
HAL Id: hal-00341354
https://hal.science/hal-00341354v1

Submitted on 19 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmic game theory and scheduling
Eric Angel, Evripidis Bampis, Fanny Pascual

To cite this version:
Eric Angel, Evripidis Bampis, Fanny Pascual. Algorithmic game theory and scheduling. Teofilo F.
Gonzalez. Handbook of Approximation algorithms and metaheuristics, Chapman and Hall/CRC,
pp.1299-1318, 2007, 978-1584885504. �10.1201/9781420010749-92�. �hal-00341354�

https://hal.science/hal-00341354v1
https://hal.archives-ouvertes.fr

81.1 Introduction

Nowadays, understanding the Internet is one of the major issues in theoretical computer science [1].

Toward this direction, a number of researchers consider the Internet as a system of rational selfish agents

(or users), each acting his/her own profit. This simplification makes the use of many notions introduced in
noncooperative game theory possible [2,3], where every agent determines her behavior (strategy) based on

the other agents’ strategies. The aim of every agent is to maximize her own individual profit, without taking

into account the consequences of her choice to the other agents or to the system’s performances. A central

notion in this field is the notion of Nash equilibrium [2] defined as a combination of (deterministic or

randomized) choices (strategies), one for each agent, from which no agent has an incentive to unilaterally

change her strategy. The existence of such an equilibrium is assured for every finite game from the famous

theorem of Nash [2]. However, even if, in the last few years, some progress has been made for particular

classes of games [4,5], it remains an open question to decide whether or not the problem of computing

Nash equilibrium is in general solvable in polynomial time. This question is actually among the most

challenging open questions in theoretical computer science [1]. However, a much progress has been made

in the related question of evaluating the impact of the selfishness of the agents on the efficient use of the

system, or, in other words, on the social welfare measured in terms of an appropriate global objective

function. Given that for a finite game there are, in general, a number of different Nash equilibria that may

have different objective function values, this question is very similar to the one of evaluating the quality

of a feasible solution for a combinatorial optimization problem. Exploiting this relation, Koutsoupias and

Papadimitriou [6] adopted a worst-case approach and they introduced the notion of the price of anarchy

(also known as coordination ratio), which is defined as the ratio of the value of the objective function in
the worst Nash equilibrium and its value at the optimum. In fact, the price of anarchy evaluates the cost

of the lack of coordination—as opposed to the competitive ratio, that evaluates the lack of information

1

Algorithmic Game Theory and Scheduling

Eric Angel, Evripidis Bampis, Fanny Pascual

University of Evry Val d’Essonne

in the context of the on-line computation or the approximation ratio, that is used to evaluate the lack of

unbounded computational resources in the context of the off-line computation.

In this chapter, we present some directions of research related to the notion of the price of anarchy and

we illustrate them on three scheduling models involving selfish agents: for two of them, namely the KP

(Koutsoupias–Papadimitriou) model [6] and the CKN (Christodoulou–Koutsoupias–Nanavati) model of

Ref. [7], the agents are the tasks, while for the third one, the AT (Archer–Tardos) model [8], the agents are

the machines (links of the network). Our aim is to offer a starting point for researchers who are interested

in this area.

The chapter is organized as follows: in the remaining part of the introduction we present the three

scheduling models that we use in the sequel. Section 81.2 is devoted to the notions of the price of anarchy

and of the coordination mechanism that we illustrate for the KP and CKN models. In Section 81.3, we deal

with the price of stability and the related topic of nashification. An example is given for the CKN model.

Section 81.4 concerns the design of truthful algorithms. In the first part, we show how this can be done for

the CKN model. In the second part, we give a general result characterizing the algorithms that do admit

truthful payment schemes in the context of mechanism design and we illustrate it for the AT model. In

Section 81.5, we give a brief state of the art and we point out some related references.

81.1.1 Selfish Tasks: The KP and CKN Models

In the KP and CKN models, n rational agents (tasks) T1, . . . , Tn have to choose, among m available

machines (also called links or processors) P1, . . . , Pm, the machine on which they will be scheduled. Each

task Ti is characterized by a positive length (execution or processing time) li and by an identification

number i , and each machine P j is characterized by its identification number j . The strategy of each agent

is either pure, that is, decides to be processed on a particular machine (with a probability one), or mixed,

that is, the strategy is a probability distribution over the machines (goes on each machine with a given

probability).

The choice of the machine on which the agent will be processed is based on the cost that is associated

with each strategy. Let c
j
i be the cost of agent i if the agent chooses to be processed on machine j . In both

models, the aim of each agent is to minimize her cost. Therefore, in a Nash equilibrium, the cost of agent

i is

c i = min
j

c
j
i

In the first model [6], called the KP model, the aim of each task Ti , i = 1, . . . , n, is to minimize the

load of the machine j on which she is executed, that is, the sum of the execution times of all the tasks that

have been assigned to the same machine as Ti . If p
j
k denotes the probability of task Tk goes on machine j,

then the (expected) cost of agent i on machine j is the expected load on machine j , that is,

c
j
i = li +

∑

k �=i

p
j
k lk

In the second model [7], called the CKN model, every machine has a public local policy (known to all

agents) that determines the order on which the tasks that are allocated to this machine will be scheduled.

This policy may be a function of the lengths of the tasks, or of their identification numbers, or some other

characteristics of the tasks (e.g., such a policy may consist in scheduling the tasks in decreasing order of

their lengths). Tasks know the policies of the machines, and the aim of each task is to minimize her own

completion time. The (expected) cost of agent i on machine j is then

c
j
i = li +

∑

k≺ j i

p
j
k lk

where k ≺ j i means that task Tk is scheduled before task Ti according to the policy of machine j .

In the sequel, we will consider for this latter model only pure strategies: the probability for a task to go

on a given machine will be either 1 or 0.

2

81.1.2 Selfish Machines: The AT Model

In the AT model [8] there are m machines of different speeds and n tasks with lengths l1, . . . , ln. The

amount of time to complete task j on machine i is
l j

si
, where s i is the speed of machine i . Each machine

is owned by an agent and the value of s i is known only by agent i . Each agent has to report her speed, and

based on the reported speeds, the mechanism M = (A, P) constructs a schedule (i.e., an allocation of the

tasks on the machines) using an algorithm A, and then pays the agents, according to a payment function

P , to compensate the cost induced by the processing of the tasks. Let Pi denote the amount of money (as

computed by the payment function P) given to agent i . The profit of agent i is defined as

profiti = Pi −
w i

s i

that is, her payment minus the cost incurred by the agent in being assigned work w i (w i is the sum of

the processing times of all the tasks that have been allocated to machine i). The cost for each agent is the

opposite of her profit. The aim of each agent is to maximize her profit (i.e., to minimize her cost), and an

agent may lie and bid a false value (a value different from her real speed) if this can increase her profit.

The (social) cost of a schedule is the maximum load over all machines, that is, its makespan. The goal in

this model is to design a mechanism (i.e., a schedule and a payment function), which is truthful (i.e., it

assures that every agent has no incentive to lie), and which, at the same time, minimizes the makespan.

81.2 Price of Anarchy and Coordination Mechanisms

In many networks, users and service providers act selfishly, without an authority that monitors and regulates

network operation to achieve some “social optimum.” How much performance is lost because of this? This

question, raised by Papadimitriou and Koutsoupias [6], opens many theoretical problems where the main

question concerns the cost of the lack of coordination, called price of anarchy. This notion is studied in

the next section and is illustrated in the case of the KP model. However, from an algorithmic point of

view what is more interesting is to find ways for decreasing the price of anarchy in such a context. Such an

approach has been introduced by Christodoulou et al. [7], where the notion of coordination mechanism is

proposed. We discuss this notion in Section 81.2.2 and we illustrate it for the CKN model.

81.2.1 Price of Anarchy for the KP Model

In this section we consider the KP model and show that the price of anarchy on two identical machines is 3/2.

Let us consider an arbitrary task i and let us assume that she decides to go to machine j with a probability

1, that is, p
j
i = 1, then its cost, that is, the average load of machine j , is c

j
i = li +

∑

k �=i p
j
t lk . In the

general case, the expected cost of task i is
∑

j p
j
i c

j
i . In a Nash equilibrium there is no incentive for task

i to change its strategy, therefore it assigns nonzero probabilities only to machines j that minimize c
j
i .

We note c i = min j c
j
i .

For example, consider two tasks, each one with a length 1. The probabilities p
j
i = 1/2 for i = 1, 2

and j = 1, 2 give rise to a Nash equilibrium. Indeed, we have c 1
1 = 1 + 1/2 × 1 = 3/2 and also

c 2
1 = c 1

2 = c 2
2 = 3/2. What is the expected makespan of this Nash equilibrium? With a probability 1/4

(resp. 1/4) all tasks go to machine 1 (resp. 2) giving rise to a makespan of 2, with a probability 1/4 (resp.

