any 1 <
j < r, Sjis a sequence of moves equivalent to M;, and S,11 = (a; — ay,p1),(a;i —
airyP2), -+ -, (a; = ay,pe) where p1,---,py is a sequence of port numbers corresponding to
a path between a searcher a; and a searcher a;, in the cleared part of the graph (in the
configuration associated to @ in state Mi|---|M,).

It is easy to check that two strongly equivalent stacks correspond to exactly the same strategy
(i.e., at the end of both strategies, the set of cleared edges, and the positions of the searchers
are the same). If Q and Qe are only weakly equivalent, then the strategy associated to
Quirtual consists in performing the strategy associated to () and then to move some searcher
to the node occupied by some other searcher (in the cleared part of the graph, and without
recontamination). We will see later why this latter version of equivalence is important in our
proof. The two stacks Quirtuar and @ are said equivalent if they are either strongly equivalent
or weakly equivalent.

The proof of dist_search proceeds by considering the algorithm step by step, where a step
is a stage of the execution where an edge is either cleared or recontaminated. That is, a step of
dist_search denotes a step of its execution when a move of type (a; — a;,p) is pushed in or
popped out Qvirtual-

Formally, we prove that, for any ¢ > 0, the virtual stack Q;rtyq; after step ¢ of dist_search
is equivalent to the stack @ constructed by A. In other words, we prove that, at any step ¢ > 0,
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both algorithms construct the same partial strategy. That is, at any step, the cleared subgraph
and the positions of the searchers that guard the border of this cleared subgraph are the same
for both strategies. Simultaneously, we prove that for any step, when an extended move is
popped out in A, all the traces of the equivalent sequence of moves in dist_search are removed
from the distributed whiteboards

Our proof is by induction on the number of steps. We assume that the centralized stack
Q@ and the virtual stack Quirtua; are equivalent up to step ¢, and we consider the next step for
proving that they are again equivalent. The difficulty of the proof is due to the number of
different cases to consider. There are actually exactly fourteen cases to consider, grouped in
two groups:

e Group A: @Q and Qirtua; just cleared an edge e. The first case corresponds to the graph
being entirely clear. Otherwise there are 3 cases: (1) a searcher can clear a new edge, or
(2) a searcher can join another searcher and one of them can clear a new edge, or (3) no
other edge can be cleared and the clearing of e has to be canceled. These cases have to
be combined with other 3 cases depending on the way e has been cleared. Thus Group A
yields 7 cases in total.

e Group B: Q and Qu;rtuar just cancelled the clearing of an edge. Then, either another edge
e can be cleared, or no other edge can be cleared (and the last cleared edge, say ¢, has
to be canceled). In the former case, there are 3 subcases depending on the type of move
that has been popped out the stack (canceling corresponding to popping out the stack).
In the latter case, there are 4 subcases depending on the way e’ had been cleared. Thus
Group B yields 7 other cases.

The proof consists in a careful analysis of each of these 14 cases. Before analysing these 14
cases, we first prove that the stacks computed at the first step of both algorithms are equivalent.
Initially, both @ and Qe are empty. In dist_search, aq executes the decide function.

e If deg(up) = 1, then Algorithm dist_search pushes (CC,1,1) and (AC,1,p) on the dis-
tributed whiteboards, while (a; — a1, 1) is pushed in Q;rtua;- During the first execution
of the while loop in Algorithm A4, since deg(up) = 1, @ = ((a1,a1,1)). Moreover, in both
cases, the cleared subgraph is one edge (ug,w) incident to uy with a; at node w, and all
the others at node uy.

o If deg(up) > 1 and k = 1, then both algorithms state that another searcher is needed.
The two stacks remain empty and only wu is clear.

e If deg(up) > 1 and k > 1, then Algorithm dist_search pushes (ST,1,2), (RT,2,1),
(JJ,2,1), (ST,2,1), (RT,1,2), (CC,1,1) and (AC,1,p) on the distributed whiteboards,
while (a1 — a1,1) is pushed in Qirya- Algorithm A pushes (a2, a1,1) in Q. Thus, both
stacks are strongly equivalent. Indeed, as and a; were already at the same node, the
homebase and thus, there is no move associated to the fact that as joins a;. Then, in
both stacks, a; clears the edge with port number 1 at wuyg.

Let us assume that after step ¢ of both algorithms, the two stacks @ and Qurtuar are
equivalent. We prove, for the 14 cases previously enumerated, that after the next step ¢ + 1 of
both algorithms, the search strategy will remain the same for both algorithms, i.e., both stacks
remain equivalent, and the same configurations are achieved by both algorithms. The next two
subsections consider separately the cases in groups A and B.
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5.1 Group A

Group A assumes that Q and Qyirtuar have been reached by clearing an edge. Let S and Syirtual
be the states of Q@ and Qurtuar at this step of both algorithms. Since, Q and Qy;rtua; has been
reached by clearing an edge, they are strongly equivalent. Thus, there exist a sequence S’ of
valid extended moves, and a sequence S/ . . of moves, with S’ and S., , . strongly equivalent,
and there exist an extended move M, and a sequence M’ of moves, with M’ equivalent to M,
such that S = S'|M and Syirtuat = Sh;rpual M-

We first prove that the next step of the execution of Algorithm dist_search starts with a;
applying Procedure decide(). Let 1 < j < k be the ID of the searcher that has just cleared the
last contaminated edge. Searcher a; arrived at a node in state CLEAR. Either 7 = 1, and q;
applied Procedure decide(), or a; sent (move, j) to a;, who received (move, j) from j. In both
cases, a1 applies Procedure decide().

