
HAL Id: hal-00341353
https://hal.science/hal-00341353v1

Submitted on 27 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The impact of local policies on the quality of packet
routing in paths, trees, and rings
Eric Angel, Evripidis Bampis, Fanny Pascual

To cite this version:
Eric Angel, Evripidis Bampis, Fanny Pascual. The impact of local policies on the quality of packet
routing in paths, trees, and rings. Journal of Scheduling, 2008, 11 (5), pp.311–322. �10.1007/s10951-
008-0069-5�. �hal-00341353�

https://hal.science/hal-00341353v1
https://hal.archives-ouvertes.fr

The impact of local policies on the quality of packet routing in
paths, trees, and rings

Eric Angel 1, Evripidis Bampis 1, Fanny Pascual 2

Abstract

We consider the packet routing problem in store-and-forward networks whose topologies are
either paths, trees, or rings. We are interested by the quality of the solution produced, with
respect to a global optimal solution, if each link uses a (fixed) local policy to schedule the
packets which go through it. The quality of the derived solutions is measured using the
worst case analysis for two global optimality criteria, namely the maximum arrival date of a
packet at its destination (or makespan) and the average arrival date of the packets at their
destinations.

We consider the setting where n packets, each one having a size (or length) and a desti-
nation, are released from the same source. In the case of rings, there exist two paths between
the source and a destination. Each packet is owned by a user which chooses a path to its
destination. We assume that users are rational: knowing the local policy used by the links
and the state of the network, a user chooses the path which minimizes the arrival date of
its packet at its destination. We are then interested by the quality of the Nash equilibria
obtained.

1 Introduction

The classical problem of packet routing in store-and-forward networks can be formalized as
follows. We are given a network represented by a directed graph, where the nodes are the
switches and the arcs are the communication links. In general, a node can serve as the source or
destination of an arbitrary number of packets (or tasks). We are also given a set of packets, each
one characterized by its length and an ordered pair of nodes (source, destination) that have to
be routed through the network from their sources to their destinations. At most one packet can
be routed at the same time on a given link and a packet cannot be routed on several links at
the same time. The time that a packet needs to cross a link is proportional to the length of the
packet, and in the sequel we assume w.l.o.g. that this time is equal to the length of the packet.
Before the routing starts, all the packets are stored at their sources in special buffers. During
the routing, packets may wait in the buffers of intermediate nodes.

We focus on particular network topologies, namely paths, trees, and rings. In the case of
paths and trees there is a unique path between the source and each destination node. Thus
the routing problem in these network topologies consists in scheduling the packets on each link
along the paths linking the source to the destinations of the packets. We study the quality of
the solutions obtained by using different local policies for scheduling the packets on every link,
instead of a centralized algorithm. In the case of rings, we assume that each packet is owned by
a selfish (rational) agent who has the choice of the path to reach its destination. This situation
is modeled as a non-cooperative game, in which each agent has two possible (pure) strategies
which correspond to the choice of a path. We assume that each agent knows the local policy
used by the links and has a complete information about the traffic in the network (the lengths
and destinations of the packets owned by the other agents), when he chooses his strategy. His
goal is to minimize the arrival date of the packet he owns. We are interested by solutions which
are pure Nash equilibria, i.e., a combination of pure strategies (choices of paths) for the agents

1IBISC, Université d’Évry Val d’Essonne, 523 Place des Terrasses, 91000 Évry, France. E-mail: {angel,

bampis}@ibisc.univ-evry.fr
2LIP6, Université Pierre et Marie Curie, 104 avenue du Président Kennedy, 75016 Paris, France. E-mail:

fanny.pascual@lip6.fr

1

such that no agent has an incentive to unilaterally change its strategy given the strategies chosen
by the other agents.

The quality of the derived solution is measured using the worst case analysis for two opti-
mality criteria, namely the maximum arrival date (maximum completion time or makespan) and
the average arrival date (average completion time) of the packets (tasks) at their destinations.

In the case of paths and trees, the measure that we use in order to evaluate the loss of
performance is the classical measure in approximation algorithms, namely the approximation
ratio, which is defined as the maximum, over all possible instances, of the ratio of the value of
the objective function obtained in our setting, over the optimal value of the studied objective
function.

In the case of rings, we use the notion of price of anarchy [8] defined over all pure Nash
equilibria, i.e., Nash equilibria where the strategy of each task is one path and not a distribution
of probabilities over several choices. Formally, let I be the set of all possible instances, and let
us denote by N (I) the set of all pure Nash equilibria for instance I ∈ I. We denote by OPTI the
value of the studied objective function at an optimal solution. The price of anarchy is defined
as:

Price of anarchy = max
I∈I,N∈N (I)

Objective function value in N

OPT I
.

