N

N
N

HAL

open science

On-line Bicriteria Interval Scheduling

Fabien Baille, Evripidis Bampis, Christian Laforest, Nicolas Thibault

» To cite this version:

Fabien Baille, Evripidis Bampis, Christian Laforest, Nicolas Thibault.

Scheduling. Euro-Par 2005, 2005, Portugal. pp.312-322, 10.1007/11549468 36 . hal-00341367

HAL Id: hal-00341367
https://hal.science/hal-00341367
Submitted on 18 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

On-line Bicriteria Interval

https://hal.science/hal-00341367
https://hal.archives-ouvertes.fr

On-line Bicriteria Interval Scheduling

Fabien Baille, Evripidis Bampis, Christian Laforest, and Nicolas Thibault

LaMI, CNRS UMR, 8042, Université d’Evry,
Tour Evry 2, 523, Place des Terrasses 91000 Evry, France

{fbaille,bampis,laforest,nthibaul }@lami.univ-evry.fr

Abstract. We consider the problem of scheduling a sequence of intervals
revealed one by one in the order of their release dates on a set of k
identical machines. Each interval 7 is associated with a processing time
pi and a couple of arbitrary weights (wf, w?) and may be scheduled on
one of the k identical machines or rejected. The objective is to determine
a valid schedule maximizing the sum of the weights of the scheduled
intervals for each coordinate. We first propose a generic on-line algorithm
based on the combination of two monocriteria on-line algorithms and we
prove that it gives rise to a couple of competitive ratios that are function
of the competitive ratios of the monocriteria algorithms in the input. We
apply this technique to the special case where w = 1 and w? = p; and
as a corollary we obtain a couple of constant competitive ratios.

1 Introduction

We consider the problem of scheduling in an on-line context a set of n intervals
on k identical machines. An interval 7 is defined as a tuple of five positive real
numbers (ri,pi,di,w;“,wf), where r; denotes the release date, p; the processing
time, d; = r;+p; the deadline and w;“ and w? two arbitrary weights. We consider
the following on-line context: Intervals arrive in increasing order of their release
dates (i.e. 11 < r9 < --- < 1r; < ---) and they are not known before their
release dates. Let 0 = 01,...,0, be the sequence of intervals in the input of the
algorithm. For any two intervals o; and o, if ¢ < j then r; < r;. An interval
can either be served, interrupted or rejected. An interval i is said to be served
or accepted if it is alloted exclusively and without interruption (preemption is
not allowed) to one of the k& machines from date r; to date d;. A schedule O
is walid if every served interval is scheduled at most once and if at each date
every machine schedules at most one interval. There are two objective functions
that we called the W4, defined as the sum of the first-coordinate-weights w{‘
of the accepted intervals, and the weight Wg, corresponding to the sum of the
second-coordinate-weights w? of the accepted intervals in O. We search for a
solution that simultaneously maximizes these two objectives. When the context
is more general, we denote the weight of a schedule O by W (O). The particular
weight function w* = 1 (resp. w — i® = p;) corresponds to the well known SIZE
(resp. PROPORTIONAL WEIGHT) problems.

Competitive ratio. In order to analyze the performance of an on-line algorithm,
we use the notion of competitive ratio [4,7]. Let o1,--- ,0, be any on-line se-
quence. For every i, 1 < i < n, let A(o1,--- ,0;) be the schedule returned by the
algorithm A at step 4, i.e. when the first ¢ intervals are revealed, and let O} be
an optimal schedule for some metric C. Then A is said to be p-competitive for
the metric C if, for all 4 (1 < i < n), the following inequality holds:
pC(A(017 T ,Un)) 2 C(O:)

For our bicriteria problem, an algorithm A is said to be (p, u)-competitive if it
is simultaneously p-competitive for the weight W4 and p-competitive for the
weight Wpg.