Now, we consider the subcases of Group A.

5.1.1 Case A.1

In Case A.1, the whole graph is assumed to be cleared. In this case, by Lemma 5, Algorithm
A terminates. Let us prove it is also the case for Algorithm dist_search. Searcher a; applies
Procedure decide(). Since the graph is clear, the vertex v; where a; stands, is clear. Thus, a1
pushes (JJ,1,2) and applies Procedure join(2) after having set terminated to true. Applying
Procedure join(), a1 computes a port number p; that is either direction|[2] if az has already
been at vertex vy, and direction]0] otherwise (recall that direction[0] is the direction of the
homebase). The former case is identified by the fact that direction[2] # 0. We push (1 — 2,p1)
in Quirtual- Then, a1 takes the edge corresponding to port p; at v;, and arrives at a new node
vy by port ¢p, in state (HELP,2). At v9, searcher aq writes (AH,1,q;) on the whiteboard, and
applies again the join() procedure. This is repeated until a; eventually joins ag, at a node v;.
Let P = vy,v9,...,v; be the path followed by a1 from vy until it reaches as at vy. Let p; (resp.,
gi) be the port number of the edge {v;, v;1+1} at v; (resp., vi+1). At every node v;, i > 2, searcher
ap writes (AH,1,q;—1) during the execution of join(). In Quirtuar, we push (a1 — a9, p;) for

1=1,...,t—1. Since v is clear, searcher a2 does not need help, and thus a; applies Procedure
back(). Therefore, it pops (AH, 1, ;1) from the whiteboard of v;, and returns to v;_;. At every
node v;, for 1 =t — 1,...,2, searcher ¢ arrives in state BACKTRACK, and thus pops the local

stack, that contains (AH,1,q;—1). As a result, it goes to v;_1 using port g;_1. Simultaneously,
we pop (a1 — ag,p;) that we had previously pushed in Qiruq- Eventually, a; is back at vy is
state BACKTRACK. At vy, searcher a; applies Procedure back(), and thus pops (JJ,1,2) from
the local stack. This procedure asks a; to try helping every possible searcher a;, for 3 < i < k.
For this purpose, a; successively applies Procedure join(i) for i = 3,...,k. Since the whole
graph is clear, no searcher needs help, and therefore the same situation as for ao occurs for
1=3,...,k—1, ie., a; joins a;, and goes back to v; since a; does not need help. The sequence
of pushes and pops is the same for a; as for ao. When a; eventually reachs a, the state variable
terminated of ay is still equal to true, and thus Algorithm dist_search terminates. The virtual
stack satisfies Quirtual = Svirtual| (@1 — ag,71)| -+ |(a1 — ag,r¢) where 71, ..., 7, is the sequence
of port numbers from vy to the node where a1 meets a;. The stack ) is again in state S because
no extended moves have been pushed in it. Since, by the induction hypothesis, both stacks @
and Quirtuar Were equivalent before these sequence of moves, the new state S of stack @), and
the new state Syirwall(a1 — ak,p1)|- - [(a1 — ag,pe) of stack Quirtuar, are weakly equivalent.
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5.1.2 Case A.2

Case A.2 assumes that a valid extended move can be performed in the current configuration of
the search strategy. In this case, Algorithm A pushes in @) the smallest valid extended move M
(thus, the state of @ becomes S|M). Let us prove it is also the case for Algorithm dist_search,
independentely from the type of M. We prove that there exists a sequence M’ of moves that is
equivalent to M, and such that, after the next step, the state of Qyirtuar becomes Syipyar| M.

e Case A.2.1: M is of type (a;,a;,p).

We consider only the case ¢ > 1, the case i = 1 follows easily this study. In this case, for
any 1 < j <1, a;j is guarding some node v; that has more than one incident contaminated
edge, and a; is the searcher with the smallest ID at v;. Moreover, the node v; where
searcher a; stands has only one incident contaminated edge. Let p be the port number
corresponding to this single contaminated edge. Executing Algorithm dist_search, a;
applies the decide() procedure. Applying this procedure, searcher a; writes (ST, 1,2) and
sends (move, 1) to as. For any 2 < j <, searcher a; receives (move, j — 1) from a;_; and
writes (RT,j,j — 1). Applying Procedure decide(), searcher a; writes (ST, 7,5 + 1) and
sends (move, j) to aj;1. When a; receives the message (move,i—1) from a;_1, it applies the
decide() procedure that calls Procedure clear_edge(CC,i,p). Thus, a; writes (CC,4,p) on
the whiteboard of v; and takes the edge corresponding to port p of v;, clearing this edge.
Then, searcher a; arrives at a new node v. Finally, a; writes (AC,i,q) and (ST,i,1) on
the whiteboard of v. We push the move (a; — a;,p) in Qyirtuqr- Thus, the state of Quiryal
becomes Syirtuar|(ai — @i, p) which is strongly equivalent to the state S|(a;,a;,p) of Q.

e Case A.2.2: M is of type (a1,a;,p) with j > 1.