Local policies. The links of the network have a common local policy which allows them to give
an order to the packets: when a link becomes idle, it chooses, according to the adopted policy,
a packet to route (without preemption) among the waiting packets, if any, in its buffer. The
policy of the links is decided once and for all and does not depend on the instance of the packets
to be routed.

We study the impact of the following policies on the quality of the produced solutions:

• SPT: Shortest Processing Time. The packet (task) which has the smallest length (i.e.
processing time) is scheduled first.

• LPT: Longest Processing Time. The packet which has the largest length is scheduled first.

• LRD: Largest Remaining Distance. The packet which has the largest remaining distance
is scheduled first. The remaining distance of a packet is the number of arcs it has to cross
to arrive at its destination.

• LRT: Longest Remaining Time. The packet which has the longest remaining time to
its destination is scheduled first. The remaining time of a packet is its length times the
number of arcs it has to cross to arrive at its destination.

1.1 Related works

The packet routing problem in general store-and-forward networks is an NP-hard problem [14]
which has been extensively studied in the literature (see for example [1, 9, 10, 11]). However,
in these works, the authors consider the setting where all the packets have the same length,
and they mainly give centralized algorithms. Randomized distributed or online algorithms have
been proposed in [1, 9, 11], but in these algorithms the policy of each link does not only depend
on the packets that are allocated to this link, but also on the total number of packets in the
network.

Another related problem, studied in [6], is the multicommodity flow over time problem, where
flows do not travel instantaneously through a network but require a certain amount of time to
travel through each arc: a flow over time specifies a flow rate entering an arc for each point in
time. Notice that contrary to our model, a packet may start to be sent from an intermediate

2

node before having been completely received at this node. Besides showing that the problem
is NP-hard, the authors propose an efficient centralized algorithm. They also give a greedy
algorithm for the case where the out-degree of each node is at most one (this result is useful in
Section 2.3).

A closely related work is the one of [4] in which the authors studied a scheduling problem
on parallel links. In their model, they introduce a local policy for each parallel link, allowing
to give an order to the tasks that are executed on the considered link. This model is similar
to the one considered in our paper (especially to the case of rings), since it can be described
as follows: a set of n selfish packets is initially located at a common source and has to be
transmitted to a common destination through a simple network composed of a set of m parallel
edges (communication links) connecting the source to the destination node. Every link has a
public local policy, known to all packets, which determines the order in which the packets that
are allocated to this link will be scheduled. Each packet is characterized by its length and aims
to adopt a strategy –choice of a link– that minimizes its arrival (completion) time. From the
network point of view, the quality of a schedule is measured in terms of its makespan, i.e.,
the time at which the last packet arrives at its destination. More recently, in [7], the authors
compared the price of several policies (SPT, LPT, Randomized) in the case of parallel links with
different speeds.

We also have to mention two other models that consider the selfish packet routing problem
in networks. The model introduced in [13] consists of routing in a network a very large number
of packets of negligible size, giving rise to a flow problem where the aim of each packet is to
minimize its arrival date, and the global objective function is the maximum arrival date. The
second model considers congestion games, introduced in [12] and studied in [3]: the cost of each
packet i is the sum of the costs of the links crossed by i, where the cost of a link is a function of
the number of packets that are using this link. The main difference with respect to our model
is that the cost of a link does not take into account the time at which the packets effectively
cross this link. If the network is a parallel links network, like in the case of [8] or [4], the price
of anarchy of the congestion game corresponds to the price of anarchy considered in [8], where
the tasks are scheduled in a round-and-robin way. However, in the case of congestion games if
the network topology is different, each link used by two tasks will add a cost for each of these
two tasks, even if no task has to wait for the other one to cross the link.

1.2 Terminology and notations

For clarity reasons, in the sequel we adopt the scheduling terminology, e.g., we use the term task
instead of packet. In the setting that we consider, n tasks are available (present) on the same
node (called the source) at time 0 and have the same or different destinations. Furthermore, the
links of the network have the same local policy which is either SPT, LPT, LRD, or LRT.

We consider store-and-forward networks: a task must be received completely by a node
before it can be sent on. Tasks wait on the buffer of the link they wish to take until this link
becomes free. We assume that the buffers are infinitely large. As soon as a link becomes free,
the task with the highest priority in the buffer is scheduled. Notice that this way a large packet
may make a short packet wait several times on its path, if the large packet has a priority higher
than the short packet.