Previous works. To the best of our knowledge, this is the first work considering
the simultaneous maximization of two different weight functions in an on-line
context. Nevertheless, the off-line version of the bicriteria problem has been
treated in [2] where a (£, £)-approximation algorithm (1 < r < k) has been
proposed. On the contrary, the monocriteria problems have been extensively
studied for both the off-line and the on-line versions. In particular, the off-line
versions are polynomial (see Faigle and Nawijn [6] for the Size and Carlisle
and Lloyd [5] or Arkin and Silverberg [1] for the WEIGHT problems). In the
on-line context, the algorithm GOL of Faigle and Nawijn [6] is optimal for the
SIZE problem. For the WEIGHT problem, there is a series of works going from
the paper of Woeginger, in [8], who proposed a 4-competitive algorithm for the
PROPORTIONAL WEIGHTS problem in a single machine system, to the paper of
Bar-Noy et al. [3] who proposed the LR algorithm which is Z55-competitive for
PROPORTIONAL WEIGHTS in a different model than ours (instead of k¥ machine,
they consider a continuous channel where an interval requires less than a portion
0 of the total channel).

Outline of the paper. In Section 2, we describe a generic on-line algorithm for the
simultaneous maximization of two weight functions W4 and Wg. We prove that
it is a (%p, kfr,u)—competitive algorithm, for 1 < r < k, where p and p are the
competitive ratios of the corresponding monocriteria problems. However, up to
our knowledge no on-line algorithm is available for the general WEIGHT problem.
So, we focus, in Section 3, on the special case of the size and proportional weights
metrics. We first study the monocriteria competitiveness of LR* (the adaptation
of LR in our model of k machines) for the proportional weight criterion. This
result is then combined with the competitive ratio of GOLF (the algorithm GOL
running on k machines) for the size criterion along with the one of our generic
method, allowing us to prove a couple of constant competitive ratios for this
bicriteria case.

2 Our Generic Bicriteria Algorithm.

In this section, we describe our generic bicriteria on-line algorithm. It uses as
subroutines two on-line monocriteria algorithms having the following structure.

Structure of the monocriteria algorithms. At the release date r; of a new interval
03, any on-line monocriterion algorithm can be split into two main stages. In the
first one, called the interrupting stage, a set of already scheduled intervals are
selected to be interrupted at time r;. This set can potentially be empty meaning
that no interval is interrupted when the algorithm considers o;. The second stage
is the scheduling stage. Here, the algorithm can either reject the interval o; or
schedule it on one of the available machines.

The rough idea of our generic algorithm is the following: it simulates the
execution of two algorithms, say A for the maximization of the weight W4 and
B for the maximization of the weight Wg on r and k — r machines, respectively.
By doing this, it builds its own interrupting (resp. scheduling) stage from the
corresponding interrupting (resp. scheduling) stage of the input algorithms.

2.1 The algorithm AB*

We consider the i-th step of an arbitrary algorithm for the WEIGHT problem,
i.e. the step at which interval o; is released. For any algorithm ALG and for
every execution step 4 of this algorithm, let O;, (ALG) (resp. O;, (ALG)) be the
schedule given by ALG after the execution of its interrupting (resp. scheduling)
stage of step i.

Given two algorithms A for the maximization of the weight W4 and B for
the weight Wg, our generic algorithm AB¥ is constructed as follows: AB* builds
the final schedule by combining the schedules returned by algorithms A and B
when applied on r machines and k — r machines, respectively. For the ease of
presentation, we denote by A" (resp. B¥~") the algorithm A (resp. B) when
applied on r (resp. k—r) machines. We also call real (resp. virtual) the machines
involved in the algorithm AB* (resp. A™ and B*~").

For every execution step i of AB*, let R;, (AB*) (resp. Ri,(AB*)) be the
set of scheduled intervals after the interrupting (resp. scheduling) stage of step
i on the real machines associated to AB.

For every execution step i of the algorithm A" (resp. B¥~7), let V;, (A") (resp.
Vi, (B¥=7)) be the set of scheduled intervals after the interrupting stage of step
i on the 7 (resp. k — r) virtual machines associated to A" (resp. B¥~"), and let
Vi, (A7) (resp. Vi, (B*~7)) be the set of scheduled intervals after the scheduling
stage of step i on the r (resp. the k — r) virtual machines associated to A™ (resp.
Bk—T‘)‘

Algorithm AB*

Input: k identical machines and an on-line sequence of intervals o1, ..., o,.
Output: After each step i (1 < i < n), a valid schedule O;,(AB*) involving a
subset of 01,...,0; on k real machines.