In this case, searcher a; is the searcher with the smallest ID, that stands at a contaminated
vertex, say v;. In particular, searcher a; stands at a clear vertex, say v, and is aiming at
helping searcher a;. a; applies Procedure decide(). Since the vertex vy is clear, a; pushes
(JJ,1,2) and applies Procedure join(2) after having set terminate to true. Similarily to
the Case A.1, this procedure asks a; to try helping every possible searcher a;, for 3 <14 < j.
For any 7+ = 3,...,5—1, since searcher a; does not need help, searcher a; applies Procedure
back() after having reached a;. Then a; goes back to v; and applies join(i + 1) (cf., Case
A.1). When a; eventually reachs a; at vj, the state variable terminated of a; is set to
false. The virtual stack satisfies Qyirtual = Svirtuat| (@1 = aj,71)| -+ |(a1 — aj,ry) where
T1,...,7p is the sequence of port numbers from v; to the node where a; meets a;. Let p be
the smallest port number of a contaminated edge incident to v;. Then, searcher a; applies
Procedure clear_edge(CJ,1,p), that is, he writes (C'J,1,p) and clears the corresponding
edge. The move (a1 — a1,p) is pushed in Quirtue;- Thus, the smallest valid extended
move is performed in both algorithms. Moreover, after this step, the state of Quirtuar 18
Svirtuatl(@1 = ag,p1)| - |(a1 = aj,pp))|(a1 — a1,p), which is strongly equivalent to the
state S|(a1,aj,p) of Q.

e Case A.2.3: M is of type (a;,a1,p) with ¢ > 1.

In this case, for any ¢ < i, searcher a, is alone at a vertex vy, with more than one con-
taminated incident edge. Moreover, searcher a; stands at v;, a clear vertex or a vertex
occupied by a searcher ay, with ¢ < 4. In the distributed algorithm dist_search, a;
applies Procedure decide(). Applying this procedure, searcher aq writes (ST,1,2) and
sends (move, 1) to as. For any 2 < j <, searcher a; receives (move, j — 1) from a;_; and
writes (RT,j,j — 1). Applying Procedure decide(), searcher a; writes (ST, 7,5 + 1) and
sends (move, j) to aj;1. When a; receives the message (move,: — 1) from a;_1, it applies
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the decide() procedure that calls Procedure join(l). This procedure is called until a;
eventually joins a;. Let P = wq,ws,...,w, be the path followed by a; from w; = v; until
wy = v1. Let p; (resp., ¢j) be the port number of the edge {w;, w;y1} at w; (resp., wji1).
At every node wj, j > 2, searcher a; writes (AH,i,q;—1) during the execution of join().
In Quirtual, we push (a; — a1,p;) for j =1,...,r — 1. At w,, searcher a; writes (ST,1,1)
and sends the message (help,i) to searcher ay. Then, ay writes (RT,1,%) and (CJ,1,p),
and clears the corresponding edge. The move (a; — a1,p) is pushed in Quirrua;- Thus,
the smallest valid extended move is performed in both algorithms. Moreover, after this
step, the state of Quirtual 18 Svirtuat|(@i — a1,p1)|---|(ai — a1,pr)|(ar — a1,p), which is
strongly equivalent to the state S|(a;,a1,p) of Q.

5.1.3 Case A.3

Case A.3 assumes that there does not exist a valid extended move according to the current state
of the stack (). Therefore, Algorithm A pops the last executed extended move M from S =
S'|M. Let us prove that Algorithm dist_search does the same. Let us assume that a; (i > 1)
has cleared the last edge e = (v, w) by taking the port p of v. Recall that Syirtuar = Sypp0ml M’
with M’ a sequence of moves equivalent to M. There are three cases two be considered:

e Case A.3.1: M = (a;,a;,p). In this case, M’ is the 1-element sequence (a; — a;,p).

e Case A.3.2: Thereis k > s > i such that M = (a;,as,p). In this case, searcher a; leaves a
vertex, say v; to join searcher a4 at vertex v. Then searcher a; clears the edge corresponding
to the port p of v. Let P = wy,ws,...,w, be the path followed by «a; from w; = v; until
w, =v. Let p; (resp., ¢j) be the port number of the edge {wj,w;41} at w; (resp., wji1).
By the induction hypothesis, M' = (a; — as,p1)|- - |(a; = as,pr)|(a; = ai, D)

e Case A.3.3: Thereisk > s > i such that M = (as, a;,p). In this case, searcher as leaves a
vertex, say vs to join searcher q; at vertex v. Then searcher a; clears the edge corresponding
to the port p of v. Let P = wq,ws,...,w, be the path followed by a, from w; = v, until
wy =v. Let p; (resp., gj) be the port number of the edge {w;,w;41} at w; (resp., wji1).
By the induction hypothesis, M’ = (as — a;,p1)|- - |(as = ai,pr)|(a; — ai,p)

Searcher a; has arrived at the node w by port number, say ¢, and a; has pushed (AC, 1, q).
If 7 > 1, a; has also pushed (ST,i,1) and sent (move,i) to a1, who has pushed (RT,1,%) at its
current vertex. Then, searcher a; applied Procedure decide(). Since there does not exist any
valid extended move, it means that, for any 1 < j <k, searcher a; is at a vertex v; which has
more than one incident contaminated edge, and for any 1 < j < ¢ < k, v; # vp. For any j < k,
a;j writes (ST,7,7 + 1) and sends (move, j) to a;j41 by applying Procedure next_searcher(j)
in Procedure decide(). Then searcher a;y1 pushes (RT,j + 1,7) at its current vertex before
applying Procedure decide() too. When ay receives the message (move,k — 1) from aj_1, it
applies Procedure decide() that calls Procedure back(). Then, ay pops (RT, k,k — 1) and sends
(sorry, k) to searcher ay_;. For any j > 1, a; receives (sorry,j + 1) from a;j;1. Then searcher
a; applies Procedure back() that pops (ST, j,j+1), then pops (RT,j,j—1), and sends (sorry, j)
to aj_1. When a; receives (sorry,2), a; applies Procedure back() that pops (ST,1,2), then
pops (RT,1,i), and sends (sorry,1) to a;. By applying Procedure back(), a; pops (ST,i,1),
then (AC,i,q). Finally, a; puts cleared_port|q] to false and goes back to v (letting the edge
e be recontaminated). Searcher a; arrives in state BACKTRACK by port number p. THus, the
move (a; — a;,p) is popped from Quirtuqi- Then a; puts cleared_port[p] to false. Thus, the
edge e is known to have been recontaminated and a; has returned to his previous position.
Thus, both algorithms have backtracked the clearing of the last cleared edge. Note that in the
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three subcases, we only popped the move (a; — a;j,p). Thus, the new state of Q;riuar depends
on the case:

o Case A3.1: S

irtual
o Case A3.2: S, N(a; = as,p1)|---|(a; = as,pr)
o Case A.3.3: S.. uullas = ai,p1)|---|(as = ai,pr)

Therefore, S/, . is equivalent to the state S’ of @) (strongly equivalent in case A.3.1, and

weakly equivalent in both other cases).

5.2 Group B

Cases in Group B assumes that @) and Qyirtuq; have been achieved by backtracking the clearing
of an edge. Let M be the extended move popped by Algorithm A during the previous step. Let
S and Syiruar be the states of ) and Qyirruer at this step of both algorithms. Thus, there exist
1 > 1, a vertex v, a port p of v corresponding to an edge e, such that searcher a; has just arrived
back in state BACKTRACK, at the vertex v, by port p, letting the edge e be recontaminated.
Thus, in these cases, the next step of the execution of Algorithm dist_search starts with the
a; applying Procedure back().

5.2.1 Case B.1

Case B.1 assumes that there exists a valid extended move larger than M. In this case, Algorithm
A pushes the smallest valid extended move M’ = M in Q. In the following, M’ can be of three
different types defined bellow. Let us prove that Algorithm dist_search executes a sequence
of moves equivalent to M'. There are 3 cases depending on the type of the extended move M.

e Case B.1.1: M = (a;,a;,p). This case occurs after the removal operation as in case
A.3.1. Thus S and Sy are actually strongly equivalent. In this case, there exist
i <j<{f<kand0 < g <n such that there exists an extended move M' = (a;,ar,q)
larger than M. That is, j is the smallest ID larger than ¢ such that a; can perform a valid
extended move. By applying Procedure back(), a; pops (CC,i,p) at v. Thus, a; calls
procedure next_searcher(i), then pushes (ST,i,7 + 1) at v, and sends (move,i) to a;i.
In the same way as for Case A.2, the message (move,j — 1) is received by a; which can
perform a valid extended move. As for Case A.2, searcher a; performs this move and we
push in Qi e @ sequence of moves equivalent to M'. Thus, both stacks remains strongly
equivalent.

e Case B.1.2: M = (a;,a;,p) with i < j.

This case occurs after the removal operation as in case A.3.2. Thus S and Sy,jrtua are
weakly equivalent. More precisely, there exit a state S),, . that is strongly equivalent
to S and a sequence (pi,...,pr—1) of port numbers, such that Syiruar = S);ual (@i —
aj,p1)|---|(a; = aj,p—1). Let v; (resp., vj) be the vertex where searcher a; (resp., a;)
stands in the configuration associated to S| ., .. Note that v; = v. (p1,...,p—1) is
exactly the sequence of port numbers that searcher a; has followed along a path from
v; to v;. Let P = wy,---,w; be this path, with w; = v; and w; = v;. More precisely,
the configuration associated to Syirtuar is got from the configuration associated to S7, . .
(which is also the configuration associated to S) by moving searcher a; along the path
from v; to v; by following the sequence (p1,...,pi—1) of port numbers. Let ¢ be the port

number of v; corresponding to the edge {w;_1,v;}. Recall that, when it had joined a; at
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vj, searcher a; had written (AH,i,q). Then, since 7 < 7, a; had written (CJ,%,p) and had
cleared the edge.

To prove that both stacks remain equivalent, we consider the type of the extended move
M’'. There are three cases:

— Case B.1.2.a: there is a port number r < n of vj;, larger than p such that the
corresponding edge is contaminated. In this case, M' = (a;, a;,7).

— Case B.1.2.b: there is a searcher with ID ¢ < k, larger than j, at vertex vy, and a
port number r < n of vy such that the corresponding edge is contaminated. In this
case, M' = (aj,ay,7).

— Case B.1.2.c: there is a searcher with ID ¢ < k, larger than ¢, at vertex v,, that can
preform a valid extended move. That is, there exist £ < v < k and r < n such that
M' = (ag, ay,T).

Note that the extended move in Case B.1.2.a is smaller than the extended move in Case
B.1.2.b that is smaller than the extended move in Case B.1.2.c.

Now, let us consider what is the execution of Protocol dist_search after having back-
tracked the clearing of e. By applying Procedure back(), a; pops (CJ,i,p). Then, Algo-
rithm dist_search first checks whether there exists a port number r» > p of a contaminated
edge incident to v;. Let us assume that such a port number exists. This corresponds to
the Case B.1.2.a:

— Algorithm A pushes M’ = (a;,a;,r) in Q. Searcher a; pushes (CJ,i,7) at v; and
clear the corresponding edge, arriving at a new node by port, say o. Searcher a;
pushes (AC,i,0) and (ST,i,1) at the new node, and then send message (move,i) to
a1. We push (a; = a;,7) in Quirtuar- Thus, the state of @ is S|M{ and the state
of Quirtuat 18 Sy;rpual(@ = aj,p1)| - (@i = aj,pi—1)|(a; = a;,7). Therefore, both
stacks are strongly equivalent.