In the sequel, we will denote the length of task i by li (li > 0), and the number of arcs in the
shortest path between the source and the destination of i will be denoted by xi. Ci denotes the
completion time of task i, and Cmax denotes the completion time of the last task completed. Ai

denotes the outgoing arc taken by task i from the source, and Bi is the set of tasks which went
through arc Ai before task i.

3

We consider the two following problems: the Maximum Completion Time Problem, in which
we wish to minimize the date at which all the tasks have been completed, and the Average
Completion Time Problem, in which we wish to minimize the average completion time of the
tasks. This last problem is equivalent to the one of minimizing the sum of the completion times
of all the tasks.

1.3 Outline of the paper

In Section 2, we study the approximation ratio of the four studied policies when the network is
a path or a tree for the two considered objective functions. In Section 3, we study the price of
anarchy in the case where the network is a ring. In Section 4, this loss of performance is studied
in the case where all the tasks have the same source and the same destination, in path and ring
networks.

Table 1 (resp. Table 2) shows the approximation ratio (or price of anarchy in rings) when
there are several destinations (resp., one destination), for the Maximum Completion Time prob-
lem (columns denoted by Cmax) and the Average Completion Time problem (columns

∑
Ci).

We give either tight bounds, or a lower bound and an upper bound. In this latter case, r denotes
the approximation ratio (or price of anarchy for rings).

Each policy (e.g., SPT) may have a sub-policy (another policy) to schedule its tasks when
there is a tie. For example, SPT may schedule the tasks which have the same length with the
LRD policy. It is important to note that the results given by the following tables hold whatever
the sub-policy of each policy is. Therefore, no result is given for the LRD policy for the Average
Completion Time in the case where there is a single destination in paths or trees (Table 2), since
the ratio of LRD depends in this case of its sub-policy (it is 1 if the sub-policy is SPT, whereas
it is in Θ(n) if it does not have any sub-policy or if its sub-policy is LPT).

Policy Path Tree Ring∑
Ci Cmax

∑
Ci Cmax

∑
Ci Cmax

SPT 1 2 − ε < r < 2 1 2 − ε < r < 2 1.34 < r ≤ 2 2 − ε < r < 3

LPT Θ(n) Θ(n) Θ(n) Θ(n) Θ(n) Θ(n)

LRT Θ(n) 2 − ε < r ≤ n Θ(n) 2 − ε < r ≤ n Θ(n) 2 − ε < r ≤ n

LRD Θ(n) 1 Θ(n) 2 − ε < r < 2 Θ(n) 1.5 − ε < r < 3

Table 1: Summary of the results when the tasks have several destinations. Value ε is a small
positive number which tends towards 0. The result for the maximum Completion Time Problem
with the LPT policy in trees is obtained with a network whose size is exponentially large in n.

Policy Path and Tree Ring∑
Ci Cmax

∑
Ci Cmax

SPT 1 1 1.17 < r ≤ 2 1.66 < r ≤ 2

LPT, LRT Θ(n) 1 Θ(n) 1.16 < r ≤ 2

LRD (see sub-policy) 1 (see sub-policy) r ≤ 2

Table 2: Summary of the results when the tasks have the same destination.

4

2 Paths and Trees: several destinations

Before starting the analysis of the different policies, let us give some general observations. We
consider here out-trees where the source is at the root. Note, however, that considering general
trees, where tasks can go through links in both sides, would not allow a task to decrease its
completion time, since with the four above mentioned policies no task would have incentive to
cross a link which does not lead to its destination, and then to take again this link in the other
way to eventually be able to reach its destination.

Notice also that with the SPT, LPT, and LRD policies, since all the links use the same
policy, and since there is a unique path from the source to a destination, the order of priority
of the tasks in all the buffers will be the same for all the links (e.g. the largest task will always
be the largest task, and the task which has the longest remaining distance to its destination
will always be the same one). Thus, all the buffers (except the buffer at the source node) will
schedule their tasks in a FIFO (first in first out) order.

With the LRT policy this is not always the case, as shown by the following example, where
the order of priority of the tasks changes during the time (i.e., a task may ”overtake” another
task which left the source before). Consider the following instance: a path made of four nodes
s, n1, n2, n3, where s is the source of the tree, and the three following tasks (or packets): a task
of length 3 (denoted by P3) which wants to go to node n3; a task of length 5 (denoted by P5)
which wants to go to node n2; and a task of length 9 (denoted by P9) which also wants to go
to node n2. At time 0, P9 has the highest priority (its remaining time is 18), P5 has the second
highest priority (its remaining time is 10), and P3 has the lowest priority (its remaining time is
9). Thus P9 is scheduled first, followed by P5 and P3 in this order. As soon as P9 arrives at node
n1, since it is the only task in the buffer, it is scheduled between nodes n1 and n2. While P9 is
scheduled between these two nodes (this takes 9 time units), tasks P5 and P3 arrive at node n1

and wait that the link is free. At this time P3 has the highest priority (its remaining time is 6,
whereas the remaining time of P5 is 5). Thus, P3 will be scheduled before P5 on edge (n1, n2),
although it was scheduled after P5 on edge (s, n1).