Step 0: V(]z (AT) = VOQ (BkiT) = R02 (ABk) =0
Step i (date r;):
1. The interrupting stage of AB*:
(a) Execute the interrupting stage of A" (resp. B¥~") on the r (resp.
k —r) virtual machines associated to A™ (resp. B¥~") by submitting

the new interval o; to A" (resp. B*¥~"). Note that the set of intervals
scheduled and not interrupted by A" (resp. B¥~") is now V;, (A7)
(resp. Vi, (B*7)).

(b) Execute the interrupting stage of AB* on the k real machines as-
sociated to AB* by interrupting the intervals of R(i_1)2(AB’°) such
that after this interruption we get:

Ri, (AB*) = Vi, (A7) U Vs, (BF")
2. The scheduling stage of AB*:

(a) Execute the scheduling stage of A™ (resp. B¥~") on the r (resp. k—r)
virtual machines associated to A" (resp. B¥~") by serving or rejecting
the new interval o;.

(b) Execute the scheduling stage of AB* on the k real machines associ-
ated to AB* by switching to the appropriate case:

i. If A" and B*~" reject oy, then AB* does not schedule (rejects)
o;. Thus, we have:

Ri, (A‘Bk) =Ri, (ABk)

ii. If A" or B¥~" serves o; (including the case in which both A" and
B*~" serve 0;), then AB* schedules o; on any free real machine
at time r;. Thus, we have:

Ria(AB*) = Ry (AB¥) U {o,}

2.2 Competitiveness of AB*

Here, we analyze the competitiveness of AB*. We start with the following lemma
which states that AB* returns a valid schedule and executes the same set of
intervals as the union of A" and B*—.

Lemma 1 For every step i of the algorithm AB*, the schedule O;,(AB¥) is
valid and we have:
RiZ (ABk) = Viz (A'r‘) U Viz (Bk_r)

Proof. We prove this lemma by induction on the execution steps i of AB¥.
The basic case (step 0): By definition Vp,(A") = Vo, (B*™") = Ro,(AB*) =0
and thus, O;, (AB¥) is valid and of course Ry, (AB*) = Vy,(A™) U Vo, (B¥~7).
The main case (step i): Let us assume that O(;_y),(AB¥) is valid and that
Ri—1)s (AB*) = V;_1y, (A") UV(;_1), (B* ") (assumption of induction).
1. The interrupting stage: We first need to prove that:
Ri, (ABk) =V, (A") UV, (Bk_r) and that O;, (ABk) is valid.
(a) By definition, AB¥ interrupts a subset of intervals of R(;_1),(AB*) in
such a way that:

Riy(AB*) = Vi, (A") UV, (B*7) (1)

We have to show that there is always a subset of R(;_1), (AB*) that can
be removed such that the above equality is possible.
Since V;, (A") C V(;—1), (A7), Vi, (B¥7) C V(;_1),(B*™") and given that
Ri—1)s(AB*) = V(i_1),(A") U V(;_1),(B*~") (by the induction hypoth-
esis), we have V;, (A") UV;, (B¥ ") C R(;_1,(AB*).

(b) By definition, AB* interrupts only intervals scheduled in O(;_1),(AB¥),
and by the induction hypothesis, O(;_1y, (AB¥) is valid. Thus, O;, (AB*)
is clearly valid.

2. The scheduling stage: Now, we have to prove that:

Ri, (AB*) = V;, (A™) U V;, (B*7) and that O;,(AB¥) is valid. By the defi-

nition of AB* several cases may occur:

(a) If A" and B*~" reject oy, then AB* does not schedule o; and we have:

i. R, (AB*) = R;, (AB¥) (by the definition of AB¥)
= Vi, (A") UV;, (B*7) (by (1))
= ViQ (AT) uy Vi2 (Bk_T)
(since A” and B*~T reject o;, we have:
Vi1 (Ar) = Vi2 (Ar) and Vi1 (Bk_r) = Viz (Bk_r))
ii. 0;,(AB*) = 0;,(AB*). Thus 0;,(AB¥) is valid (because in item 1b
of this proof, we have already seen that O;, (AB*) is valid).