1/4) task 1 goes to machine 1 (resp. 2) and task 2 goes to machine 2 (resp. 1), giving rise to a makespan of

1. The expected makespan is thus 1/4 × 2 + 1/4 × 2 + 1/4 × 1 + 1/4 × 1 = 3/2. Note that the expected

makespan is not the maximum over all machines of their average load. The average load of machine j is

M j =
∑

i p
j
i li , and it is 1 in this example. Of course, the optimum makespan of 1 is obtained when task

1 (resp. 2) goes to machine 1 (resp. 2). Recall that the price of anarchy is defined as the ratio between the

(worst) expected makespan in a worst Nash equilibrium over the optimal makespan (achievable over the

set of all schedules, i.e., not necessarily Nash equilibria). Therefore, this example shows that the price of

anarchy on two identical machines is at least 3/2.

3

Ei

Ek

Eik

Ω

FIGURE 81.1 Let E i (resp. E k) denote the event “Task i (resp. k) is scheduled on the machine with the maximum load,”

and E ik denote the event “Tasks i and k collide.” One has E i ∩ E k ⊆ E ik . Hence, qi + qk = Proba(E i) + Proba(E k) =
Proba(E i ∪ E k) + Proba(E i ∩ E k) ≤ 1 + Proba(E ik) = 1 + tik .

In the sequel we consider any Nash equilibrium, and we want to upper bound its expected makespan

with respect to the optimum makespan, to show that this ratio 3/2 is tight.

The contribution probability qi of task i is equal to the probability that this task is scheduled on the

machine of maximum load (ties are broken using the machine with the smallest identification number).

Therefore, the expected makespan is
∑

i qi li .

Lemma 81.1 (Koutsoupias and Papadimitriou [6])

For any task i , one has
∑

k �=i (qi + qk)lk ≤ 3
2

∑

k �=i lk .

Proof

Let tik be the collision probability of tasks i and k, that is, the probability that they are scheduled on the same

machine. Observe that if both tasks i and k contribute to the expected makespan, that is they are scheduled

on the machine with the maximum load, then they must collide. This is illustrated in Figure 81.1.

Therefore, one has the following inequality:

qi + qk ≤ 1 + tik (81.1)

Moreover, we will show that for any task i
∑

k �=i

tiklk = c i − li (81.2)

We have tik =
∑

j p
j
i p

j
k , then

∑

k �=i tiklk =
∑

j p
j
i

∑

k �=i p
j
k lk =

∑

j p
j
i (c

j
i − li) =

∑

j p
j
i (c i − li).

The last equality comes from the fact that since in a Nash equilibrium task i assigns nonzero probabilities

only to machines j that minimize c
j
i , we have p

j
i �= 0 when c

j
i = c i and p

j
i = 0 otherwise. Finally, since

∑

j p
j
i = 1 we obtain equality (81.2).

Now we will show that

c i ≤
∑

k lk

2
+

1

2
li (81.3)

Recall that c
j
i = li +

∑

t �=i p
j
t lt = M j + (1− p

j
i)li , with M j =

∑

i p
j
i li the expected load on machine j .

Note that

M1 + M2 =
∑

k

lk (81.4)

since p1
i + p2

i = 1 for all tasks i .

Therefore, we have

c i = min
j=1,2

c
j
i

≤
1

2
(c 1

i + c 2
i)

4

≤
1

2

2
∑

j=1

(M j + (1 − p
j
i)li)

=
M1 + M2

2
+

1

2
li since p1

i + p2
i = 1

=
∑

k lk

2
+

1

2
li using Eq. (81.4)

and this proves Eq. (81.3).

Finally, we can write
∑

k �=i

(qi + qk)lk ≤
∑

k �=i

(1 + tik)lk using (81.1)

≤
∑

k �=i

lk +
∑

k �=i

tiklk

=
∑

k �=i

lk + c i − li using (81.2)

≤
∑

k �=i

lk +
∑

k lk

2
−

1

2
li using (81.3)

=
3

2

∑

k �=i

lk

Theorem 81.1 (Koutsoupias and Papadimitriou [6])

The price of anarchy for any number of tasks and two machines is 3/2.

Proof

We have already seen, with the example given in the beginning of this section, that the price of anarchy is

at least 3/2. We show that is at most 3/2.

Let OPT be the optimum makespan. We will to compare the expected makespan in any Nash equilibrium

versus the optimum makespan OPT.

Let us assume that qi ≤ 3/4 for all tasks i . Then the expected makespan is
∑

k qklk ≤ 3
4

∑

k lk ≤ 3
2 OPT,

since OPT ≥ 1
2

∑

k lk .

Otherwise there exists a task i such that qi ≥ 3/4. In that case,
∑

k

qklk =
∑

k �=i

qklk + qi li

≤
3

2

∑

k �=i

lk −
∑

k �=i

qi lk + qi li using Lemma 81.1

=
3

2

∑

k

lk −
3

2
li −

∑

k

qi lk + 2qi li

=
(

3

2
− qi

)

∑

k

lk +
(

2qi −
3

2

)

li

≤
(

3

2
− qi

)

2 OPT +
(

2qi −
3

2

)

OPT since 2qi − 3
2 ≥ 0, and using OPT

≥ max
{

1
2

∑

k
lk ,li

}

=
3

2
OPT

5

81.2.2 Coordination Mechanisms for the CKN Model

From an algorithmic point of view, an important question concerns possible ways to reduce the price of

anarchy. One of the proposed approaches is due to Christodoulou et al. [7], who introduced the notion

of coordination mechanism. A coordination mechanism is a set of local policies, one for each facility, that

have to be based only on the characteristics of the local agents and not require any additional resources or

alter the distributed nature of the system (the local policies are fixed once and for all before having any

knowledge of the input).1

For instance, the local policy of a facility may give priorities to the agents or introduce delays. Knowing

the coordination mechanism and the characteristics of the other agents, each agent chooses on which

facility she goes, and she is then allocated to it, according to the policy of the facility.

The price of anarchy of a coordination mechanism is defined as the ratio between the objective function

in the worst Nash equilibrium that we can obtain with this coordination mechanism, and the optimal value

of the objective function (obtained in a centralized way, and which is not necessarily a Nash equilibrium).

Let us consider the following coordination mechanism for the CKN model on two machines: on each

machine the tasks are sorted in order of increasing lengths: a task Ti is said larger than a task Tj if and

only if the length of Ti is larger than the one of Tj (li > l j) or the tasks have the same lengths and the

identification number of Ti is smaller than the one of Tj (i < j). The first machine, denoted by PSPT ,

schedules the tasks in order of increasing lengths, and the second machine, denoted by PLPT , schedules

the tasks in order of decreasing lengths.

With this mechanism, denoted by LPT-SPT, every task knows on which machine it will be scheduled

first: a task Ti will go on PSPT if the total length of the tasks that are smaller than Ti is smaller than or equal

to the total length of the tasks that are larger than Ti ; otherwise Ti will have incentive to go on PLPT .

Theorem 81.2 (Christodoulou et al. [7])

The coordination ratio of the LPT-SPT mechanism over two machines is 4/3.

Proof

Let us consider any schedule S obtained by this coordination mechanism, and let us show that the makespan

of this schedule is smaller than or equal to 4
3 OPT, where OPT is the smallest makespan of any schedule

involving the same tasks. Let Tr be the last task to be completed in S, and let Cmax denote its completion

time (i.e., Cmax is the makespan of S).

Let L 1 (resp. L 2) be the sum of lengths of tasks scheduled on machine 1 (resp. 2), without taking

into account task Tr . One has Cmax = min{L 1, L 2} + lr ≤ (L 1 + L 2)/2 + lr . Therefore, Cmax ≤
1
2

∑

i �=r li + lr ≤ 1
2

∑n
i=1 li + (1 − 1

2)lr ≤ OPT + 1
2 lr . If lr ≤ 2

3 OPT then Cmax ≤ 4
3 OPT.

Let us now consider the case lr > 2
3 OPT.

If Tr is scheduled on PLPT , then the schedule is optimal. Indeed, if Tr is the only task of PLPT , then S

is an optimal schedule. In the other cases, there is at least one task before Tr on PLPT and this task has a

length larger than 2
3 OPT. Likewise, since task Tr has no incentive to go on PSPT , there are on PSPT tasks

whose sum of lengths is larger than 2
3 OPT. Thus

∑n
i=1 li > 6 OPT

3 = 2 OPT, which is impossible.

If Tr is scheduled on PSPT , then there exists a task T1 of length larger than or equal to lr on PLPT . Let x

be the sum of the lengths of the tasks scheduled before Tr on PSPT . Since l1 + x + lr ≤ 2 OPT, and since

l1 > 2
3 OPT, we deduce that lr + x ≤ 4

3 OPT, that is, Cmax ≤ 4
3 OPT.

We have shown that the coordination ratio of this mechanism is at most 4
3 . We can notice that this

bound is tight by considering the following instance: two tasks of lengths 1 and two tasks of lengths 2.