2.1 The SPT policy

Theorem 2.1 The approximation ratio of the SPT policy in a path or a tree, for the Maximum
Completion Time problem, is smaller than 2.

Proof : Let OPT be the completion time of the last task in an optimal solution of this problem.
Let us consider any task i, and let us show that the completion time of this task, Ci, is smaller
that 2OPT . Since we are in a tree (or a path), for each couple (source, destination), there is
only one possible path. Moreover, since the smaller a task is, the earlier it left the source; once
a task is gone, it will not be caught up by another task and will not catch up with any task.
Thus, the completion time of task i is equal to the time that i waits before its departure from
the source, plus the time it needs to go to its destination. Let Wi denote the time before the
departure of i from the source. We have: Ci = Wi + (xi li).
Wi is smaller than the sum of all the tasks (including task i) which go through the same outgoing
arc as i from the source, and OPT has to be larger than or equal to this sum. Thus, Wi < OPT .
Likewise, OPT has to be larger than or equal to the time needed by task i to reach its destina-
tion (without waiting time): xi li ≤ OPT . Hence, Ci < 2OPT , and then Cmax < 2OPT . ✷

Theorem 2.2 Let ε be any positive number. The approximation ratio of the SPT policy in a
path or a tree, for the Maximum Completion Time problem, is larger than 2 − ε.

5

Proof : Let 0 < ε < 1. Let us show that the approximation ratio is larger than 2− ε by consid-
ering the following instance: we have a tree which is a single path of n = ⌈2

ε ⌉ arcs. The source
is node 0 and each node i < n has an outgoing arc towards node i + 1. There are (n − 1) tasks
of length 1− 1/n and a task t of length 1. The destination of the tasks of length 1− 1/n is node
1, and the destination of task t is node n. In the optimal solution, t is scheduled first and the
maximum completion time is equal to Cmax = n. If the policies of each arc are SPT, then task
t will be scheduled at the last position, and its completion time will be its waiting time before
its departure ((n − 1)(1 − 1/n)) plus the time that it needs to reach its destination (n), that is

(n−1)(1−1/n)+n. Thus, the approximation ratio is equal to (n−1)(1−1/n)+n
n = 2− 2

n+ 1
n2 > 2−ε.✷

We deduce from Theorems 2.1 and 2.2 the following corollary:

Corollary 2.1 The approximation ratio of the SPT policy in a path or a tree, for the Maximum
Completion Time problem, tends towards 2.

Let us now show that the SPT policy is optimal for the Average Completion Time problem.

Theorem 2.3 The approximation ratio of the SPT policy in a path or a tree, for the Average
Completion Time problem, is 1.

Proof : Since a path is also a tree, let us prove this in the case of a tree. Since the routings on
each outgoing arc of the source are independent from each other, we consider each arc a from
the source and show that the SPT policy minimizes the sum of completion times of the tasks
which must go through this arc.

Let us assume w.l.o.g. that the tasks 1, 2, . . . , n go through the arc a. Let us fix a policy P
and let Wi(P) denote the waiting time of task i before it leaves the source, i.e., it is the sum of
the lengths of the tasks scheduled on the arc a before task i according to the policy P. Since
a task may need to wait during its travel because it is blocked by another task, in general the
sum of the completion times can be larger than

∑n
i=1 Wi(P) +

∑n
i=1 xi li.

Observe, however, that for the SPT policy, after the packets left the source they do not
block each other anymore, thus the sum of the completion times is

∑n
i=1 Wi(SPT) +

∑n
i=1 xi li.

Moreover, the SPT policy clearly minimizes the sum of the waiting times
∑n

i=1 Wi(P). Thus
the sum of the completion times of tasks crossing the arc a is minimized when using the SPT
policy. ✷

2.2 The LPT policy

Theorem 2.4 Let n be the number of tasks we have to route. The approximation ratio of the
LPT policy in a path or a tree, for the Maximum Completion Time problem, is in Θ(n).