(b) If A" (resp. B¥~") serves o; and B¥~" (resp. A") rejects o;, then AB*
schedules o; on any free real machine at time r;. We have:

i. Ri,(AB*) =R;, (AB¥) U {0;} (by the definition of AB¥)

= Vi, (A7) UV (B*") U o1} (by (1))

= V'iQ (AT) U Vi2 (Bk_T)
(since A" (resp. B*¥~7") serves o; and B¥~" (resp. A") rejects o;, we
have: V;, (A7) = V;, (A")U{0;} (resp. Vi, (BF—") = V;, (B¥")U{0;})
and Vi, (B¥) = Vi, (BY7) (resp. Vi, (A7) = Vi, (A7)).

ii. Since O;, (AB¥) is a valid schedule (by the item 1b of this proof)
and 0;,(AB*) is built by adding o; to O;, (AB*) only once, the only
reason for which Oy, (AB¥) could not be valid would be because o;
is scheduled by AB* at time r; whereas there is no free machine at
time r;, i.e. because there is at least k + 1 intervals of R;,(AB¥)
scheduled at time r; by AB*. Let us prove that this is impossible.
Indeed, since A” and B*~" build at each time valid schedules, there
are at most r + k —r = k intervals of V;, (A") U V;, (B*~") scheduled
at time r; by A” and B*¥~" and thus, there are at most k intervals of
Ri, (AB*) scheduled at time r; by AB* (because we have just proved
above that R, (AB¥) = V;, (A™) U V;, (B*~")). Thus, O;,(AB*) is a
valid schedule.

(c) If A” and B*~" serve o;, then AB* schedules o; on any idle machine at
time r; and we get:

i. Ri,(AB*) =R;, (AB*) U {0;} (by the definition of AB¥)

= Vi, (A") UV, (BF") U {0} (by 1)

= V'iQ (Ar) U Vi2 (Bk_r)
(since A™ and B¥~" serve o;, we have V;,(A") = V;, (A") U {0;} and
Vi, (B¥7) = Vi, (B*") U{0i})

ii. We prove that 0;,(AB¥) is valid in the same way as before.

0O

A direct consequence of Lemma 1 is that AB* is better than A" (resp. B*~7)
for the weight function that A" (resp. B¥~") maximizes.

Corollary 1 Let W4 and Wi be two arbitrary weight functions. For every input
sequence o1, ...,0, and for each step i (1 < i < n) of the algorithm AB*, we
have:

Wa(Vi, (A7) < Wa(Ri, (AB*)) and Wg(Vi,(B¥~")) < W (R, (AB))

Proof. By Lemma 1, for every step i of the algorithm AB*, we have
Ri, (AB*) = V;, (A") U V;, (B*~7) and thus Corollary 1 is valid. O

In the following lemma, we show that for any type of weight function W, if
an on-line algorithm A is p-competitive for W on k machines, then A" consisting
in applying A on r < k machines is (£p)-competitive compared to an optimal
schedule on k machines.

Lemma 2 Let oy, -- ,0, be any on-line sequence of intervals. Let A an on-line
algorithm with competitiveness p on v machines (r < k) and O}, (resp. O}) be an
optimal schedule of o1, -+ , 0, for the weight function W on k (resp. r) machines
and O, be the schedule returned by A, on o1,--- ,0, on 1T machines. Then,

W (0;) < £oW(0,)

Proof. Since A is p-competitive, we have by definition W(O}) < pW(O,). If we
multiply both sides of this inequation by £, we get 2W(0}) < £pW (0,).

Let O; be the schedule composed of the first r machines of O} in the de-
creasing order of their weights. Since O; is a r-machine schedule, its weight is
at most W(O;). We thus have:

§W(01) < §W(0,’f) < ng(OT) (2)

Since O; is a schedule on r machines executing the intervals scheduled in the r
machines generating the maximum weight in O}, the average weight per machine
in O, is greater than the average weight per machine in Oj. Thus, we have:
% < @. Combining this result with (2), we get: W (0}) < £pW (0,)

O
We finish with the bi-competitiveness analysis of AB* for two general weights.