With this coordination mechanism the makespan will be 4, whereas the makespan of an optimal solution

(where one task of length 1 and one task of length 2 are scheduled on each machine) is 3.

1This approach is related to the classical approach of game theory, the approach of Mechanism Design, where the

agents are “paid” to cooperate [3].

6

However, this coordination mechanism cannot be generalized for m machines. Hence, Christodoulou

et al. [7] proposed in the following coordination mechanism, that has a price of anarchy of 4
3 − 1

3m : all

the machines use a Longest Processing Time (LPT) local policy (i.e., every machine schedules its tasks in

order of decreasing lengths) and introduce small (negligible) delays to break ties. In this way, it can be

shown that the tasks have incentive to choose the machine on which they would have been affected by a

centralized LPT algorithm (i.e., an algorithm which schedules greedily the tasks in the decreasing order

of their lengths without leaving a machine idle whenever there is an unscheduled task). Thus, the price

of anarchy of this mechanism is equal to the approximation ratio of the LPT algorithm (delays can be as

small as we wish) [9]. In Ref. [7], the authors conjecture that there is no coordination mechanism with a

better coordination ratio.

81.3 Price of Stability

In many applications, it is not true that the users (or agents) are interacting directly with each other. In

reality, they interact with a protocol, which proposes a collective solution to all of them and the users

are free to accept or reject. Hence, in these applications it is necessary to design protocols (algorithms)

producing the best (or a near optimal) Nash equilibrium, that is, a stable (near) optimal solution such

that no agent has incentive to defect from it [10]. A new measure for evaluating the impact of searching a

solution under the constraint that the returned solution must be stable (i.e., a Nash equilibrium) has been

introduced by Anshelevich et al. [10]: the price of stability is defined as the ratio of the objective function

in the best Nash equilibrium and the global optimum (this maximum is taken over all instances). This

measure can be viewed as the optimistic price of anarchy.

For the KP model there is always a pure Nash equilibrium with minimum makespan, so the price of

stability is equal to 1 for this model. This result is a direct corollary of the results of Ref. [11] stating

that for the KP model it is always possible to modify (nashify) an arbitrary initial solution to a pure Nash

equilibrium without increasing the value of the makespan. However, for the CKN model this is not possible

and the price of stability depends on the policies of the machines. Indeed, if for instance, we consider that

the policies of the machines are LPT (each machine schedules the tasks in order of decreasing lengths),

then the only pure Nash equilibrium is the schedule obtained by a centralized LPT schedule. Given that

the approximation ratio of such an algorithm is 4
3 − 1

3m [9], the price of stability for the CKN model with

LPT local policies is 4
3 − 1

3m .

81.3.1 Approximate Stability for the CKN Model

In this section, we relax the definition of “stable” schedule: A solution is said to be stable if it corresponds

to an α-approximate Nash equilibrium, that is, to a situation in which no agent has sufficient incentive to

unilaterally change her behavior. We say that an agent does not have sufficient incentive to unilaterally leave

the machine on which she is scheduled, if and only if this change does not increase her profit by more than

α times its current profit, where α is a given threshold (α ≥ 1). If in a solution no agent has sufficient

incentive to change strategy, then this solution is an α-approximate-Nash equilibrium. If α = 1 then the

schedule is an (exact) Nash equilibrium. Thus, we can define the price of α-approximate stability as the

maximum ratio between the value of the objective function in the best α-approximate Nash equilibrium,

and the value of the objective function in the global optimum.

Let us illustrate this notion for the CKN model with two identical machines whose policies are LPT. In

the sequel, a task is said to be α-approximate if it will not reduce its completion time by a factor greater

than α by changing machine.

We prove that this relaxation allows to reduce the price of stability to (1 + ǫ), while preserving an

α-approximate Nash equilibrium, with α bounded by a constant. To do so, we consider the classical

polynomial-time approximation scheme (PTAS) of Graham [9], modified slightly:

(1) Let k be some specified and fixed integer.

7

(2) Obtain an optimal schedule for the k largest tasks, such that:
• Once tasks are assigned to each machine, they are scheduled on their machines in order of

decreasing lengths (i.e., for a given machine, tasks are scheduled from the largest to the smallest

one).
• If two tasks have the same length, the one which has the smallest identification number is

scheduled first.

(3) Schedule the remaining n − k tasks using the LPT algorithm.

Note that since k is a constant, step (2) of this algorithm takes a polynomial time using an exhaustive

enumeration search. This algorithm is a PTAS, and its approximation ratio is 1 + ε, where ε is equal

to 1

2+2 ⌊ k
2 ⌋

, if the k largest tasks of the schedule are optimally scheduled [9]. Let us now show that this

algorithm, denoted by OPT-LPT(k), always returns an α-approximate-Nash equilibrium, with α < k − 2,

for the CKN model with two machines P1 and P2 whose policies are LPT.

Theorem 81.3 (Angel et al. [12])

The schedule returned by algorithm OPT-LPT(k) is an α-approximate-Nash equilibrium, with α < k − 2,

for two machines whose policies are LPT.

Proof

Let us show that each task of an OPT-LPT(k) schedule either does not have incentive to change machine

(because she would increase its completion time by going on the other machine), or does not decrease her

completion time by a factor larger than or equal to k −2, by going on the other machine. The n−k smallest

tasks of the schedule are scheduled using the LPT rule, so they do not have incentive to change machine.

Thus we consider the k largest tasks. Let OPT be the optimal solution of these tasks, such as computed

by OPT-LPT(k). We will now consider three cases. In the sequel we will denote the i th task of P1 by xi ,

the i th task of P2 by yi , and l(t) will denote the length of task t. We will say that task t1 is larger than task

t2 if l(t1) > l(t2) or if l(t1) = l(t2), and the identification number of t1 is smaller than the identification

number of t2. Likewise t1 is said smaller than t2 if t2 is larger than t1.

• In the first case, there is, in OPT, only one task on a machine (w.l.o.g. on P1), and k − 1 tasks on

the other machine. Since this schedule is an optimal solution, the task on P1 is necessarily the largest task

on the schedule, and this schedule is an LPT schedule. So no task has incentive to change machine in this

case.

• Let us now consider the case where there are exactly two tasks on a machine (w.l.o.g. on P1) in OPT.

The others k − 2 tasks are then on P2.

We first show that no task scheduled on P2 has incentive to go on P1. By construction, we know that

l(x1)+ l(x2) is larger than or equal to the sum of the lengths of the k −3 first tasks of P2,
∑k−3

j=1 y j . Let i be

the largest number such that l(x1) ≥
∑i

j=1 y j : the i +1 first tasks of P2 (i.e., the tasks who start at the latest

at the end of x1) do not have incentive to go on P1, otherwise they would be scheduled after task x1 and

would not decrease their completion times. Moreover, we know that l(x2) ≥
∑k−3

j=i+2 y j : thus the tasks

from yi+2 to yk−3 do not have incentive to change machine. Likewise, yk−2 does not have incentive to

change: if it is smaller than x2, then she would be scheduled on P1 after x2, and would not decrease

her completion time, since OPT is an optimal solution. If yk−2 is larger than x2, then yk−2 starts to

be executed before (or at the same time as) x2, otherwise by switching x2 with yk−2 we could obtain

a better solution than OPT. Thus, if it goes on P1, yk−2 will be scheduled after x1, and then will not

decrease her completion time (note that yk−2 is smaller than x1, otherwise OPT would not be an optimal

solution).

The only task which may have incentive to change machine is x2. If x2 is smaller than all the other tasks,

then she does not have incentive to change. Otherwise, since OPT is an optimal solution, we know that at

least a task of P2 starts at the same time or after x2. In the best case, x2 can go to the first position on P2: by

doing this, she starts on P2 before at most k − 3 tasks, which started before her when she was on P1. These

k − 3 tasks are smaller than x2: the sum of their completion times, S, is thus smaller than (k − 3) l(x2).

8

The completion time of x2 decreases with this change, from S + l(x2) < (k − 2) l(x2) to l(x2). Thus x2

is, in OPT, α-Nash-approximate, with α < k − 2.

• Let us now consider the case where there are exactly a < k − 2 tasks on P1, and b < k − 2 tasks on

P2. Let t be a task on P1 (resp. P2), who has incentive to change machine. When she changes machine,

t overtakes p tasks of P2 (resp. P1), that is, she starts to be executed before p tasks, which started to

be executed before t, that is before the change. We know that p is smaller than k − 2 because there are

less than k − 2 tasks on each machine. Moreover, these tasks have a length smaller than the one of t,

otherwise t would not overtake them. Thus, in the best case, t overtakes k − 3 tasks of length almost equal

to l(t), and the completion time of t decreases from a value smaller than (k − 2) l(t) to l(t). Thus t is

α-Nash-approximate, with α < k − 2.