Proof : Let us consider the following instance: we have n tasks, and a tree which is a single
path of m = 2n−1 arcs. The source is node 0 and each node i < m has an outgoing arc towards
node i+1. There are n tasks {1, . . . , n}, and each task i has a length 1/2i−1, and its destination
is node 2i−1.
Let OPT be the maximum completion time in an optimal solution, and Cmax(SPT) (resp.,
Cmax(LPT)) the maximum completion time if the policies of the arcs are SPT (resp., if the
policies of the arcs are LPT). We have: OPT ≤ Cmax(SPT). Let us show that Cmax(SPT) < 2.
We will then show that the maximum completion time when the policies are LPT is in Θ(n).
If the policies are SPT, then the only waiting time for each task is the waiting time before its
departure from the source. The maximum waiting time is the one of the largest task (task 1):

6

it is
∑n

i=2(1/2
i−1) < 1. We know that Cmax(SPT) is smaller than or equal to the maximum

waiting time, plus the maximum time that a task needs to reach its destination (cf. Proof of
Theorem 2.1). The maximum travel time is max1≤i≤n li xi = max1≤i≤n(2i−1)/2i−1 = 1. Thus
Cmax(SPT) is here smaller than 2.
In the case where the policies of the arcs are LPT, a task cannot overtake a task larger than
it. Thus, when task i has arrived at its destination, task i + 1 still has 2i−1 + 1 arcs to cross
(it had 2i arcs to cross and has already crossed 2i−1 − 1 arcs). This represents a travel time
larger than 2i−1 li+1 = 2i−1 × (1/2i) = 1/2. Since task 1 reaches its destination at time 1,
we have Cmax(LPT) > 1 + (1/2) (n − 1). The approximation ratio of the LPT policy is then
Cmax(LPT)

OPT > 1+(1/2) (n−1)
2 ≥ 1

4 + n
4 .

We showed that the approximation ratio of LPT is in Ω(n). Let us show that it is in O(n).
Indeed, the solution obtained with this policy is not worse than the solution we would obtain by
releasing tasks from the source in order of decreasing lengths and by releasing a task from the
source only when the previous released tasks have reached their destinations. Since the travel
time of each task (without waiting time) is smaller than or equal to OPT , the completion time
of the last task in this solution is at most n OPT . Thus, the approximation ratio of the LPT
policy is in Θ(n). ✷

Theorem 2.5 Let n be the number of tasks we have to route. The approximation ratio of the
LPT policy in a path or a tree, for the Average Completion Time problem, is in Θ(n).

Proof : Let us consider the following instance: we have a tree which is a single path of two
arcs, n − 1 tasks {1, . . . , n − 1} of length 1, and a task n of length n2. The source of these
tasks is node 0; it has an outgoing arc towards node 1, which is the destination of the small
tasks; and node 1 has an outgoing arc towards node 2, which is the destination of task n. In the
optimal solution, task n is scheduled after the small tasks, and the sum of the completion times
is then OPT = (

∑n−1
i=1 Ci) + Cn = n(n − 1)/2 + (n − 1 + 2n2) = 5n2/2 + n/2 − 1. Let us now

consider the case where the policy of the arcs is LPT: task n is scheduled first and the sum of
the completion times is then Cn +

∑n−1
i=1 Ci = 2n2 +(n−1)n2 +n(n−1)/2 = n3 +3n2/2−n/2.

The approximation ratio is n3+3 n2/2−n/2
5 n2/2+n/2−1 , which tends towards 2n/5 when n gets large.

We showed that the approximation ratio of LPT is in Ω(n). Let us show that it is in O(n).
Indeed, the completion time of each task with this policy is not worse that the completion
time we would have in the solution S, where we release the tasks from the source in order
of decreasing lengths, and we release a task from the source only when the previous released
tasks have reached their destinations. Let us suppose that we have k tasks {1, . . . , k} of lengths
l1 ≤ . . . ,≤ lk, which take the same outgoing arc from the source. Since the travel time of each
task i is equal to li xi, the sum of the completion times in solution S is

∑k
i=1 i li xi, whereas the

sum of the completion times in an optimal solution is at least
∑k

i=1 li xi. Each task is counted
less than k ≤ n times more in the sum of the completion times in S rather than in an optimal
solution. Since the completion time of each task scheduled with the LPT policies is smaller than
or equal to the completion time of this task in S, the approximation ratio of the LPT policy is
in Θ(n). ✷

2.3 The LRD policy

2.3.1 Paths

Theorem 2.6 The approximation ratio of the LRD policy for the Maximum Completion Time
problem in a path is equal to 1.