Now, let us assume that there does not exist a port number of v;, larger than p, corre-
sponding to a contaminated edge. In this case, a; applies Procedure back(). Therefore,
it pops (AH,1,q) from the whiteboard of w; = vj, and returns to w;_;. At every node
wy, for f =t —1,...,2, searcher a; arrives in state BACKTRACK, and thus pops the local
stack, that contains (AH,%,qyr) where ¢y is the port number leading to ws_;. As a result,
it goes to wy_; using port g;_;. Simultaneously, we pop (a; — a;,py) that we had previ-
ously pushed in Qyjriuqr- Eventually, a; is back at v; in state BACKTRACK. At this stage
of the execution of dist_search, the current state of Qirtuar 1S S, that is strongly
equivalent to S. Then, by applying Procedure back(), a; pops (JJ,i,7). Then, Algorithm
dist_search checks whether searcher a; can help a searcher with ID larger than j. By
applying Procedure back(), a; pushes (JJ,,j+1) and applies Procedure join(j+1). Sim-
ilarily to the Case A.1, this procedure asks a; to try helping every possible searcher a;, for
j+ 1 < k. Let us assume that there is a searcher with ID ¢ < k, larger than j, at vertex
vy, and a port number r < n of vy such that the corresponding edge is contaminated. This
corresponds to the Case B.1.2.b:

— Algorithm A pushes M’ = (a;,ay,7) in Q. For any f = j+1,...,¢— 1, since searcher
ay does not need help, searcher a; applies Procedure back() after having reached ay.
Then a; goes back to v; and appliesjoin(f + 1) (cf., Case A.1). When a; eventually
reachs ay at vy, the virtual stack satisfies Quirtual = Svirtuat| (@i = a¢,p1)| -+ |(a; —
ag,pt) where p1,...,p; is the sequence of port numbers from v; to vy. Then, searcher
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a; applies Procedure clear_edge(CJ,i,r), that is, he writes (CJ,4,7) and clears the
corresponding edge. The move (a; — a;,r) is pushed in Quiruar- Thus, the smallest
valid extended move is performed in both algorithms. Moreover, after this step,
the state of Quirtuar 18 Svirtuat| (@i — ag,p1)|--+|(a; = ag,pt)|(a; — ai,7), which is
strongly equivalent to the state S|(a;,as, 1) of Q.

Now, we consider the case where there is no £ > j such that searcher a, stands at a vertex
vy incident to a contaminated edge. Thus, a; reachs back v; after having tried to help any
searcher ay, for j < £ < k (by iteratively applying Procedure join() as for the previous
case). At this stage of the execution dist_search, the current state of Quirtuar 15 S, 10ar
that is strongly equivalent to S (the current state of Q). When a; reachs back v;, it pops
(JJ,i,k). Thus, Procedure back() calls Procedure next_searcher(i). Therefore, a; pushes
(ST,i,i+ 1) and sends (move,i) to searcher a;11. Let us assume that there is a searcher
with ID ¢ < k, larger than ¢, at vertex vy, that can preform a valid extended move. This
corresponds to the Case B.1.2.c:

— In this case, there exist / < u < k and r < n such that Algorithm A pushes
M' = (ag,ay,r) in Q. As for the case A.2.3, for any i < f </, searcher ay receives
(move, f — 1) from ay_; and writes (RT, f,f — 1). Applying Procedure decide(),
searcher ay writes (ST, f, f + 1) and sends (move, f) to ay;1. When a, receives the
message (move,? — 1) from ay 1, it applies the decide() procedure. Then the move
m' is performed as for the case A.2. Thus, both stacks become strongly equivalent.

Case B.1.3: M = (a;,a;,p) with i < j.

This case occurs after the removal operation as in case A.3.3. Thus S and Syjrtua are
weakly equivalent. More precisely, there exit a state S) ., . that is strongly equivalent
to S and a sequence (p1,...,p;—1) of port numbers, such that Syirtuar = Shippuarl (@5 —
ai,p1)|---|(a; — ai,pi—1). Let v; (resp., v;) be the vertex where searcher a; (resp., a;)
stands in the configuration associated to S, .. Note that v; = v. (p1,...,p—1) is
exactly the sequence of port numbers that searcher a; has followed along a path from
vj to v;. Let P = wy,---,w; be this path, with wy = v; and w; = v;. More precisely,
the configuration associated to Syiryqr 18 got from the configuration associated to S, ... .;
(which is also the configuration associated to S) by moving searcher a; along the path
from v; to v; by following the sequence (p1,...,p;—1) of port numbers. Let ¢ be the port
number of v; corresponding to the edge {w;_1,v;}. Recall that, when it had joined a; at
v;, searcher a; had written (AH,j,q). Then, since i < j, a; had pushed (ST,j,i) at v;
and sent (help,j) to searcher a;. Then, searcher a; has pushed (RT,1,7) and (CJ,i,p) at
v;, and had cleared the edge.

To prove that both stacks remain equivalent, we consider the type of the extended move
M'. There are three cases:

— Case B.1.3.a: there is a port number r < n of v;, larger than p such that the
corresponding edge is contaminated. In this case, M' = (a;, a;, 7).

— Case B.1.3.b: there is a searcher with ID ¢ < k, larger than i, at vertex vy, and a
port number r < n of vy such that the corresponding edge is contaminated. In this
case, M' = (aj,ap,r).