We saw that OPT-LPT(k) returns α-approximate Nash equilibria, with α < k − 2. Let us now show

that this bound is tight.

Theorem 81.4 (Angel et al. [12])

Let ε be any small number such that 0 < ε < 1. OPT-LPT(k) can return α-approximate Nash equilibria,

with α ≥ k − 2 − ε and k ≥ 5.

Proof

Let ε′ = ε
k−2−ε

, and let us consider the following instance: a task of length k − 3 − ε′, a task of length

1 + ε′, and k − 2 tasks of length 1. The only optimal solution for this instance is the schedule where the

tasks of length 1 are on the same machine (w.l.o.g. on P2), and the two other tasks on the other machine.

Let t denote the task of length 1 + ε′: t is completed on P1 at time k − 2. Note that 1 + ε′ < k − 3 − ε′

for any 0 < ε < 1 and k ≥ 5, thus by going on the other machine, t would end at time 1 + ε′,
and then decrease her completion time by k−2

1+ε′ = k − 2 − ε. Thus t is (k − 2 − ε)-approximate.

The schedule returned by OPT-LPT(k) on this instance is an α-approximate Nash equilibrium, with

α ≥ k − 2 − ε.

We can deduce from Theorem 81.3, and from the fact that the approximation ratio of OPT-LPT(k) is
1

2+2 ⌊ k
2 ⌋

, the following result:

Corollary 81.1

Let k be any integer larger than or equal to 5. For the two machine scheduling game, if the local policies of

the links are LPT, then the price of α-approximate stability is at most 1 + ε, where ε = 1

4+2 ⌊ k
2

⌋
< 1

k , for all

α ≥ k.

81.4 Truthful Algorithms

Another important aspect of systems based on the selfish behavior of a set of agents is the notion of

truthfulness. Consider a system with selfish agents, where the network is organized by a protocol whose aim

is the maximization of the social welfare. The underlying assumption, in such a context, is that the agents

on whom the protocols are applied are trustworthy. However, this assumption is unrealistic in some settings

as the agents might try to manipulate the protocol by reporting false information to get some advantages.

With false information, even the most efficient protocol may lead to unreasonable solutions if it is not

designed to cope with the selfish behavior of the single entities. Thus, if every agent has a value (for a task,

its length; for a machine, its speed; etc.), which is known only by herself, it is useful to design algorithms

that are able to give incentive to the agents to bid their real secret values. Such algorithms are called

truthful.

The field of mechanism design provides a theory to get truthful algorithms. The main idea of this theory

is to pay the agents to convince them to declare their true values, thus helping the system to solve the

9

optimization problem correctly. This is possible if every agent incurs some monetary cost. It is common to

allow side payments to the agents, and to assume that each agent tries to maximize the sum of her payment

and her intrinsic cost of the outcome. Thus a mechanism M = (A, P) is a couple, where A is an algorithm

that computes an allocation of the resources (in our case which affects tasks to machines), and P is a

payment function that affects to every agent a certain amount of money. A mechanism is truthful if and

only if the profit of every agent is maximized when the agent reveals her true value. The main general result

in this direction is the Vickrey–Clarke–Groves (VCG) mechanism [13–15]. It handles arbitrary agents’

cost functions and guarantees the truthfulness under the hypothesis that the global objective function is

utilitarian (it optimizes the sum of the agents’ costs or profits), and that the mechanism is able to compute

the optimal solution. This is the case, for instance, when the agents are the tasks and they want to reduce

their individual completion times, and the global objective function is the sum of completion times.

However, if the objective function is the makespan, then the VCG mechanism cannot be used anymore

since the minimization of the makespan is an NP-hard problem (and thus it is not possible to compute

the optimum in polynomial time unless P = NP), and in addition the problem is not utilitarian since the

goal is the minimization of the maximum completion time over all the machines.

In this section, we consider problems where the objective function is the makespan. In Section 81.4.1,

we study the case where the agents are the tasks (CKN model): every agent is a task, which is the only

one to know its real length and may lie on the value of this length. We present a (randomized) truthful

mechanism without payment where the incentive of every agent is based only on her cost which is her

(expected) completion time.

In Section 81.4.2, we consider the case where the agents are the machines (AT model): each agent is

a machine that may lie on the value of its speed. We first show a fundamental result, due to Archer and

Tardos [8], for the following type of problems: a set of loads have to be allocated by the mechanism on

a set of machines (agents), and every agent has a secret data, which is a single positive real number that

represents the cost incurred per unit of load assigned to this agent. These problems are known as One-

Parameter-Agent problems. Archer and Tardos [8] showed that a mechanism M = (A, P) for a problem

with one-parameter agents is truthful if and only if algorithm A is monotone: an algorithm is monotone

if, given the secret data b1, . . . , bn of the agents, then, for any i and fixed b j (j = 1, . . . , n with j �= i),

the load assigned to agent i is nondecreasing with respect to bi . Moreover, they show how to construct a

payment function PA such that if A is monotone then (A, PA) is a truthful mechanism.

It is interesting to see that our selfish machines problem is a problem involving one-parameter agents:

the agents are the machines, the loads are the tasks, and the agent’s secret data is the inverse of her speed.

Thus, an algorithm will be truthful for this problem if and only if it is monotone. Intuitively, monotonicity

here means that increasing the speed of exactly one machine does not make the algorithm decrease the

load assigned to that machine. We use this result in Section 81.4.2.2 to show that the LPT algorithm is

truthful if the speeds of the machines are powers of a constant higher than or equal to 2.

81.4.1 Truthful Algorithm for Scheduling Selfish Tasks

We consider in this section selfish tasks whose aim is to reduce their completion times (CKN model). We

assume that the length of each task (agent) is a private value, known only by herself, and that each agent

bids a value representing her length. We focus on the following process: at first the agents declare their

lengths; then given these bids the system allocates the tasks to the machines. The objective of the system

is to minimize the makespan. The aim of each agent is to minimize her completion time and an agent

may lie on this value if this can improve her (expected) completion time. We assume that the tasks cannot

shrink their lengths and thus they will not bid values smaller than their real lengths, but they may bid

values larger than their real lengths. There is a natural way to get a truthful deterministic algorithm, it is

sufficient to schedule the tasks according to the Shortest Processing Time (SPT) algorithm, in which tasks

are greedily scheduled from the smallest task to the largest task. The approximation ratio of this algorithm

is 2 − 1
m (see Ref. [9]). Here we will present a (randomized) truthful algorithm, which has an (expected)

approximation ratio better than the one of SPT.

10

P3

P2

P1

0 21 3 54 6 7 11 121098 Time

T1 T4 T7

T2 T5 T8

T9T6T3

FIGURE 81.2 Example of an SPTδ schedule.

Since SPT is truthful and LPT has a good approximation ratio, it is natural to wonder whether a

randomized algorithm that returns the SPT schedule with a probability p and the LPT schedule with a

probability 1 − p, is truthful for some values of p (0 ≤ p ≤ 1). We can easily see that this algorithm is not

truthful for any p smaller than 1. Indeed, consider the following instance on two machines: a task T1 of

length 1, a task T2 of length 2, and a task T3 of length 3. If T1 bids its true value, then it will be scheduled

first in the SPT schedule, and then finish at time 1; and it will be scheduled in the LPT schedule after task

T2, and then finish in this schedule at time 3. Thus, the expected completion time of T1 if it bids its true

value is p + 3 (1 − p) = 3 − 2p. If T1 bids 2.5 (instead of its true value 1), then it will be on the first

position in both the SPT and the LPT schedules. In both cases its completion time will be 1. Since the

expected completion time of T1 is smaller if it bids a false value rather than if it bids its true value, this

algorithm is not truthful. We will now see that if we slightly modify the SPT algorithm, then a randomized

algorithm of this type is truthful.

Let us consider the following algorithm, denoted by SPTδ in the sequel:

Let {T1, T2, . . . , Tn} be n tasks to be scheduled on m ≥ 2 identical machines, {P1, P2, . . . , Pm}. Let us

suppose that l1 ≤ l2 ≤ · · · ≤ ln. Tasks are scheduled alternatively on P1, P2, . . . , Pm, in order of increasing

lengths, and Ti+1 starts to be executed when exactly 1
m of task Ti has been executed. Thus T1 starts to be

scheduled on P1 at time 0, T2 is scheduled on P2 at time l1
m , T3 is scheduled on P3 (on P1 if m = 2) when

1
m of T2 has been executed, that is, at time l1

m + l2
m , and so forth.

The schedule returned by SPTδ will be called an SPTδ schedule in the sequel. Figure 81.2 shows an SPTδ

schedule, where m = 3.