7

Proof : This result is a corollary of a result of [6]. In this paper, the authors study multicom-
modity flows in oriented graphs where each commodity has one source node and one sink node,
and where the out degree of each node is at most 1, which includes the case of paths. Their
goal is to have a quickest flow, i.e., to minimize the date at which all the flows arrive to their
sinks. They give the following greedy algorithm: whenever there is a conflict between several
commodities using the same arc, the algorithm gives top priority to the commodity which is the
furthermost from its sink node. They prove that this algorithm is optimal.

The solution obtained with the LRD policy in our setting is a solution which could have been
obtained with this multicommodity flow algorithm on the following instance: the path is the
same as in our setting, all the commodities have the same source nodes (the source in our set-
ting), and each commodity corresponds to a task (the sink node of the commodity corresponds
to the destination of its corresponding task, and the flow between the source node and the sink
node of each commodity is equal to the length of its corresponding task). Indeed, with the
LRD policy, each arc schedules the task (the flow) whose remaining distance to its destination
(sink) is the largest one. Thus the approximation ratio is 1 for the Maximum Completion Time
problem in the path if the policy is LRD. ✷

2.3.2 Trees

Theorem 2.7 The approximation ratio of the LRD policy in a tree, for the Maximum Comple-
tion Time problem, is smaller than 2.

Proof : Let i be a task which has the largest completion time if the policy of the arcs is LRD,
and let OPT be the maximum completion time in an optimal solution. Let us show that
Ci < 2OPT . If i does not have any waiting time after its departure, then Ci is equal to the
travel time of i, xi li ≤ OPT , plus the waiting time before its departure,

∑
j∈Bi

lj < OPT (the
sum of the lengths of the tasks which go through the same arc is necessarily smaller than or
equal to OPT), and thus Ci < 2OPT .
Let us now consider the case where task i need to wait after its departure. Recall that Bi is the
set of tasks which went through the same arc than task i and which left the source before task
i. Since i has to wait after it left the source, this means that it has caught up with a task of Bi,
and that there is in Bi a task which is larger than li (otherwise i would not have caught any task
up). Let g be the largest task of Bi. We are going to show that the time Ci that task i needs to
reach its destination is smaller than or equal to lg xi +

∑
j∈Bi\g

lj + li. Indeed, the completion
time Ci of i is maximized if every task of Bi has the same destination as i. This is equivalent
to a routing in a path, and in that case LRD is an optimal policy according to Theorem 2.6.
Notice now that, since there is a unique destination, the SPT policy is also an LRD policy, and
is therefore optimal, too. So to calculate the completion time of i with the LDR policy, we can
calculate the maximum completion time of tasks i∪Bi with the SPT policy, since they are equal.
This last quantity is equal to the waiting time of task g:

∑
j∈Bi\g

lj + li plus its travel time lg xi.
The sum of the tasks which go through the same arc is smaller than or equal to OPT , and

so
∑

j∈Bi\g
lj + li < OPT . Moreover, since g left the source before i with the LRD policy, we

know that xg ≥ xi, and so lg xi ≤ lg xg ≤ OPT . Hence, Ci < 2OPT , and the approximation
ratio of the LRD policy is smaller than 2. ✷

Theorem 2.8 Let ε be any fixed positive number. The approximation ratio of the LRD policy
in a tree, for the Maximum Completion Time problem, is larger than 2 − ε.

Proof : Let k = ⌈2
ε ⌉. Note that this is a constant number, since ε is fixed. Let n be a

positive integer such that n is a multiple of k, and n >> k. Let us consider the following

8

instance: a tree, as drawn in Figure 1, n − (n/k) tasks {1, . . . , (n − n/k)} of length 1, and
a task t of length n/k. In Figure 1 the source is S, and di is the destination of task i. For
i ∈ {1, . . . , (n − n/k)}, the distance between S and di is k + 1, whereas the distance between
S and dt is k. In an optimal solution, task t is scheduled first and the maximum completion
time, OPT , is equal to n + k (it is the completion time of the last task of length 1). If the
policies of the links are LRD, then task t is scheduled after the other tasks and the maxi-
mum completion time is Cmax(LRD) = 2n − (n/k). The approximation ratio of LRD is then
Cmax(LRD)

OPT = 2 n−(n/k)
n+k = (2−1/k) (n+k)−(2−1/k) k

n+k = (2 − 1
k) − 2 k−1

n+k .

Since k = ⌈2
ε⌉, the approximation ratio of LRD is equal to (2 − 1

⌈2/ε⌉) −
2 ⌈2/ε⌉−1
n+⌈2/ε⌉ , which tends

towards 2 − 1
⌈2/ε⌉ ≥ 2 − ε

2 > 2 − ε when n tends towards the infinity. ✷

dtS
d1, . . . , dn−(n/k). . .

