N
N

N

HAL

open science

Truthful algorithms for scheduling selfish tasks on
parallel machines

Eric Angel, Evripidis Bampis, Fanny Pascual

» To cite this version:

Eric Angel, Evripidis Bampis, Fanny Pascual.

2005), 2005, China. pp.698-707, 10.1016/j.t¢s.2006.07.057 . hal-00341361

HAL Id: hal-00341361
https://hal.science/hal-00341361
Submitted on 19 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Truthful algorithms for scheduling selfish tasks on
parallel machines. Proceedings of the 1st ACM Workshop on Internet and Network Economics (WINE

https://hal.science/hal-00341361
https://hal.archives-ouvertes.fr

Truthful algorithms for scheduling
selfish tasks on parallel machines

Eric Angel!, Evripidis Bampis ' and Fanny Pascual !

Abstract. We consider the problem of designing truthful mechanisms
for scheduling selfish tasks (or agents)-whose objective is the minimiza-
tion of their completion times— on parallel identical machines in order to
minimize the makespan. A truthful mechanism can be easily obtained in
this context (if we, of course, assume that the tasks cannot shrink their
lengths) by scheduling the tasks following the increasing order of their
lengths. The quality of a mechanism is measured by its approximation
factor (price of anarchy, in a distributed system) w.r.t. the social opti-
mum. The previous mechanism, known as SPT, produces a (2 — 1/m)-
approximate schedule, where m is the number of machines. The cen-
tral question in this paper is the following: “Are there other truthful
mechanisms with better approzimation guarantee (price of anarchy) for
the considered scheduling problem?” This question has been raised by
Christodoulou et al [1] in the context of coordination mechanisms, but it
is also relevant in centrally controlled systems. We present (randomized)
truthful mechanisms for both the centralized and the distributed settings
that improve the (expected) approximation guarantee (price of anarchy)
of the SPT mechanism. Our centralized mechanism holds for any num-
ber of machines and arbitrary schedule lengths, while the coordination
mechanism holds only for two machines and schedule lengths that are
powers of a certain constant.

1 Introduction

The Internet is a complex distributed system where many entities wish to max-
imize their own profits. Protocols organize this network, and their aim is to
maximize the social welfare. The underlying assumption is that the agents on
which the protocols are applied are trustworthy. This assumption is unrealistic
in some settings as the agents might try to manipulate the protocol by report-
ing false information in order to get some advantages. With false information,
even the most efficient protocol may lead to unreasonable solutions if it is not
designed to cope with the selfish behavior of the single entities.

In this paper, we deal with the problem of scheduling tasks on parallel iden-
tical machines in order to minimize the makespan, (also known as P||Cpaz)-
There are m identical machines and n tasks of arbitrary lengths, where each
task is owned by an agent. The lengths of the tasks are known to their owner
only.

In the first part of the paper, we focus on the following process: at first the
agents declare their lengths, then given these bids the system allocates the tasks

! LaMI — Université d’Evry Val d’Essonne, CNRS UMR 8042 — 523 Place des Ter-
rasses, 91000 Evry, France. E-mail: {angel, bampis, fpascual}@lami.univ-evry.fr

to the machines. The objective of the system is to minimize the makespan, i.e.
the date at which the last task finishes its execution. The aim of each agent is
to minimize its completion time and thus an agent may lie if by doing so, she
can improve its completion time.

The field of Mechanism Design can be useful to deal with the selfishness of the
agents. Its main idea is to pay the agents to convince them to perform strate-
gies that help the system to optimize a global objective function. The most
famous technique for designing truthful mechanisms is perhaps the Vickrey-
Clarke-Groves (VCG) mechanism [8,9,10]. However, when applied to combina-
torial optimization problems, this mechanism guarantee the truthfulness under
the hypothesis that the objective function is utilitarian (i.e. the objective func-
tion is equal to the sum of the agents’ valuation) and that the mechanism is able
to compute the optimum (for instance, it works for the shortest path problem
[3]). Archer and Tardos introduce in [4] a method which allows to design truth-
ful mechanisms for several combinatorial optimization problems to which the
VCG mechanism does not apply. However, neither approach can be applied to
our problem and thus we design a new ad-hoc mechanism that is able to retain
truthfulness.