Let us now consider the following algorithm, denoted by LSδ in the sequel:

Let m be the number of machines. With a probability of m
m+1 , the output schedule is an SPTδ schedule,

and with a probability 1
m+1 , the output schedule is an LPT schedule.

We will now show that this algorithm has an approximation ratio better than the one of SPT (cf. Theorem

81.6) and that it is truthful (cf. Theorem 81.7). But first, we need to find the approximation ratio of SPTδ .

Theorem 81.5 (Angel et al. [16])

The algorithm SPTδ is (2 − 1
m)-approximate: the makespan of an SPTδ schedule is smaller than or equal to

(2 − 1
m) OPT, where OPT is the makespan of an optimal schedule for the same tasks.

Proof

We have n tasks T1, . . . , Tn, such that l1 ≤ · · · ≤ ln, to schedule on m machines. Each task Ti starts to

be executed exactly when 1
m of Ti−1 has been executed. So, if n ≤ m, then the makespan of the SPTδ

schedule is 1
m (l1 + · · · + ln−1) + ln ≤ 1

m (n − 1) ln + ln ≤ (2m−1) ln
m ≤ (2 − 1

m) ln ≤ (2 − 1
m) OPT, since

ln ≤ OPT.

Let us now consider the case n > m. Let i ∈ {m + 1, . . . , n}. Task Ti starts to be executed when
1
m of Ti−1 is executed, and Ti−1 started to be executed when 1

m of Ti−2 was executed, etc., T(i−m)+1

started to be executed when 1
m of Ti−m was executed. So the idle time between Ti and Ti−m is idle(i) =

1
m (li−m + li−m+1 + · · · + li−1) − li−m.

Let i ∈ {2, . . . , m}. The idle time before Ti is equal to idle(i) = 1
m (l1 + · · · + li−1), and there is no

idle time before T1, which starts to be executed at time 0. Thus, the sum of the idle times between tasks is
∑n

i=2 idle(i) = 1
m ((m − 1)ln−m+1 + (m − 2)ln−m+2 + · · · + ln−1).

11

Let j ∈ {n − m + 1, . . . , n − 1}. Let end(j) be the idle time in the schedule after the end of task Tj and

before the end of Tn: end(j) = l j+1 − m−1
m l j +end(j +1), where end(n) = 0. So the sum of the idle times

after the last tasks and before the end of the schedule is
∑n−1

j=n−m+1 end(j) = (m − 1)
(

ln − m−1
m ln−1

)

+
(m − 2)

(

ln−1 − m−1
m ln−2

)

+ · · · +
(

ln−m+2 − m−1
m ln−m+1

)

.

The sum of the idle times on the machines, from the beginning of the schedule until the makespan,

is the sum of the idle times between tasks (and before the first tasks), plus the sum of the idle times

after the end of the last task of a machine and before the makespan. It is equal to
∑n

i=2 idle(i) +
∑n−1

j=n−m+1 end(j) = 1
m ((m − 1)ln−m+1 + (m − 2)ln−m+2 + · · · + ln−1)+ (m−1)

(

ln − m−1
m ln−1

)

+
(m − 2)

(

ln−1 − m−1
m ln−2

)

+ · · · +
(

ln−m+2 − m−1
m ln−m+1

)

= (m − 1) ln.

Let ξ be the makespan of an SPTδ schedule. ξ is the sum of the tasks plus the sum of the idle times,

divided by m: ξ =
(
∑n

i=1
li

)

+(m−1) ln

m =
∑n

i=1
li

m + (m−1) ln
m . Since

∑n

i=1
li

m ≤ OPT and ln ≤ OPT, we

have ξ ≤ (2 − 1
m) OPT.

Theorem 81.6 (Angel et al. [16])

The expected approximation ratio of LSδ is 2 − 1
m+1

(

5
3 + 1

3 m

)

.

Proof

The approximation ratio of an SPTδ schedule is 2− 1
m (see Theorem 81.5), and the approximation ratio of

an LPT schedule is 4
3 − 1

3 m (see Ref. [9]). Thus the expected approximation ratio of LSδ is m
m+1

(

2 − 1
m

)

+
1

m+1

(

4
3 − 1

3 m

)

= 1
m+1

(

2m − 1 + 4
3 − 1

3m

)

= 1
m+1

(

2(m + 1) − 5
3 − 1

3m

)

= 2 − 1
m+1

(

5
3 + 1

3 m

)

.

For example, in the case where we have two machines, the expected approximation ratio is 25
18 < 1.39,

whereas the approximation ratio of SPT is 2 − 1
m = 1.5 in this case.

Let us now show that LSδ is truthful.

Theorem 81.7 (Angel et al. [16])

The algorithm LSδ is truthful.

Proof

Let us suppose that we have n tasks T1, . . . , Tn, ordered by increasing lengths, to schedule on m machines.

Let us show that any task Ti does not have incentive to bid a length higher than her true length. Let us

suppose that task Ti bids b > li , and that, by bidding b, Ti is now larger than all the tasks T1, . . . , Tx , and

smaller than Tx+1. In the LPT schedule, the tasks Tx+1 to Tn are scheduled in the same way, whatever Ti

bids (li or b). By bidding b, Ti can, at best, start (li+1 + · · · + lx) time units before she had bided li . Thus

the expected completion time of Ti in LSδ decreases by at most 1
m+1 (li+1 + · · · + lx) time units when Ti

bids b instead of li .

However, by bidding b instead of li , Ti will end later in the SPTδ schedule: in this schedule, tasks from

Ti+1 to Tx will be started before Ti . Since a task Tj starts to be scheduled when 1
m of her predecessor Tj−1

is executed, by bidding b, Ti starts 1
m (li+1 + · · · + lx) time units later than she had bided li . Thus, the

expected completion time of Ti in LSδ is increased by m
m+1 (1

m (li+1 + · · · + lx)) = 1
m+1 (li+1 + · · · + lx).

Thus, as a whole, the expected completion time of Ti cannot decrease when Ti bids a higher value than li ,

and we can deduce that LSδ is truthful.

81.4.2 Truthful Algorithms for Scheduling with Selfish Machines

We start this section by stating a general result, from Ref. [8], for one-parameter-agent problems whose

application is illustrated in the case of the AT model.

81.4.2.1 Monotonicity

We characterize the algorithms that do and do not admit truthful payment schemes for mechanism design

problems where the cost of agent i is of the form ti w i (o), where ti is her privately known cost per unit work

12

and w i (o) is the amount of work—or load—assigned to her. This is, for instance, the case of scheduling

problems where the agents are the machines that have to bid their speeds (see Section 81.4.2.2).

The private data ti of agent i is only known by herself, whereas everything else is public knowledge.

Every agent reports some value bi to the mechanism: this value is called the agent’s bid. Let b−i denote the

vector of bids, not including agent i . We write the vector of bids b as (b−i , bi). The mechanism’s output

algorithm computes a function o(b) according to the agents’ bids, and tries to optimize a global objective

function without knowing t directly. Each agent i incurs some monetary cost, costi (ti , o) = ti w i (o).

To offset these costs, the mechanism makes a payment Pi (b) to agent i . We assume that agent i always

attempts to maximize her profit: profiti (ti , b) = Pi (b) − costi (ti , o(b)).

Theorem 81.8 (Archer and Tardos [8])

The output function o(b) admits a truthful payment scheme if and only if it is decreasing. In this case, the

mechanism is truthful if and only if the payments Pi (b−i , bi) are of the form

hi (b−i) + bi w i (b−i , bi) −
∫ bi

0

w i (b−i , u) du (81.5)

where the hi ’s are arbitrary functions.

Proof

Let us show this theorem with the pictorial proof of Figure 81.3.

In Figure 81.3 (left), A, B , C , and D denote the areas of the rectangles they label. The cost of agent i is

her privately known cost per unit work (ti), times the amount of work assigned (w i (b−i , bi)). If i ’s true

value is y, her cost will be B + D if she bids x , and A + B + C + D if she bids y. Thus she would save

cost A + C by bidding x . If her true value is x , her cost will be B if she bids x , and A + B if she bids y:

she would incur an extra cost of A by bidding y. To motivate truth-telling, the extra payment for bidding

y instead of x should then be at least A + C and at most A, which is impossible since C > 0. Therefore,

the work curve must decrease.

In Figure 81.3 (right), the work curve is decreasing and the payments are given by Eq. (81.5). Geomet-

rically, the payment to i if she bids x is a constant cste minus the area between the work curve and the

horizontal line at height w i (x). If agent i ’s true value is ti and she bids x > ti , then her cost decreases by

A (this cost is A + C if the agent bids ti whereas it is only C if she bids x), but her payment decreases by

A + B (this payment is cste − D if the agent bids ti whereas it is cste − (D + A + B) if she bids x). Since

B > 0, the agent never benefits from overbidding. Similarly, we can show that she never benefits from

underbidding.