. . .

Figure 1: Example where the approximation ratio tends towards 2 for the Maximum Completion
Time problem with the LRD policy.

We deduce from Theorems 2.7 and 2.8 the following corollary:

Corollary 2.2 The approximation ratio of the LRD policy in a tree, for the Maximum Com-
pletion Time problem, tends towards 2.

Let us now show that the average completion time is unbounded when the policy of every
arc is LRD.

Theorem 2.9 Let n be the number of tasks we have to route. The approximation ratio of the
LRD policy in a path or a tree, for the Average Completion Time problem, is in Θ(n).

The proof is the same as the one of Theorem 2.5.

2.4 The LRT policy

Theorem 2.10 Let n be the number of tasks we have to route, and let ε be any small positive
number. The approximation ratio of the LRT policy in a path or a tree, for the Maximum
Completion Time problem, is larger than 2 − ε and smaller than or equal to n.

Proof : Let 0 < ε < 1. Let us show that the approximation ratio is larger than 2 − ε by
considering the following instance: we have a tree which is a single path of n = ⌈2

ε ⌉ arcs. The
source is node 0 and each node i < n has an outgoing arc towards node i + 1. There are two
tasks: one of length 1, whose destination is node n, and one of length n+ε, whose destination is
node 1. In the optimal solution, the small task is scheduled first and the maximum completion
time is equal to n + 1 + ε. If the policies of each arc are LRT, then the large task is scheduled
first and the maximum completion time is 2n + ε. Thus, the approximation ratio is equal to
2 n+ε
n+1+ε = 2 − 2+ε

n+1+ε > 2 − ε.
The solution obtained with the LRT policy is not worse than the solution we would obtain

by releasing the tasks from the source in any order, and by releasing a task from the source only
when the previous released tasks have reached their destinations. Since the travel time of each
task (without waiting time) is smaller than or equal to OPT , the completion time of the last
task in this solution is at most n OPT . Thus the approximation ratio of the LPT policy is at

9

most n. ✷

Note that it is an open question whether the approximation ratio of the LRT policy in a tree
is in Θ(n) or not.

Theorem 2.11 Let n be the number of tasks we have to route. The approximation ratio of the
LRT policy in a path or a tree, for the Average Completion Time problem, is in Θ(n).

The proof is the same as the one of Theorem 2.5.

3 Rings: several destinations

We consider here a ring with m ≥ 2 nodes and in which there are between two neighbor nodes
u and v an arc (u, v) and an arc (v, u). Thus, in this setting, at the source each task has two
possible strategies: either it takes the right side of the ring, or it takes the left side of the ring.
Both ways lead to its destination. We assume that each task knows the setting of the problem,
i.e. the number of edges in the ring and the characteristics of all the tasks (their lengths and
destinations), as well as the strategies chosen by the other tasks (the path that each task chooses
to take to reach its destination). Since the aim of each task is to reach its destination as soon as
possible, it will choose the strategy which, given the characteristics and strategies of the other
tasks, will minimize its completion time.
We thus assume that tasks will converge towards a stable solution in which no task can decrease
its completion time by unilaterally changing strategy. Such a situation is, by definition, a Nash
equilibrium. We are interested in the price of anarchy of pure Nash equilibria.

With the policies we study (SPT, LPT, LRT, and LRD), no task has an incentive to cross an
arc (u, v) and then to go back to u, the node where it comes from: once each task has chosen the
direction it will take to its destination (i.e., go on the left side or the right side of the ring), then
this task will not change direction. With the LRD policy, each arc schedules tasks in decreasing
order of remaining distance to destination. The remaining distance of a task crossing an arc
is equal to the number of arcs this task has to cross to arrive at its destination if it does not
change direction.

Notice that the best strategy of a task does not always consist in choosing the shortest path
to its destination. Consider, for example, a ring made of three links, linking the source s to
nodes n1 and n2. Suppose that each link schedules first the longest tasks (its policy is LPT)
and that there are two tasks of lengths 1 and 3, which both want to reach node n1. The task
of length 3 will take the link leading to n1, where it will arrive three time units after its start.
The task of length 1 does not have an incentive to take its shortest path, otherwise it will have
to wait for the other task, which has the priority, and it would reach its destination at time 4.
By taking path s, n2, n1, this task arrives earlier (at time 2) at its destination.