In the second part of the paper, we change our setting and we are interested to
the development of a truthful coordination mechanism [1] for the same scheduling
problem. The notion of coordination mechanism has been introduced in order to
improve the performance of a system with independent selfish and non-colluding
agents. In a coordination mechanism, we assume that the system designer can
select the scheduling policies of each machine (e.g. each machine schedules its
tasks in order of decreasing lengths), but the designer must design the system one
and for all (i.e. it should not depend on the values bidded by the tasks). Another
important and natural condition is the decentralized nature of the problem: the
scheduling on a machine should depend only on the lengths of the tasks assigned
to it and should be independent of the tasks’ lengths assigned to the other
machines. Knowing the coordination mechanism and the values bidded by the
other tasks, each task chooses on which machine she will be scheduled, and she
is then scheduled on it, according to the policy of this machine.

A truthful mechanism can be easily obtained (if we, of course, assume that
the tasks cannot shrink their lengths) by scheduling the tasks following the in-
creasing order of their lengths. This mechanism can also be adapted to a truthful
coordination mechanism. This mechanism, known as SPT, produces a (2—1/m)-
approximate schedule. The central question in this paper is the following: “Are
there other truthful mechanisms with better approximation guarantee (price of
anarchy) for the considered scheduling problem?”

1.1 Results in this paper

Any algorithm with the property that increasing task length implies non-decreasing
completion time will always be truthful, and this property is necessary for
truthtelling to be a dominant strategy. Since there is no dominant strategy
with an approximation ratio better than the one of SPT, we focus, like in [4],

on randomized truthful mechanisms. Thus, we assume that each agent aims to
maximize her ezpected profit. A mechanism is then called truthful if, for each
agent, bidding her true schedule length maximizes her expected profit regardless
of what the other agents bid.

In Section 3, we consider the selfish task allocation model and we give a
centralized algorithm which is truthful even if the values of the lengths are not
restricted, and has an expected approximation ratio of 2 — mLH (% + #), which
is smaller than the one of an SPT schedule (e.g. if m = 2 its approximation ratio
is smaller than 1.39 whereas it is 1.5 for an SPT schedule).

In Section 4, we consider the two-machines case. We first study a coordina-
tion mechanism in which the first machine always schedules its tasks in order
of increasing lengths, and the second machine schedules its tasks with a proba-
bility p > 2 in order of increasing lengths and with probability (1 — p) in order
of decreasing lengths. The expected approximation ratio of this (randomized)
coordination mechanism, that we prove to be % + %, is better than the one of
SPT (2). We show that this coordination mechanism is truthful if the tasks are

powers of a constant larger than or equal to 42131)” , but not if the values of the
task lengths are not restricted. We also show that if p < % then this coordina-
tion mechanism is not truthful even if the tasks are powers of any integer larger
than 1. In Section 4.3, we consider the other randomized coordination mecha-
nisms that combine deterministic coordination mechanisms in which the tasks
are scheduled in order of increasing or decreasing lengths (and thus which have
expected approximation ratios better than the one of SPT), and give negative
results on their truthfulness.

1.2 Related works

Scheduling with selfish agents have been intensively studied these last years
started with the seminal work of Nisan and Ronen [3] and followed by a series
of papers [4], [6], [5], [7]. However, all these works differ from our paper since in
their case, the selfish agents were the machines while here we consider that the
agents are the tasks.

The most closely related work is the one by Christodoulou et al [1] who
considered the same model but only in the distributed context of coordination
mechanisms. They proposed different coordination mechanisms with a price of
anarchy better than the one of the SPT mechanism. Nevertheless, these mecha-
nisms are not truthful.

2 Preliminaries

We are given m machines (or processors) and n tasks T, ...,T),. Let I; denote
the execution time (or length) of task 7;. We will say that a task T; is larger
than a task T} if and only if [; > [; or (I; = [; and i > j). The machines have the
same speed, and the length of each task is known by an agent, its owner. Each
agent declares a value b greater than or equal to the real length of the task (we

make the assumption, like in [1] that the agents cannot shrink their lengths).
The aim of each agent is to minimize its completion time, and an agent may lie
if by doing so she can improve its completion time.

We consider two different models of execution:

- in the first one, used in Section 3, if T; bids a value b > [;, then its execution
time remains /;,

- in the second one, used in Section 4, we assume that if 7; bids a value b > [;,
then its execution time is b, i.e. T; (or its owner) will not get the result of its
execution before b time units after the beginning of the execution of 7;. This
model of execution is called the weak model of execution in what follows.

We adopt the following definition of randomized mechanism: A randomized
mechanism can be seen as a probability distribution over deterministic mech-
anisms, for instance given two deterministic mechanisms M1 and M2, with a
probability p the mechanism will be M1 and with probability (1 — p) it will be
M2.