Theorem 1 Let 0y1,--- ,0, be any on-line sequence of intervals. If A™ is a p-
competitive algorithm for the weight function W4 on r machines and B*~" is a
p-competitive algorithm for the weight function Wg on k —r machines, then the

algorithm AB* using A" and B*~" as subroutines is (% P, kf —It) -competitive.

Proof. Let O;(A) be an optimal schedule of 01,...,0, on k machines for the
weight function W4 and Oj(B) be an optimal schedule of o4,...,0, on k ma-
chines for the weight function Wg. By Lemma 2, we have:
Wa(0;(A)) < £pWa(Vi, (A7) and Wg(0}(B)) < 32 uWi (Viy (BFT))
Moreover, using Corollary 1, we have:
Wa(0;(4)) < 2pWa(Ri,(AB*)) and Wg(0;(B)) < 5 uWr(Ri, (AB*))
Thus AB* is (£p, £ p)-competitive. O

3 Application to the sizE and the PROPORTIONAL WEIGHT

Given that no on-line algorithm is known for general weight functions, we focus
in this section on the particular case where w/! = 1 and w? = p; for every
i=1,...,n,i.e. for the size and proportional weights metrics. We first show that
the optimal on-line algorithm GOL of Faigle and Nawijn [6] can be described
following the two-stages structure presented in the previous section. We also
present in this form the on-line algorithm LRF of Bar-Noy et al. [3]. Recall
that GOLF is optimal for the SizE problem while LR deals with proportional
weights (but for a different model than the one adopted here). Thus, before
using these two algorithms as input for our generic method we need to evaluate
the competitive ratio of the algorithm for our model.

Here is a description of the algorithm GOL*, [6]. It is split into an interrupting
stage and a scheduling stage.

Algorithm GOLF[6]

At the arrival of interval o; do:

Interrupting stage: If there are k served intervals intersecting the date r;,

let 0,42 be the one with the maximum deadline.

If o0max does not exist (there is a free machine), do not interrupt any interval.

If dipes > d; then interrupt omqq-

If dpoz < d; then do not interrupt any interval.

Scheduling stage: If an interval has been interrupted (a machine became

idle) or if there is a free machine, then schedule o; on any free machine. Else,

reject o;.

We now adapt the algorithm LR. In [3], LR is described as an algorithm running
on a continuous channel, where each interval requires a portion (not necessarily
contiguous) of this channel. In our model, instead of a continuous channel, we
consider k machines, and each interval requires exactly one machine. That is why
we give the description of LR* (the adaptation of LR on a discrete model of

k > 3 machines) and the proof of its 1722 -competitiveness. Note that Lemma

k—r
3 and Theorem 2 are just adaptations of the proof of competitiveness of LR
coming from [3] to our model.

Algorithm L R*(adaptation of [3])
We define F} as the set of scheduled intervals containing date .
When o; is revealed do:
Interrupting stage:
o If |F,,| < k, then do not interrupt any interval
o If |F,.,| = k, then:

1. Sort the k + 1 intervals of F,, U {o;} by increasing order of release
dates, if several intervals have the same release date, order them in
the decreasing order of their deadlines and let L be the set of the
[£] first intervals.

2. Sort the k+1 intervals of F,., U{o;} by decreasing order of deadlines
(ties are broken arbitrarily) and let R be the set of the | %] first
intervals.

If 0; € L U R then interrupt any interval o; of F,, — LU R.
Else do not interrupt any interval.
Scheduling stage:
o If |F,,| < k then schedule o; on any free machine.
o If |F,,| = k, then:
* If o; € L U R then schedule o; on the machine where ¢; was inter-
rupted.
x If 0; ¢ L U R then reject o;.