— Case B.1.3.c: there is a searcher with ID ¢ < k, larger than j, at vertex vy, that can

preform a valid extended move. That is, there exist £ < v < k and r < n such that
M' = (ag,ay,T).
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Note that the extended move in Case B.1.3.a is smaller than the extended move in Case
B.1.3.b that is smaller than the extended move in Case B.1.3.c.

Now, let us consider what is the execution of Protocol dist_search after having back-
tracked the clearing of e. By applying Procedure back(), a; pops (CJ,i,p). Then, Algo-
rithm dist_search first checks whether there exists a port number r» > p of a contaminated
edge incident to v;. Let us assume that such a port number exists. This corresponds to
the Case B.1.3.a.

— As for the case B.1.2..a, searcher q; clears the edge corresponding to the port number
r and both stacks remain strongly equivalent.

If there does not exist a port number of v;, larger than p, corresponding to a contam-
inated edge, a; applies Procedure back(). a; pops (CJ,i,p), then (RT,i,j), and sends
(messsorry,i) to searcher aj. Then, searcher a; applies Procedure back(). Therefore,
it pops (ST,7,i) and (AH,i,q) from the whiteboard of w; = wv;, and returns to w;_;.
At every node wy, for f = ¢t —1,...,2, searcher a; arrives in state BACKTRACK, and
thus pops the local stack, that contains (AH, j,qr) where ¢; is the port number of w;
leading to wy_;. As a result, it goes to wy_; using port gy_;. Simultaneously, we pop
(aj = a;,pr) that we had previously pushed in Quirtuar- Eventually, a; is back at v; in
state BACKTRACK. At this stage of the execution of dist_search, the current state of
Quirtual 18 Sl pa that is strongly equivalent to S. Then, by applying Procedure back(),
a;j pops (JJ,j,%). Then, Algorithm dist_search checks whether searcher a; can help a
searcher with ID larger than ¢. Then, Case B.1.3.b is similar to Case B.1.2.b, and Case
B.1.3.c is similar to Case B.1.2.c. Thus, both stacks become strongly equivalent.

5.2.2 Case B.2

Case B.2 assumes that there does not exist a valid extended move greater than M. In this
case, either S = () or there is a valid move M’ and a sequence of valid extended moves S’ such
that S = S'|M’'. In the former case, Algorithm A claims that another searcher is required. In
the latter case, Algorithm A pops M’ from ). Let us prove it is also the case for Algorithm
dist_search. There are four cases according to whether S = () or what is the type of M’.

e Case B.2.1If S = (), there are two case. Either £k = 1 and u( has more than one incident
edge, or k > 1. In the former case, searcher a; applies Porcedure decide(), then Proce-
dure back() that asks for a second searcher. In the latter case, M must be the extended
move (ag,ar_1,p) where p is the greatest port number of ug. Indeed, if M is not this
extended move, then an extended move greater than M would be valid. In this case,
searcher aj_q1 has just arrived in state BACKTRACK, at vertex ug by port p. Moreover,
all searchers are standing at ug. Beside, the whiteboard of ug contains exactly the se-
quence ((ST,1,2),(RT,2,1),---,(ST,i,i+1),(RT,i+1,3),---, (ST, k —1,k), (RT, k,k —
1),(JJ, kk —1),(ST,k,k —1),(RT,k — 1,k),(CJ,k —1,p)). Thus, Syirtua = 0. Thus, Q
and Qyirtuar are strongly equivalent. Moreover, it is easy to check that Procedure back()
asks for a (k + 1) searcher.

Let us assume that S # (). Recall that in Case B., a searcher a; has just arrived back in
state BACKTRACK, at the vertex v, by port p, letting the edge e be recontaminated. Thus, in
these cases, the next step of the execution of Algorithm dist_search starts with the a; applying
Procedure back().
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Let f = (v',w') be the edge cleared by the move M'. Let s < k be the Id of the searcher
that has cleared f, arriving by port 7' of w’. Let r be the port number of v’ corresponding to
f. Let us consider the three possible types for the move M’

o Case B.2.2 M’ = (a,,a,,7). In this case, there is a sequence of valid moves S,
strongly equivalent to S’, and a sequence of valid moves M iuq equivalent to M such

/
that S’uirtual = Sm'rtual|(a5 — Qs, T)|Mvirtual-

e Case B.2.3 There is s’ < s such that M’ = (as,ay,r). In this case, there is a sequence of
valid moves S/ . . strongly equivalent to S’, a sequence of valid moves My;1yq; equivalent
to M and a sequence (pi,...,pi—1) of port numbers, such that Syirwa = S, pul(@s =
as’ap1)| T |(as — as’apt71)|(as — QSaT)|Mvirtual-

e Case B.2.4 There is s’ < s such that M’ = (ay,as,r). In this case, there is a sequence of
valid moves S;}irtu o Strongly equivalent to S’, a sequence of valid moves M, tyq1 equivalent
to M and a sequence (pi,...,p;—1) of port numbers, such that Syiriua = S, pual(@s —

as,p1)| -+ [(ag = as,pi—1)|(as — as, )| Myirtual-

After having cleared f, searcher a4 has pushed (AH, s,7'), then (ST, s, 1), and sent (move, )
to searcher a1. Then a; applies the decide() procedure. Applying this procedure, searcher aq
writes (ST, 1,2) and sends (move, 1) to as. For any 2 < j < i—1, searcher a; receives (move, j—1)
from a;_; and writes (RT, j, j—1). Applying Procedure decide(), searcher a; writes (ST, j,j+1)
and sends (move, j) to a;+1. When a; receives the message (move,i — 1) from a;_1, it pushes
(RT,i,i — 1) at its current vertex v;, and applies the decide(). Let v; be the vertex where a; is
standing at this stage of the execution of Protocol dist_search.