81.4.2.2 A Truthful Algorithm for the AT Model

We now consider the AT model in which each machine is an agent whose secret data is her speed. We

consider the case where we have two machines, and we wish to know if the LPT algorithm is truthful. The

bi

wi(b−i, x)

wi(b−i, y)

wi(b−i, bi)

wi(b−i, x)

wi(b−i, ti)

wi(b−i, bi)

x y

A

B

C

D

bi
xti

A B

C

D

FIGURE 81.3 Left: The graph shows why the work curve must be decreasing. Right: The graph shows why agent i

never gains by overbidding.

13

Ts′
1
(σ) Ts′

2
(σ)

Ts
1
(σ)

Ts
2
(σ)

T
1
(σ)

T
2
(σ)

L(σ)

R(σ)

FIGURE 81.4 The set of tasks σ is partitioned into two subsets Ts1 (σ) and Ts2 (σ) (resp. Ts ′
1
(σ) and Ts ′

2
(σ)) according

the machine (1 or 2) on which each task is scheduled when the speed vector is s (resp. s ′).

LPT algorithm, in the case where the machines do not necessarily have the same speeds, is the following

one: tasks are scheduled in order of decreasing lengths and each task is scheduled on the machine on

which it will be completed first. Theorem 81.9 shows that LPT is truthful if the speeds of the machines

are c-divisible, with c ≥ 2, that is, if the speeds of the machines are restricted to be powers of c , where

c is a constant greater than or equal to 2. It has also be shown in Ref. [17] that LPT is not truthful

in the case of two machines with c-divisible speeds if c ≤ 1.78. To prove Theorem 81.9, we will show

that LPT is monotone when the speeds are c-divisible, with c ≥ 2. By Theorem 81.8, shown in the

previous section, this result implies that LPT is truthful in that case. Let us first start with the following

lemma:

Lemma 81.2 (Ambrosio and Auletta [17])

For each speed vector s , where si is the speed of machine i , and for each sequence of tasks σ , the schedule

computed by any list scheduling algorithm 2 on input s and σ is such that for any i, j , if s j ≥ 2 s i then

w j ≥ w i , where w i is the load assigned to machine i by the algorithm.

Proof

Suppose, by contradiction, that w j < w i and consider the last task t assigned to machine i . We have
w j +t

s j
<

2 w i
s j

≤ w i
si

, which contradicts the hypothesis that the list scheduling algorithm assigned task t to

machine i .

Consider two speed vectors s = 〈s1, s2〉 and s ′ = 〈s ′
1, s ′

2〉, where s ′ differs from s only on the speed of

machine i and s i ≤ s ′
i .

Let Ts1 (σ) be the set of tasks of σ that are assigned to machine 1 when the speed vector is s . We define

Ts2 (σ),Ts ′
1
(σ) andTs ′

2
(σ) in a similar way. We define L (σ) = |Ts1 (σ)∩Ts ′

2
(σ)|, R(σ) = |Ts2 (σ)∩Ts ′

1
(σ)|,

T1(σ) = |Ts1 (σ) ∩ Ts ′
1
(σ)| and T2(σ) = |Ts2 (σ) ∩ Ts ′

2
(σ)|. In other words, L (σ) is, for example, the sum

of the lengths of the tasks of σ that are assigned to machine 1 with respect to s (i.e., when the speed vector

is s), and to machine 2 with respect to s ′ (i.e., when the speed vector is s ′). These notations are depicted

in Figure 81.4.

In the sequel we omit the argument σ when it is clear from the context.

Theorem 81.9 (Ambrosio and Auletta [17])

For any c ≥ 2, the algorithm LPT is monotone when restricted to the case of two machines with c-divisible

speeds.

Proof

Suppose, by contradiction, that LPT is not monotone for c-divisible speeds. Then, there exists two speed

vectors s = 〈s1, s2〉, and s ′ = 〈s ′
1, s ′

2〉, where s ′ has been obtained from s by increasing only one speed

(i.e., s ′
i ≥ c s i and s ′

j = s j for i, j ∈ {1, 2} and i �= j), and a sequence of tasks σ = 〈σ ′, t〉 such that

the scheduling of the tasks in σ computed by LPT with respect to s and s ′ is not monotone. Without

2A list scheduling algorithm is an algorithm, which schedules the tasks following the order of an arbitrary priority

list without leaving any unnecessary idle time.

14

loss of generality, assume that σ is the shortest sequence that LPT schedules in a not monotone way:

the schedule of σ ′ is monotone while the allocation of t destroys the monotonicity. We distinguish three

cases.

• Let us first consider the case where s ′
1 = s1 and s ′

2 ≥ c s2. Since the schedule of σ ′ is monotone, we

know that w2(σ ′, s) ≤ w2(σ ′, s ′), that is, |Ts2 (σ ′)| ≤ |Ts ′
2
(σ ′)|, and so R(σ ′) ≤ L (σ ′) (see Figure 81.4).

Likewise, since the schedule of σ is not monotone, w2(σ, s) > w2(σ, s ′), and so we know that t is on

machine 2 with respect to s , and t is not on machine 2 with respect to s ′, meaning that the length of task

t contributes to the quantity R(σ). One can deduce that L (σ ′) < R(σ ′) + t. Thus,

R(σ ′) ≤ L (σ ′) < R(σ ′) + t (81.6)

Since t is the smallest task of σ , R(σ ′) and L (σ ′) are either nil, or greater than or equal to t. Hence,

R(σ ′) ≥
L (σ ′)

2
(81.7)

Since the schedule of σ ′ is monotone, while the one of σ is not monotone, we know that t is on machine

2 with respect to s , and t is on machine 1 with respect to s ′. By definition of LPT, since LPT on input s

assigns task t to machine 2, we know that T1(σ ′)+L (σ ′)+t
s1

≤ T2(σ ′)+R(σ ′)+t
s2

, and so

T2(σ ′) ≤
s2

s1
(T1(σ ′) + L (σ ′) + t) − R(σ ′) − t (81.8)

Similarly, since LPT on input s ′ assigns t to machine 1, T1(σ ′)+R(σ ′)+t
s ′

1
≤ T2(σ ′)+L (σ ′)+t

s ′
2

, from which we

obtain

T2(σ ′) + L (σ ′) + t ≥
s ′

2

s1
(T1(σ ′) + R(σ ′) + t) (81.9)

since s1 = s ′
1. We deduce from inequalities (81.8) and (81.9) that

L (σ ′) ≥
s ′

2

s1
(T1(σ ′) + R(σ ′) + t) − T2(σ ′) − t

L (σ ′) ≥
s ′

2

s1
(T1(σ ′) + R(σ ′) + t) −

s2

s1
(T1(σ ′) + L (σ ′) + t) + (R(σ ′) + t) − t

L (σ ′) ≥
2 s2

s1
(T1(σ ′) + R(σ ′) + t) −

s2

s1
(T1(σ ′) + L (σ ′) + t) + R(σ ′)

L (σ ′) ≥
s2

s1
T1(σ ′) +

s2

s1
(2 R(σ ′) + 2 t − L (σ ′) − t) + R(σ ′)

L (σ ′) ≥
s2

s1
T1(σ ′) +

s2

s1
(2 R(σ ′) − L (σ ′)) + t (

s2

s1
− 1) + (R(σ ′) + t)

L (σ ′) ≥ (R(σ ′) + t) since s2 ≥ s1 and using inequality (81.7)

This last inequality contradicts Eq. (81.6), and thus there is no instance σ for which the schedule computed

by LPT is not monotone.

15

• The case s2 ≥ s ′
1 ≥ c s1 can be reduced to the previous case by observing that since the scheduling

of σ with respect to s and s ′ is not monotone, w1(σ, s) > w1(σ, s ′) and therefore w2(σ, s) < w2(σ, s ′).

The schedules computed by LPT with respect to s and s ′ are equal to the schedules computed with respect

to speed vectors 〈1, s2
s1

〉 and 〈1, s2
s ′

1
〉, where s2

s ′
1

≤ c s2
s1

.

• Case where s ′
1 > s2: since s2 and s ′

1 are by hypothesis powers of c ≥ 2, and since s ′
1 > s2, then

s ′
1 ≥ 2 s2, and this case follows directly from Lemma 81.2.

This result together with Theorem 81.8 shows that LPT is truthful for the AT model.

81.5 Other Results

In this section, we give some of the numerous results in this area classified by model. Notice the existence

of other surveys [18,19] and of a recent book dealing with the price of anarchy in the context of selfish

routing [20].