In the centralized setting (Section 3), the schedule will be obtained as follows:
given the randomized mechanism, the agents will declare their lengths and the
system will assign them to the machines following the deterministic mechanism
M1 with probability p or M2 with probability (1 — p).

In the distributed setting (Section 4), given the randomized mechanism, each
task bids a value which represents its length, and then the selected deterministic
coordination mechanism is announced to the tasks (it is M1 with probability p
and M2 with probability (1 — p)). Each task chooses on which processor it will
be scheduled, according to the policies of the processors: it goes on the processor
on which it will minimize its expected completion time.

We say that a (randomized) mechanism is truthful if for every task the ex-
pected completion time when it declares its true length is smaller than or equal
to its expected completion time in the case where it declares a larger value. More
formally, we say that a mechanism M is truthful if E;(1;) < E;(b;), for every i and
b; > l;, where E;(b;) is the expected completion time of task T; if it declares b;.
In order to evaluate the quality of a randomized mechanism, we use the notion
of expected approximation ratio (price of anarchy).

3 Truthful centralized mechanism

We give in this section a randomized mechanism for the centralized setting. The
idea is to propose a new deterministic mechanism which when combined with a
mechanism scheduling the tasks in the decreasing order of their lengths provides
a truthful randomized mechanism.

3.1 Algorithm: LS5

Let us consider the following algorithm, denoted by SPTj in the sequel:

Let {T1,T>,...,T,} be n tasks to be scheduled on m > 2 identical processors,
{Py, Ps,...,P,}. Let us suppose that [} <ly <--- <1,.

Tasks are scheduled alternately on Py, Ps, ..., P, in order of increasing length, and
T;+1 starts to be executed when exactly % of task T; has been executed. Thus T}
starts to be scheduled on P; at time 0, T is scheduled on P> at time %, T3 is sched-
uled on P; (on Py if m = 2) when % of T5 has been executed, i.e. at time % + %,
and so forth...

The schedule returned by SPT; will be called a SPTs schedule in the sequel.
Figure 1 shows an SPTs schedule, where m = 3.

T O T S I S U R
‘ .
0 1 2 3 4 5 6 7 8 9 10 11 12 ume

Fig. 1. SPT; schedule

Theorem 1 SPTj is 2 — %—appro:vimate: the makespan of an SPTs schedule
is smaller than or equal to (2 — %)OPT, where OPT is the makespan of an
optimal schedule for the same tasks.

Proof: We have n tasks Ti,...,T),, such that [y < --- < [,, to schedule on
m processors. Each task 7; starts to be executed exactly when % of T;_q
has been executed. So, if n < m, then the makespan of the SPTs schedule
is: L (4t lng) Fly < En—1) 1y +1, < @D <9 1y, <

m n — m —= m —= m —=
(2—L1)OPT, since I,, < OPT.

Let us now consider the case where n > m. Let i € {m + 1,...,n}. Task

T; starts to be executed when % of T; 1 is executed, and T; ; started to
be executed when % of T; > was executed, etc., T(;_p)41 started to be exe-
cuted when % of T;_,, was executed. So the idle time between T; and T;_,, is
idle(i) = % (i + i1 + o+ liz1) — Limm-
Let i € {2,...,m}. Theidle time before T; is equal to idle(i) = = (Iy + -+ + l;_1),
and there is no idle time before T}, which starts to be executed at time 0. Thus,
the sum of the idle times between tasks is 1", idle(i) = L ((m — 1)l i1 +
(m - 2)ln7m+2 + -+ lnfl)-

Let j € {n—m+1,...,n—1}. Let end(j) be the idle time in the schedule after
the end of task T and before the end of Ty: end(j) = lj;1 — ™2 I +end(j +1),
where end(n) = 0. So the sum of the idle times after the last tasks and before
the end of the schedule is Y207 | end(j) = (m — 1) (I, — =2 1,_1) + (m —
2) (lnfl - mT_l ln72) + -+ (ln7m+2 - mT_l lnferl) .