We now describe the notations needed by the proof of the competitive ratio
of LRF. Let O = LR*(0y,--- ,0;) be the schedule on k machines returned by
LRFon gy, ,0;. Let T} be the size of intervals of O containing the date t. Let
F! be the number of intervals of {01, -- ,0;} containing the date t.

Lemma 3 Using the above notations, the schedule returned by LRF satisfies:
Vi, Vt, T} > min{F}, % -1}

Proof. We proceed by induction on i. For i = 1, Vt € [r1,d;), we have:
Tlt = Flt =1 and Vt ¢ [Tl,dl), Tf = Flt =0.
Suppose i > 1. According to the algorithm, two cases may occur:

1. |F,,| < k. In this case, o; is scheduled by LRF and no interval is interrupted.
— If t ¢ [r;,d;), then the number of scheduled intervals which contain the
date t at step ¢ is the same as at step ¢ — 1. Thus, we have T} = T} ;.
Moreover, since t ¢ [r;,d;), we have also F} = F} ;. So, by replacing
Tt , by T} and F!_; by F} in the induction hypothesis, this particular
case is checked.
— If t € [r;,d;), then since o; has been scheduled, we have: T} =T} ; + 1.
By the induction hypothesis, we can rewrite this equation:

T! > 1+ min{F} ,, 5~ 1} (3)
If min{F} ,, £ —1} = £ — 1, then (3) becomes:
Ti>1+4-1=%4>%_1>min{F}, £-1}.
If min{F} ,, £—1} = F} |, then (3) becomes: T} > 1+ F} ,. But since
t € [r;,d;), we have F! = F} | + 1. Thus, we have:
T! > F! —1+1=F}!>min{F}, £ -1}.
2. |F,,;| = k. In this case, three sub-cases may occur:
— If 0; ¢ L and 0; ¢ R. This means that o; is rejected by LR*.
o If t ¢ [r;,d;) then T} =T} | and F} = F! ,. By replacing T} | by
T} and F} | by F} in the induction hypothesis, this particular case
is checked.
e Ift € [r;,d;), since 0; ¢ LUR, there are always at least | % | intervals
containing ¢ in O. Thus, T¢ > |£| > min{F}, £ —1}.
— If 0; € R (including the case where o; is also in L). This means that o;
is accepted by LRF and o, is rejected. Then, since o; is revealed before
0;, we have r; < r;. Furthermore, we have d; < d; otherwise, we would
have o; € R, contradicting the fact that o; is interrupted. We have then
these cases:

BN ES
Il

e For all t ¢ [rj,d;), we have F} = F! , and T{ = T} ;. Thus, by
replacing T} ; by T} and F! ; by F} in the induction hypothesis,
this particular case is checked.

e For all t € [r;,r;), since o; ¢ L, there are at least [£] intervals
containing the date t. Thus, we have: T > [£] > min{F}, & — 1}.

e For all t € [r;,d;), we have Tf = T!_; because o; is deleted but o; is
added. Since o; ¢ R, there are at least | % | intervals containing date
t. Thus, we have T{ > |£| > min{F{, £ —1}.

e For all t € [d;,d;), since o; occupies a machine that was free at step
i — 1 of the algorithm, we have: T} = T} ; + 1. By the induction
hypothesis, we can rewrite this equation:

T! > 1+min{FL,, 5 -1} (4)

If min{F} ;, £ -1} =% — 1, then (4) becomes:

Tf>14+%—-1=%>%_1>min{F}, £-1}.

If min{F} ,, £ — 1} = F} |, then (4) becomes: T} > 1+ F{ ;. But

since t € [r;,d;), we have Ff = F} | + 1. Thus, we have:

T!>F}!—-1+1=F}!>min{F}, £ -1}.