Let us consider the type of the extended move M. Let p < n be the port number of v
corresponding to e. Since there are no valid extended move larger than M, only three cases are
possible:

e M = (aj,a;,p) and for any i < j < k, searcher a; stands alone at a vertex, say v;. By
backtracking such a move, Protocol dist_search insures that () and Qy;ytyq; are strongly
equivalent (cf., Case A.3.1). Thus, v = v;. In this case, searcher a; arrives back at v in
state BACKTRACK. Applying Procedure back(), a; pops (CC,i,p), pushes (ST,i,i + 1)
at v;, and sends move,i) to searcher a;y1. For any i+ 1 < j < k, searcher a; receives
(move, j —1) from a;_; and writes (RT', 7,5 —1). Applying Procedure decide(), searcher a;
writes (ST, j,j+1) and sends (move, j) to a;+1. When ay, receives the message (move, k—1)
from aj_1, searcher aj applies Procedure decide(), then Procedure back(). Searcher ay
pops (ST, k,k — 1) and sends (sorry, k) to ay_i. For any k > j > i, searcher a; receives
(sorry,j + 1) from a;41 and pops (ST,j,j + 1). Applying Procedure back(), searcher a;
pops (RT,j —1,7) and sends (sorry, j) to aj_i. When searcher a; receives (sorry,i+1),
it pops (ST,4,i + 1), and then pops (RT,%,7 — 1) from the local stack of v;.

e i < k, M = (a;,ar,p) and for any 7 < j < k, searcher a; stands alone at a vertex,
say vj. In this case, there exit a state S/, . that is strongly equivalent to S and a se-

quence (p1, ..., pi—1) of port numbers, such that Syirtuar = Syl (@i = akyp1)| - (@i —
ap,pi—1). Note that in the configuration associated to S, . (resp., to Syirtyal), searcher
a; stands at v; (resp., v). Searcher a; stands at v in both configurations. (p1,...,pi—1)

is exactly the sequence of port numbers that searcher a; has followed along a path from
v; to v. Let P = wy,---,wy be this path, with wy = v; and w; = v. For 2 < f < ¢, let
¢r br the port number leading of wy corresponding to the edge {vs_i,ws}. Recall that,
a; had followed the path P to join a;. Then, searcher a; had written (AH,i,q;). Then,
since i < j, a; had written (CJ,4,p) and had cleared the edge.
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Now, let us consider what is the execution of Protocol dist_search after having back-
tracked M. Arriving at v, by port p, in state BACKTRACK, a; applies Procedure back().
Therefore, it pops (AH,i,q;) from the whiteboard of v, and returns to w; ;. For f =
t —1,...,2, searcher a; arrives in state BACKTRACK at every node wy. Then, it pops
the local stack, that contains (AH,%,qr). As a result, it goes to wy_; using port gr_;.
Simultaneously, we pop (a; — ag,p f) that we had previously pushed in Qu;ytuar- Eventu-
ally, a; is back at v; in state BACKTRACK. At this stage of the execution of dist_search,
the current state of Quirtuar 18 Sl that is strongly equivalent to S. Then, by apply-
ing Procedure back(), a; pops (JJ,i,k), pushes (ST,i,i + 1) at v;, and sends move, i) to
searcher a;1. For any ¢ +1 < j < k, searcher a; receives (move,j — 1) from aj—1 and
writes (RT,j,j — 1). Applying Procedure decide(), searcher a; writes (ST, 7,5 + 1) and
sends (move, j) to aj+1. When a;, receives the message (move,k — 1) from aj_1, searcher
ay applies Procedure decide(), then Procedure back(). Searcher ay pops (ST, k,k—1) and
sends (sorry, k) to ap_i. For any k > j > i, searcher a; receives (sorry,j +1) from a;j 1
and pops (ST,j,j7 + 1). Applying Procedure back(), searcher a; pops (RT,j — 1,j) and
sends (sorry,j) to aj_i. When searcher a; receives (sorry,s + 1), it pops (ST,4,7 + 1),
and then pops (RT,i,i — 1) from the local stack of v;.

e i =k and M' = (a;,a_1,p). Similarily to the previous case, we can prove that there is a
round of the execution of dist_search when a; pops (RT, 1,7 — 1) from the local stack of
v;.

Thus, whatever be the type of M, there is a round of the execution of dist_search when
a; pops (RT,i,i — 1) from the local stack of v;. Moreover, at this round, Q and Qitue are
strongly equivalent.

If i = k, searcher ay applies Procedure back(). Otherwise, a; calls Procedure next_searcher(i),
pushes (ST,4,7 4 1) and sends (move,%) to a;41. Then, for ¢ < j < k, aj pushes (RT,j,5 — 1)
and (ST, 7,7 + 1) at its current node, and sends (move, j) to aj;1. When aj, receives message
(move, k — 1), it applies the back() procedure. Searcher aj sends (sorry,k) to searcher ap ;.
Then, for k£ > j > 4, a; pops (ST,j,5 + 1) and (RT,j,j — 1), and sends (sorry,j) to a;_i.
Finally, a; receives (sorry,i + 1) from searcher a;;1, and applies Procedure back(). For any
i > 7 >s,aj pops (ST,j,5 + 1) and (RT,j,7 — 1), and sends (sorry,j) to a;_;. Finally, a,
receives (sorry, s+ 1) from searcher as11 and applies Procedure back(). Then, searcher as pops
(AC, s,r") from the local stack of w'. Then, it goes back to v’ in state BACKTRACK, letting
recontaminated the edge f. We pop (as — as,7) from Qyuirtuqr- Thus, in Case B.2.2 (resp.,
B.2.3 and B.2.4), @ and Qyjrtua becomes strongly equivalent (resp., weakly equivalent).