The sum of the idle times on the processors, from the beginning of the sched-
ule until the makespan, is the sum of the idle times between tasks (and before the

first tasks), plus the sum of the idle times after the end of the last task of a pro-

cessor and before the makespan. It is equal to Y-, idle(i)%—zy;ifmﬂ end(j) =

% ((m—Dlyp—my1 + (m — 2y + - -+ lper) + (m — 1) (ln — mTil ln_1) +

(m — 2) (ln—l — %ﬁl ln_2) + -+ (ln—m+2 - % ln—m—i—l) = (m — 1) ln
Let & be the makespan of an SPTy schedule. ¢ is the sum of the tasks plus the

sum of the idle times, divided by m: ¢ = (Zi= T ™Dl _ Syl | (=Dl
Since 2=t'* < OPT and I, < OPT, we have: ¢ < (2 — L) OPT. 0

Let us consider the following algorithm, denoted by LSs in the sequel:

m

e the output schedule
the output schedule is an LPT

Let m be the number of processors. With a probability of

is an SPT; schedule; and with a probability
schedule.

1
EsE
Theorem 2 The expected approrimation ratio of LSs is 2 — #H (% + ﬁ)

Proof: The approximation ratio of an SPTs schedule is 2 — % (see Theorem

1), and the approximation ratio of an LPT schedule is 3 — = (see [2]). Thus
thle expected apfroxilmation 1rautio of LSy is Sm% 1(2 -4+ ﬁs(% —lﬁ) =
mrr Cm—l+5-50) =g @+ 1) -5 -55) =2- 57 (G +55) O

3.2 Truthfulness
Theorem 3 LSj; is truthful.

Proof: Let us suppose that we have n tasks T1,...,T),, ordered by increasing
lengths, to schedule on m processors. Let us show that any task 7; does not have
incentive to bid a length higher than its true length. Let us suppose that task T}
bids b > [;, and that, by bidding b, T; is now larger than all the tasks 71, ..., T,
and smaller than 73 41. In the LPT schedule, the tasks 7,1 to T}, are scheduled
in the same way, whatever T; bids (I; or b). By bidding b, T; can, at best, start
(Tiy1 + -+ + Ty) time units before than if it had bidded I;. Thus the expected
completion time of T; in LS5 decreases by at most mLH (Tig1 + -+ T,) time
units when T; bids b instead of [;.

On the other hand, by bidding b instead of [;, T; will end later in the SPT;
schedule: in this schedule, tasks from T;;; to T, will be started before T;.
Since a task 7T} starts to be scheduled when L of its predecessor Tj_; is ex-
ecuted, by bidding b, T; starts % (Ti41 + -+ + T3) time units later than if it
had bidded [;. Thus, the expected completion time of T; in LSy is increased by
B T+ 4 Te) = g (T + -+ T).

Thus, as a whole, the expected completion time of 7; cannot decrease when T;
bids a higher value than [;, and we can deduce that LSy is truthful. O

Note that in the case where m = 2, the expected approximation ratio of LS
is % < 1.39. This algorithm is truthful, even in the case where the tasks can

take any value, and it has a better approximation ratio than SSL(p) introduced

in Section 4 (but LSj is not a coordination mechanism because a processor has
to know the tasks scheduled on the other processors).

We can also note that, since the approximation ratio of an SPTs schedule is
2 — % (like SPT) and the approximation ratio of an LPT schedule is % — #,
the schedule returned by LSy is, in the worst case, 2 — %—approximate, which is
not worse than the approximation ratio of an SPT schedule.

4 Truthful coordination mechanisms

4.1 Coordination mechanism: SSL(p)
Let us first consider the following algorithm, denoted by SSL(p) in the sequel:

Let p € R such that 0 < p < 1. With a probability of p, the output schedule is an
SPT schedule: the tasks are greedily scheduled in order of increasing length. With
a probability (1 — p), the output schedule is an SPT-LPT schedule: an SPT-LPT
schedule is a schedule in which a processor, denoted by Pspr, schedules the tasks in
order of increasing lengths, and the other processor, denoted by Prpr, schedules the
tasks in order of decreasing lengths. A task T} is scheduled on Pspy if the total length
of the tasks smaller than Tj; is smaller than or equal to the total length of the tasks
larger than T;; otherwise it is scheduled on Prpr.