81.5.1 Results for the KP Model and Variants

The proof of Theorem 81.1, stating that the price of anarchy for the KP model in the case of two identical

parallel machines is equal to 3/2, is due to Koutsoupias and Papadimitriou [6]. They have also pointed

out the relation between the problem of computing the price of anarchy for the KP model and the BINS

AND BALLS problem (see, e.g., Ref. [21]). In this way, they were able to show that the price of anarchy

for the KP model with m identical machines is at least �(
log m

log log m) and is at most 3 +
√

4m log m. They

also obtained that for the case of the KP model with uniform machines (where the machines can have

different speeds) the price of anarchy is at least φ = 1+
√

5
2 = 1.618 in the case of two machines, and

O(
√

s1
sm

∑m
j=1

s j

sm

√

log m) in the case of m uniform machines with speeds s1 ≥ s2 ≥ · · · ≥ sm. They

have also conjectured that the price of anarchy for the KP model is 	(
log m

log log m) [6].

The first advance in the direction of settling the validity of this conjecture has been made by Mavronicolas

and Spirakis [22], who considered a special class of Nash equilibria, the so-called fully mixed equilibria

where for every pair of task i and machine j , p
j
i is nonzero. They proved that for this class of equilibria

the conjecture of Koutsoupias and Papadimitriou is valid for the KP model with identical machines. They

further considered the case of the KP model with m uniform machines and n tasks of the same length

(with m ≤ n) and they established that the price of anarchy is 	(
log n

log log n). Koutsoupias et al. [23] showed

that the price of anarchy is O(
log m

log log m) for the KP model with identical machines. But the conjecture has

been completely settled for the more general KP model with uniform machines by Czumaj and Vöcking

[24], who showed that the price of anarchy is indeed 	(
log m

log log log m).

Two important classes of Nash equilibria have been extensively studied for the KP model, namely

the pure and the fully mixed Nash equilibria. The obtained results concern the evaluation of the price

of anarchy, as well as the computation of the best, worst, or of just a Nash equilibrium within these

classes.

Pure Equilibria

In the case where the agents are not allowed to randomize their strategies, the set of solutions for the KP

model is the set of all pure Nash equilibria, that is where for every agent i and machine j , p
j
i is either

0 or 1. Several questions have been treated concerning this kind of equilibria: the first one asks if such

an equilibrium always exists. It has been shown in Ref. [25] that this is true for the KP model. Another

question concerns the price of anarchy when restricted to pure equilibria: Czumaj and Vöcking [24] proved

two upper bounds of Ŵ−1(m) + 1 = O(
log m

log log m) for the case of the KP model with identical machines

and O(log s1
sm

) for the same model with uniform machines of speeds s1 ≥ s2 ≥ · · · ≥ sm. They have

also showed that these bounds are tight up to a constant factor. From an algorithmic point of view, the

main question is how to find a Nash equilibrium: Fotakis et al. [25] showed that it is NP-hard to find the

16

best and worst equilibria, but, they proved that it is possible to compute a Nash equilibrium for the KP

model with identical machines whose price of anarchy is 4
3 − 1

3m using the LPT algorithm of Graham [9].

This result has been strengthened by the results of Refs. [26–28]. In these papers, the authors consider

the nashification problem for the KP model, that is, the problem of designing a polynomial-time algorithm

that starting from an arbitrary schedule computes a Nash equilibrium whose social cost is not greater

from the one of the original schedule. Hence, in Refs. [26,27], an O(n log n) algorithm is presented

for the KP model with identical machines. In Ref. [28], an O(m2n) algorithm is presented for the

KP model with uniform machines. These results show that there is a PTAS for the problem of find-

ing a Nash equilibrium of minimum social cost for the KP model (in both the identical and uniform

machine cases). This is true since it is sufficient to start from a schedule computed by the PTAS of

Hochbaum and Shmoys [29] that has to be nashified using one of the above-mentioned nashification

algorithms.

Fully Mixed Equilibria

As mentioned above the first to study the class of fully mixed Nash equilibria were Mavronicolas and

Spirakis [22]. Many researchers followed this direction with the hope that the techniques elaborated for

the analysis of fully mixed Nash equilibria could be appropriately extended to the general case. Fotakis

et al. [25] proposed a polynomial-time algorithm, which computes in O(n log n) time a fully mixed Nash

equilibrium. Gairing et al. [26] conjectured that the worst Nash equilibrium, that is, the Nash equilibrium

with the highest social cost, is a fully mixed Nash equilibrium. This conjecture is known as the Fully

Mixed Nash Equilibrium conjecture. The motivation to study this conjecture is that if it was true, then

computing the worst Nash equilibrium would be trivial: indeed, for the KP model there is a unique fully

mixed Nash equilibrium in which each task is scheduled with probability 1
m to each machine [22]. Fotakis

et al. [25] studied this conjecture and gave some partial results. They proved that the conjecture is true

in the special case where there are only two tasks for the KP model with identical machines. They also

proved that the social cost of the worst Nash equilibrium is less than or equal to 49.02 times the cost of

any generalized fully mixed Nash equilibrium for the KP model with uniform machines. They have also

studied the computational complexity of computing the social cost of a Nash equilibrium, and they showed

that it is #P-complete when restricted to mixed equilibria. Furthermore, they proposed a fully polynomial

randomized approximation scheme (FPRAS) to compute it for the KP model with identical machines.

If the fully mixed Nash equilibrium conjecture was true, this scheme would help to approximate within

any accuracy the cost of the worst Nash equilibrium. Thus the efforts continued in this direction and the

conjecture was shown to be true for some other special cases: the case where the number of machines is

two [11] and the case where the comparison is limited to pure Nash equilibria [30]. Unfortunately, Fischer

and Vöcking [31] showed recently that the fully mixed Nash equilibrium conjecture is not true and that

the ratio between the social cost of a fully mixed Nash equilibrium and the worst Nash equilibrium can be

almost as bad as the price of anarchy.

Various extensions of the KP model have been considered in the literature [11,33]. Among them, we can

cite the restricted KP model where a task is allowed to be executed only to subset of the machines [11,33],

the KP model with unrelated machines [33] or the Web server farm model [34]. The main results concern,

as for the KP model, the evaluation of the price of anarchy or the nashification problem.

81.5.2 Results for the CKN Model

Coordination Mechanisms

The notion of coordination mechanism, the CKN model in the context of selfish scheduling, and the

results of Section 81.2.2 are from Ref. [7]. In Ref. [35], the authors have recently extended the results of

Ref. [7]: they noticed the close relation between coordination mechanisms and local search algorithms, as

well as, between the price of anarchy and the locality gap of a neighborhood and by doing so they were able

to obtain the price of anarchy for some of the variants of the CKN model using some older results from

the local search literature [36]. They also studied the price of anarchy of pure Nash equilibria for various

17

coordination mechanisms for the CKN model. They proved that the price of anarchy of any deterministic

coordination mechanism for the CKN model with uniform machines and the CKN model where each

task can be executed to a restricted subset of machines is at most O(log m). They also proved that the price

of anarchy of a coordination mechanism based on a universal policy (like LPT or SPT) is �(log m) for the

later model. Furthermore, they showed that the price of anarchy of a coordination mechanism based on

LPT is 2− 2
m for the CKN model with uniform machines. They also proved that a coordination mechanism

based on a randomized policy has a price of anarchy of 	(m) for the CKN model with unrelated machines.

They also studied the convergence and existence of pure Nash equilibria for coordination mechanisms

based on SPT and LPT policies.

Price of Stability

The results in Section 81.3.1 are from Ref. [12] and can be extended to the m machines case. The authors

studied the trade-off between α and the quality of the proposed solution. More precisely, they showed that

the price of α-approximate stability is at most 8
7 for all α ≥ 3, and they gave an algorithm that achieves this

bound. They also provided a relation between α and the best possible price of α-approximate stability, by

showing, for example, that the price of α-approximate stability is at least 8
7 for all α < 2.1, and that it is

larger than or equal to 1 + ε if α is smaller than a certain constant k in 	(ε−1/2).

Truthfulness

The results of Section 81.4.1 are from Ref. [16]. The authors considered also the design of truthful coor-

dination mechanisms for the CKN model with two identical machines. They first studied a coordination

mechanism where the first machine always schedules its tasks in order of increasing lengths (its policy is

SPT), and the second machine schedules its tasks with a probability p > 2
3 in order of increasing lengths

and with probability (1− p) in order of decreasing lengths. The expected price of anarchy of this (random-

ized) coordination mechanism, that they proved to be 4
3 + p

6 , is better than the one of SPT (whose price of

anarchy is 3
2). They also showed that this coordination mechanism is truthful if the tasks are powers of a

constant greater than or equal to 4−3p
2−p , but not if the values of the task lengths are not restricted. Moreover,

they showed that if p < 1
2 then this coordination mechanism is not truthful even if the tasks are powers

of any integer larger than 1. They also considered the other randomized coordination mechanisms that

combine deterministic coordination mechanisms in which the tasks are scheduled in order of increasing

or decreasing lengths (and thus which have expected price of anarchy better than the one of SPT), and

gave negative results on their truthfulness.