We have proved, that in any case, both stack remain equivalent after a step of the execution
of Protocol dist_search (that is, they represent the same search strategy). Moreover, both
algorithms terminate in the same state. Thus, the proof of Theorem 1 follows directly from
Theorem 2.

5.3 Size of whiteboards

Lemma 6 Let G be a connected n-node graph. Let m > 0 be the number of edges of G. During
the execution of dist_search, at most O(m logn) bits are stored in any node’s whiteboard.

Proof. Recall that a trace is a triple (X, a,z) where X is a symbol, a is a searcher’s ID, and
x is either a port number, or a searcher’s ID, depending on symbol X. Let ¢; and Z2 be two
steps of the execution of protocol dist_search satisfying (1) an edge f is cleared during step
t1, (2) an edge e is cleared during step t2, and (3) all edges that have been cleared between
steps t; and t9, have been recontaminated (i.e., the clearing of each of these edges has been
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backtracked). Let size(v,t) be the number of traces that are written on the whiteboard of
vertex v at step ¢ during the execution of protocol dist_search. We prove that, for any vertex
v € V(G), size(v,t2) — size(v,t1) = O(logn).

Let us assume that the clearing of the edge e at step ¢y consists of the following sequence
of moves. A searcher a;, 1 <i <k, joins another searcher a;, 1 < j <4, and searcher a; clears
edge e. This is the case where the number of traces is the greatest possible. Let v; (resp., v;)
be the vertex where a; (resp., a;) is standing after the clearing of the edge f at step ¢;. Note
that if ¢; is the first step, then v; = v; = vg. If ¢; is not the first step, then let a,, £ > 1, be the
searcher that has cleared f. After having cleared f, a; sends the message (move, /) to a;. Then,
for any ¢, 1 <t < i — 1, the message (move,t) is transmitted from searcher a; to searcher a;;1
until message (move, i — 1) reachs a;. By Procedure next_searcher(), if more than two searchers
are on the same node, then only the two smallest ones receive the message. It is unnecessary
to send the message to the other ones. Indeed, if the two smallest ones cannot do anything,
then the others searchers cannot do neither. Thus, between the clearing of the two edges f and
e, at most two traces of type (RT,/,s) and two traces of type (ST,/,s) are written on each
whiteboard.

Let s1 be the step during the execution of protocol dist_search when a; receives (move,i—1)
from searcher a;_;. Let sy be the step when a; decides to try to help a;. After the step si,
searcher a; first tries to help all searchers a,, p < j. Since all these moves have been backtracked,
all traces that have been written by searchers between steps s; and so have been erased.

At step so, searcher a; decides to join a; and pushes (JJ,4,j) at v;. By joining a;, a; pushes
a trace (AH,i,j) on every whiteboard along the path between v; and v;. Finally, a; sends
message (help, ) to a; that clears the edge e. That is, searcher a; pushes (ST, j) at v;. Then,
searcher a; pushes (RT,j,i) and (CJ,j,p) at v;. Finally a; clears the edge e, and it pushes
(AC,j,q) and (ST, j, 1) at the other end of e.

To summarize, on every whiteboard, have been written at most three traces of type (RT, 4, s),
three of type (ST,/¢,s), and one for each of the types (JJ,i,j), (AH,i,j5), (CJ,j,p) and
(AC,j,q). Thus, when an extended move is performed, at most O(1) traces are written on
each whiteboard, i.e., at most O(logn) bits are written on each whiteboard.

Since there are m extended moves in total, at most O(m logn) bits are written on each
whiteboard. [ |

6 Conclusion

We have described a distributed search protocol that captures an intruder in any network,
starting from any entry point in the network, and using a minimum number of searchers for
this task. This result opens a wide field of investigations.

e First, it would be interesting to reduce the memory of the searchers, and the size of the
whiteboards. More precisely, is it possible to achieve the same performances as protocol
dist_search using searchers modeled as finite automata? (In our case, the searchers have
O(log k)-bit memory when k searchers are used). Also, what is the minimum size of the
whiteboards that would enable achieving the same performances as protocol dist_search?

e Our distributed protocol eventually computes a monotone and connected search stratey
using the optimal number of searchers. Nevertheless the strategy that is performed by
our protocol is not monotone. In fact, the number of moves performed by our strategy
may be exponential (recall that computing the monotone connected search number of a
graph is NP-complete). Is it possible to design a distributed protocol that performs in
polynomial time, at the price of relaxing some other constraint?
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— For instance, it is known that the connected monotone search number of a graph
is at most logn times its search number [21]. Thus, it makes sense to ask whether
it is possible to design a distributed protocol that performs in polynomial time,
using a number of searchers bounded by the search number of the network times a
polylogarithmic function of n.

— Also, it would be interesting to analyse the impact of introducing some parallelism in
the actions of the searchers, in order to reduce the time complexity of our protocol.

— Last but not least, what is the minimum quantity of information about the graph’s
topology that must be provided to the searchers, so that they can clear all graphs in
a connected monotone way?

e Finally, is it possible to design a distributed protocol that eventually computes a non-
monotone connected search strategy? Recall that although non-monotone connected
search strategies may require less searchers than monotone ones [31], they are much more
difficult to design, even in the centralized setting. For instance, it is even unknown
whether a 1-certificate checkable in polynomial time exists for non-monotone connected
graph searching.
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