We can easily transform the centralized algorithm SSL(p) into a (random-
ized) coordination mechanism. Indeed, we can obtain, as showed in [1], an SPT-
LPT schedule by having a processor, Pspr, which schedules its tasks in order
of increasing sizes and the other processor, Pppr, which schedules its tasks in
order of decreasing sizes. Thus, each task T; will go on Pgprp if the total length
of the tasks smaller than 7; is smaller than or equal to the total length of the
tasks larger than T5; otherwise T; will have incentive to go on Pr,pr. Likewise, we
can obtain an SPT schedule by having two processors P, and P> which schedule
tasks in order of increasing sizes, and P, which adds a little idle time e (which we
know to be smaller than the length of any task) before its first task, at the very
beginning of the schedule. In this way, the smallest task will go on P, the second
smallest on P», and so forth, and we will get the only possible Nash equilibrium,
which is an SPT schedule. Hence, the coordination mechanism corresponding to
SSL(p) is the following one:

Let p € R such that 0 < p < 1. Let € be a small number smaller than the length
of every task. The first processor P; schedules, starting at time 0, its tasks in order
of increasing sizes. The second processor P, schedules with a probability p its tasks
in order of increasing sizes, starting its first task at time e; and P» schedules, with a
probability (1—p), its tasks in order of decreasing sizes, starting its first task at time 0.

Theorem 4 The expected approximation ratio of SSL(p) is % +£.

Proof: The approximation ratio of an SPT schedule is £ (see [2]), and the ap-
proximation ratio of an SPT-LPT schedule is 2 (see [1]). Thus the expected

3
4 4y , 4 _ 4, p
s)tg=35+§ O

approximation ratio of SSL(p) is p3 + (1 — p) 3, i.e. p(3

4.2 Truthfulness

In this section, we will use the weak model of execution, as explained in the
Preliminaries. When we assume that all the tasks are powers of a constant C',
then we assume that a task can only bid a value which is a power of C. If it
was not the case (i.e. if a task bids a value which is not a power of C'), we could
round the value of this task to the nearest higher power of C.

Theorem 5 Let p € R and such that % < p < 1. Algorithm SSL(p) is truthful

if the tasks are powers of any constant C' > %.

Proof: Let us suppose that we know that the tasks are powers of C, and thus
they have to bid a value which is a power of C'. Let us suppose that a task T3, of
length ;, bids I}, (I > ;). Let us show that the expected completion time of T;
is smaller when T; bids [; rather than ly. Let I' = {T,...,T;, ..., Thy- ., Tny1}
be n + 1 tasks (n tasks, plus a task T} which represents the task 7; which bids
I}, instead of [;), and let us suppose that I; < -+ <[; < -+« <[<+ < lpyr.
If T; bids I; then the tasks we have to schedule are the tasks I'" \ Ty; if T; bids
li,, then the tasks to be scheduled are I'\ T; (thus T} represents T; in this case).
SSL(p) is truthful if, for every i, the expected completion time of T} is smaller
if it bids /; than if it bids any other value I;, > [;.

Thus, it is truthful if the worst expected completion time of T; when it bids
l; is always smaller than the best completion time of 7; when it bids [> ;.
The worst expected completion time of 7; which bids /; in an SPT schedule is
SiTil

=25+ + [;: this is the case when T} starts to be executed when all the smaller

tasks have already been completed. The best expected completion time of T;
ko

which bids [in an SPT schedule is M this is the case when T} is
completed at the same time as Tp_1.

There are two cases for T; in the SPT-LPT schedule: it is either scheduled
on Pspr after the tasks which are smaller than [;, and ends at time E;zl l;
(case 1), or it is scheduled on Py, pr after the tasks which are larger than /;, and
then ends at time (Z?;l l;) =l (case 2). It is the same thing in the case where
T; bids l,: T}, is either scheduled on Pspr and then ends at time (25:1 ;) =1
(case A), or it is scheduled on P, pr and then ends at time Z;j,} l; (case B). In
the SPT-LPT schedule, T; (resp. T)) chooses between the cases 1 and 2 (resp.
the cases A and B) the one that minimizes its completion time.

SSL(p) is truthful if the worst completion time of T; which bids /; in an SPT
schedule, times p, plus the completion time of T; which bids [; in an SPT-LPT
schedule, times (1 —p), is smaller than the best completion time of T; which bids
I, (T is then identified by T}) in an SPT schedule, times p, plus the completion
time of T}, in an SPT-LPT schedule, times (1 — p). Thus, SSL(p) is truthful if:

Yisil : Z;’:llj
p (550 ”)”1"’)(m‘“{@?ﬁlj)—zk)

(Sh_i)l . (Ek i) =1
er () 1y (] T
2 Ej+kl

sy (k1) 310 DYy
& (1—p) | min = <p—==5——+(1-p) | min it
({ Zj;'l lj =l ? Z]ikl lj

There are now four cases to consider (the four combinations of the two choices
of T; and the two choices of T}). Due to space limitations, we consider these four
cases in the extended version of the paper. |

Figure 2 Left gives an illustration of Theorem 5: if we know that the tasks
are powers of a constant larger than or equal to C'(p), then SSL(p) is truthful.
Figure 2 Right illustrates Theorem 4 and shows the expected approximation
ratio of SSL(p).