81.5.3 Results for the AT Model

The results of Theorem 1.8 are from Ref. [8] and that of Theorem 1.9 from Ref. [17]. The first results

in this direction were given by Nisan and Ronen [37], but for the model of selfish unrelated machines.

For this model they proved that the former known approximation algorithms are not truthful. For the

AT model (with uniform machines) it was Archer and Tardos who introduced a truthful randomized

mechanism, which gives 3-approximate solutions. The first deterministic result is due to Auletta et al. [38]

who proposed a deterministic polynomial-time (2 + ε)-approximation algorithm and suitable payments

functions that yield truthful mechanisms for the following restrictions of the problem: (i) the speeds of the

machines are integer and the largest is bounded from above by a constant, and (ii) the speeds are divisible,

that is, s i+1 is a multiple of s i . The proposed mechanisms compute the payments in polynomial time and

satisfy voluntary participation, that is, a truthfully behaving agent never incurs in a loss. They were also

able to deduce a deterministic truthful (4 + ε)-approximate mechanism for the case of arbitrary speeds

and for any, but fixed, number of machines. More recently, Azar and Sorani [39] improved these results:

They provided a deterministic 12-approximation truthful mechanism for the AT model with an arbitrary

number of processors. They also proposed a deterministic truthful PTAS for the AT model with a fixed

number of machines. Auletta et al. [40] studied the difficulty of translating approximation/competitive

algorithms into equivalent approximation/competitive truthful mechanisms. They proposed “translation”

technique and studied its limits.

18

References

[1] Papadimitriou, C., Algorithms, games and the Internet, Proc. STOC, 2001, p. 749.

[2] Nash, J. F., Non cooperative games, Ann. Math., 54, 286, 1951.

[3] Osborne, J. O. and Rubinstein, A., A Course in Game Theory, The MIT Press, Cambridge, MA, 1994.

[4] Lipton, R. J., Markakis, E., and Mehta, A., Playing large games using simple strategies, Proc. 4th ACM

Conf. on Electronic Commerce, 2003, p. 36.

[5] Papadimitriou, C. and Roughgarden, T., Computing equilibria in multi-player games, Proc. SODA,

2005, p. 82.

[6] Koutsoupias, E. and Papadimitriou, C., Worst-case equilibria, Proc. STACS, Lecture Notes in Com-

puter Science, Vol. 1563, 1999, Springer, Berlin, p. 404.

[7] Christodoulou, G., Koutsoupias, E., and Nanavati, A., Coordination mechanisms, Proc. ICALP,

Lecture Notes in Computer Science, Vol. 3142, Springer, Berlin, 2004, p. 345.

[8] Archer, A. and Tardos, E., Truthful mechanisms for one-parameter agents, Proc. FOCS, 2001, p. 482.

[9] Graham, R., Bounds on multiprocessor timing anomalies, SIAM J. Appl. Math., 17(2), 416, 1969.

[10] Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, É., Wexler, T., and Roughgarden, T., The price

of stability for network design with fair cost allocation, Proc. FOCS, 2004, p. 295.

[11] Gairing, M., Lücking, T., Mavronicolas, M., and Monien, B., Computing Nash equilibria for schedul-

ing on restricted parallel links, Proc. STOC, 2004, p. 613.

[12] Angel, E., Bampis, E., and Pascual, F., The price of approximate stability for a scheduling game

problem, Euro-Par, LNCS, 2006.

[13] Clarke, E., Multipart pricing of public goods, Public Choices, 11, 17, 1971.

[14] Groves, T., Incentive in teams, Econometrica, 41(4), 617, 1973.

[15] Vickrey, W., Counterspeculation, auctions and competitive sealed tenders, J. Finance, 16, 8, 1961.

[16] Angel, E., Bampis, E., and Pascual, F., Truthful algorithms for scheduling selfish tasks on paral-

lel machines, Proc. WINE, Lecture Notes in Computer Science, Vol. 3828, Springer, Berlin, 2005,

p. 698.

[17] Ambrosio, P. and Auletta, V., Deterministic monotone algorithms for scheduling on related machines,

Proc. WAOA, Lecture Notes in Computer Science, Vol. 3351, Springer, Berlin, 2004, p. 267.

[18] Czumaj, A., Selfish routing on the Internet, in Handbook of Scheduling: Algorithms, Models and

Performance Analysis, Leung, J., Ed., CRC Press, Boca Raton, FL, 2004, chap. 42.

[19] Feldmann, R., Gairing, M., Lücking, T., Monien, B., and Rode, M., Selfish routing in non-cooperative

networks: a survey, Proc. MFCS, Lecture Notes in Computer Science, Vol. 2747, Springer, Berlin, 2003,

p. 21.

[20] Roughgarden, T., Selfish Routing and the Price of Anarchy, The MIT Press, Cambridge, MA, 2005.

[21] Gonnet, G., Expected length of the longest probe sequence in hash code searching, JACM, 28(2), 289,

1981.

[22] Mavronicolas, M. and Spirakis, P., The price of selfish routing, Proc. STOC, 2001, p. 510.

[23] Koutsoupias, E., Mavronicolas, M., and Spirakis, P., Approximate equilibria and ball fusion, Theor.

Comput. Syst., 36(6), 683, 2003.

[24] Czumaj, A. and Vöcking, B., Tight bounds for worst-case equilibria, Proc. SODA, 2002, p. 413.

[25] Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., and Spirakis, P., The structure and

complexity of Nash equilibria for a selfish routing game, Proc. ICALP, Lecture Notes in Computer

Science, Vol. 2380, Springer, Berlin, 2002, p. 123.

[26] Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., and Spirakis, P., Extreme Nash equilibria,

Proc. ICTCS, Lecture Notes in Computer Science, Vol. 2841, Springer, Berlin, 2003, p. 1.

[27] Even-Dar, E., Kesselman, A., and Mansour, Y., Convergence time to Nash equilibria, Proc. ICALP,

Lecture Notes in Computer Science, Vol. 2719, Springer, Berlin, 2003, p. 502.

[28] Feldmann, R., Gairing, M., Lücking, T., Monien, B., and Rode, M., Nashification and the coordination

ratio for a selfish routing game, Proc. ICALP, Lecture Notes in Computer Science, Vol. 2719, Springer,

Berlin, 2003, p. 514.

19

[29] Hochbaum, D. and Shmoys, D., A polynomial approximation scheme for scheduling in uniform

processors: using the dual approximation scheme, SIAM J. Comput., 17(3), 539, 1998.

[30] Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., and Spirakis, P., Structure and complexity

of extreme Nash equilibria, Theor. Comp. Sci., 343(1–2), 133, 2005.

[31] Fischer, S. and Vöcking, B., On the structure and complexity of worst-case equilibria, Proc. WINE,

Lecture Notes in Computer Science, Vol. 3828, Springer, Berlin, 2005, p. 151.

[32] Ferrante, A. and Parente, M., Existence of Nash equilibria in selfish routing problems, Proc. SIROCCO,

Lecture Notes in Computer Science, Vol. 3104, Springer, Berlin, 2004, p. 149.

[33] Awerbuch, B., Azar, Y., Richter, Y., and Tsur, D., Tradeoffs in worst-case equilibria, Proc. WAOA,

Lecture Notes in Computer Science, Vol. 2909, Springer, Berlin, 2003, p. 64.

[34] Czumaj, A., Krysta, P., and Vöcking, B., Selfish traffic allocation for server farms, Proc. STOC, 2002,

p. 287.

[35] Immorlica, N., Li, L., Mirrokni, V. S., and Schulz, A., Coordination mechanisms for selfish scheduling,

Proc. WINE, Lecture Notes in Computer Science, Vol. 3828, Springer, Berlin, 2005, p. 55.

[36] Vredeveld, T., Combinatorial Approximation Algorithms. Guaranteed versus Experimental Perfor-

mance, Ph.D. thesis, Technische Universiteit Eindhoven, The Netherlands, 2002.

[37] Nisan, N. and Ronen, A., Algorithmic mechanism design, Proc. STOC, 1999, p. 129.

[38] Auletta, V., De Prisco, R., Penna, P., and Persiano, P., Deterministic truthful approximation mecha-

nisms for scheduling related machines, Proc. STACS, Lecture Notes in Computer Science, Vol. 2996,

Springer, Berlin, 2004, p. 608.

[39] Azar, Y. and Sorani, M., Truthful approximation mechanisms for scheduling selfish related machines,

Proc. STACS, Lecture Notes in Computer Science, Vol. 3404, Springer, Berlin, 2005, p. 69.

[40] Auletta, V., De Prisco, R., Penna, P., and Persiano, P., On designing truthful mechanisms for on-

line scheduling, Proc. SIROCCO, Lecture Notes in Computer Science, Vol. 3499, Springer, Berlin,

2005, p. 3.

20