— If 5; € L and 0; ¢ R. This means that o; is accepted by LR* and o,
is rejected. By the on-line context, since the last revealed interval is o;,
all the intervals which do not belong to L have a release date equal to
r; (otherwise they would belong to L). In particular, o; ¢ L because it
is interrupted and thus it satisfies r; = r;. Moreover, by the manner the
algorithm builds L, o; has also a greater deadline than o; (otherwise,
o; € L and thus it would not be interrupted): d; < d;. We have 3 cases
to consider:

e For all t ¢ [r;,d;), we have F} = F} | and T} = T} ;. Thus, by
replacing T} ; by T} and F}_; by F} in the induction hypothesis,
this particular case is checked.

e For all ¢ € [r;,d;), we have Tf = T!_, because o; is deleted but o; is
added. Since o; ¢ R, there are at least | £] intervals containing date
t having a deadline at least d;. Thus, we have:

7! > | £] > min{FY, & —1).

e For all t € [d},d;), since o; occupies a machine that was free at step
i — 1 of the algorithm, we have: T} = T} , + 1. By the induction
hypothesis, we can rewrite this equation:

k
T} > 1+ min{F}_,, 5 1} (5)

If min{F}_;, £ —1} = £ _1, then (5) becomes:
TI>1+%-1=%>%_1>min{F}, £-1}

If min{F! ;, £ — 1} = F} ,, then (5) becomes: T} > 1+ F}_;. But
since t € [r;,d;), we have F! = F! | + 1. Thus, we have

T! > F! =1+ 1 = F! > min{F!, £ —1}. We have checked the
induction step and thus the lemma. O

N =

Theorem 2 For proportional weights (w; = p;), LRF is

2
1

Proof. Let Of be the optimal (off-line) weight schedule of {o71,...,0;}. Let T;*
be the number of intervals of the schedule O containing date t. Let ¢ be a date
of the schedule O returned by LRF on the input sequence oy,--- ,0; and i be
a step of the algorithm. If min{F}, £ — 1} = F! then by Lemma 3, we have
T} > F} > Tyt Now, let us consider the case in which min{F}, £ -1} =% —1.
Since O is valid, we have T} < i
that 2(1-2)=%_1 and by Lemma 3, we obtain:

(- %) (1 —2) = % _1 <T}. Thus, we have for all dates ¢t and for all
steps ir —5 T > Tyt If we sum up thls inequality for all dates ¢, we obtain that
&

1— K3
LR* is

1_2 s -competitive. O
k

Recall that GOL" is an optimal on-line algorithm for the sizE and LR*~" is an

on-line ——competltlve algorithm for the PROPORTIONAL WEIGHTS problem.
k—

So, applying "Theorem 1, we have:

Corollary 2 For all 1 < r < k — 3, AB* applied with A = GOL" and
Bk = LRF-" is (k,m)—competitive for the size and proportional

weights criteria.

Note that the parameter r that can be tuned in order to make AB* more
precise for one of the objectives. For example, If we want AB* to get the same
competitive ratio for the SIZE and for the PROPORTIONAL WEIGHT we had to

set r = k%z and we obtain a couple of competitive ratios of () which

tends towards (3, 3) for large k.

2;1

References

1. E. ARKIN AND B. SILVERBERG, Scheduling jobs with fized start and end times,
Discrete Applied Mathematics, 18 (1987), pp. 1-8.

2. F. BAILLE, E. BAMPIS, AND C. LAFOREST, A note on bicriteria schedules with
optimal approzimation ratios, Parallel Processing Letters, 14 (2004), pp. 315-323.

3. A. BArR-Novy, R. CANETTI, S. KUTTEN, Y. MANSOUR, AND B. SCHIEBER, Band-
width allocation with preemption, SIAM J. Comput., 28 (1999), pp. 1806-1828.

4. A. BorobpIN AND R. EL-YANIV, Online computation and competitive analysis, Cam-
bridge University press, 1998.

5. M. C. CARLISLE AND E. L. LLOYD, On the k-coloring of intervals, Discrete Applied
Mathemetics, 59 (1995), pp. 225-235.

6. U. FAIGLE AND M. NAWLIN, Note on scheduling intervals on-line, Discrete Applied
Mathematics, 58 (1995), pp. 13-17.

7. A. FiaT AND G. J. WOEGINGER, Online algorithms: The state of the art, LNCS no.
1442, Springer, 1998.

8. G. J. WOEGINGER, On-line scheduling of jobs with fized start and end times, Theor.
Comput. Sci., 130 (1994), pp. 5-16.