16 15

15 1.49

1.4 1.48

13 1.47

1.2 1.46

11 1.45

7707 075 08 085 09 095 1 P 1447707 075 08 085 09 095 1 P

Fig. 2. Left: If the tasks are powers of a constant larger than or equal to C'(p) then
SSL(p) is truthful. Right: Expectation of the approximation ratio (e.a.r) of SSL(p).

We saw that SSL(p) is truthful if the tasks are powers of C' = 222 1In fact,
the only sufficient condition we have for this algorithm to be truthf%l is that,
for every i, l;y1 = [; or l;41 > C x l;. Thus, if we know that the lengths of the
tasks belong to a set S = {z1,22,..., 2t} such that for each j, ;11 > C x zj,
then SSL(p) is truthful. However, SSL(p) is not truthful if the possible values
of the tasks are not restricted, and it is not truthful if p < =, even if the tasks
are powers of any integer B > 1 (the proofs of Theorems 6 and 7 can be found
in the extended version of the paper).

Theorem 6 Let p € R be any number such that 0 < p < 1. Algorithm SSL(p)
is not truthful if the tasks can take any value.

Theorem 7 Let p € R be any number such that 0 < p < % Algorithm SSL(p)
is not truthful, even if the tasks are powers of an integer B (B > 1), whatever
the value of B is.

4.3 Other coordination mechanisms: negative results

SL(p) is the algorithm where we have with a probability p an SPT schedule, and
with a probability (1 — p) an LPT schedule. LSL(p) is the algorithm where we

10

have with a probability p an LPT schedule, and with a probability (1—p) an SPT-
LPT schedule. We saw in Section 4.1 that there exist coordination mechanisms
which return an SPT or an SPT-LPT schedule. Likewise, by adding small delays
on the processors - which both schedule the tasks in order of decreasing lengths
-, the authors showed in [1] a coordination mechanism which returns an LPT
schedule (the delays are here negligible since we can fix them as small as we
want). Let us now give negative results on the truthfulness of this mechanisms.
The proofs of Theorems 8, 9 and 10 can be found in the extended version of the

paper.

Theorem 8 Let p € R be any number such that 0 < p < 1. Algorithm SL(p) is
not truthful if the tasks can take any value.

Theorem 9 Let p € R be any number such that 0 < p < % Algorithm SL(p) is
not truthful, even if the tasks are powers of a constant B (B > 1), whatever the
value of B is.

Theorem 10 Let p € R be any number such that 0 < p < 1. Algorithm LSL(p)
is not truthful, even if the tasks are powers of a constant B (B > 1), whatever
the value of B is.

In the negative results of this section, we used the weak model of execution:
we assume that if 7; bids a value b > [;, then its new execution time is b. Of
course, these results also hold for the second execution model, in which if T; bids
a value b > [;, then its new execution time will still be I; (T; does not have to
wait b time units after its start to get its result).

References

1. G. Christodoulou, E. Koutsoupias, A. Nanavati Coordination mechanisms. In Proc.
of ICALP 2004, LNCS 3142, 345-357.

2. R. Graham Bounds on multiprocessor timing anomalies. STAM Jr. on Appl. Math.,
17(2), 416-429, 1969.

3. N. Nisan, A. Ronen Algorithmic mechanism design. In Proc. STOC 1999, 129-140.

4. A. Archer, E. Tardos Truthful Mechanisms for One-Parameter Agents. In Proc. of
FOCS 2001, 482-491.

5. P. Ambrosio, V. Auletta Deterministic Monotone Algorithms for Scheduling on
related Machines. In Proc. of WAOA 2004, 267-280.

6. V. Auletta, R. De Prisco, P. Penna, P. Persiano Deterministic Truthful Approz-
imation Mechanisms for Scheduling Related Machines. In Proc. of STACS 2004,
608-619 .

7. Y. Azar, M. Sorani Truthful Approzimation Mechanisms for Scheduling Selfish
Related Machines. In Proc. of STACS 2005, 69-82.

8. W. Vickrey Counterspeculation, auctions and competitive sealed tenders. J. Fi-
nance, 16:8-37, 1961.

9. E. Clarke Multipart pricing of public goods. Linear programming and vickrey auc-
tions. Unpublished manuscript, 2001.

10. T. Groves Incentive in teams. Econometrica, 41(4):617-631, 1973.