The price of anarchy of a given policy in a ring is larger than or equal to the approximation
ratio of this policy in a path. Indeed, in the case where we have a very large ring and if the
destinations of the tasks are, for example, in the beginning of the right side of the ring, then, in
the optimal solution as well as in the Nash Equilibrium, all the tasks will choose the outgoing arc
on the right of the source, and the ring can then be seen as a path (this path would be the path
made of all the arcs of the ring except the arc from the source to the left side of the ring). Thus
we can conclude that the price of anarchy is in Ω(n) for the Average Completion Time problem
for the LPT, LRD and LRT policies (cf. Theorem 2.5). This price of anarchy is also in O(n)
because the travel time of each task is smaller than or equal to the maximum completion time
in an optimal solution. Likewise, the price of anarchy is in Θ(n) for the Maximum Completion
Time problem for the LPT policy (cf. Theorem 2.4), and it is larger than or equal to 2 for the
Maximum Completion Time problem for the SPT and LRT policies (cf. Theorem 2.1 and 2.10)

10

3.1 The SPT policy

Theorem 3.1 The price of anarchy of the SPT policy, for the Maximum Completion Time,
problem is smaller than 3.

Proof : Once a task is gone from the source, it cannot catch up a task which took the same
direction before it, since the policy is SPT (the smallest task, which is the fastest to go through
a link, is scheduled first). Thus a task will not have any waiting time after its departure. Let
i be a task whose completion time is equal to the maximum completion time Cmax, and let us
show that Cmax is smaller than 3OPT , where OPT is the maximum completion time in an
optimal solution. In the worst case, the waiting time of i is equal to the sum of the lengths
of all the other tasks, which is smaller than

∑n
j=1 lj ≤ 2OPT because in the optimal solution

the amount of tasks scheduled on one of the two outgoing links from the source is at least
(
∑n

j=1 lj)/2 and so OPT ≥ (
∑n

j=1 lj)/2. Each task, knowing the strategies of the other tasks,
chooses to go to its destination by the right side of the ring, or by the left side of the ring, and
decides to take the direction which will minimize its completion time. If it takes its shortest
path, of length xi, then its travel time will be xi li ≤ OPT , and so its completion time will be
smaller than 3OPT . Since i wants to minimize its completion time it will choose to take the
other side of the ring only if this does not increase its completion time, and so Cmax < 3OPT . ✷

Theorem 3.2 The price of anarchy of the SPT policy for the Average Completion Time problem
is smaller than or equal to 2.

Proof : Let us suppose that we have n tasks T = {1, 2, . . . , n} of lengths l1 ≤ l2 ≤ · · · ≤ ln to
schedule. Let O be an optimal solution of these tasks for the Average Completion Time problem.
Let (A,B) be a partition of tasks of T such that, in O, the tasks which are in A are scheduled
on the left outgoing arc from the source, and the tasks which are in B are scheduled on the
right outgoing arc from the source. Let S be a Nash Equilibrium when the policies of the arcs
are SPT. Let S ′ be the solution obtained when all the tasks take the same outgoing arc from
the source (e.g., the one at the left of the source), and when the policies of the arcs are SPT.
Let Wi(S

′) (resp., Wi(O)) be the time needed for task i to cross the first arc from the source in
S ′ (resp., in O). In S, the completion time of each task i is Ci(S) ≤ Wi(S

′) + (xi − 1)li. Indeed
in S, each task i chooses the outgoing arc on which it will reduce its completion time, and by
choosing the outgoing arc on its shortest path, i would have a completion time equal to the
time needed to cross the first arc (i.e., its waiting time plus its length li), which is smaller than
or equal to Wi(S

′), plus its travel time once it crossed the first arc, which is equal to (xi − 1)li
(because once a task is gone it does not have any waiting time, since the policy is SPT).
In O, the completion time of task i is equal to the time it needs to cross the first arc, Wi(O),
plus its remaining travel time to go to its destination, which is larger than or equal to (xi −1) li.
Since Ci(S) ≤ Wi(S

′)+(xi−1)li and the completion time of i in O is Ci(O) ≥ Wi(O)+(xi−1)li,
if

∑n
i=1 Wi(S

′) ≤ 2
∑n

i=1 Wi(O), then we can deduce that the sum of the completion times in S
is smaller than or equal to twice the sum of the completion times in O. Let us now show that∑n

i=1 Wi(S
′) ≤ 2

∑n
i=1 Wi(O).

The waiting time of task i in S ′ is equal to l1 + · · ·+ li−1, and so the time Wi(S ′) that task i
needs to cross the first arc is

∑i
j=1 lj. Therefore, the sum of the times needed to cross the first

arc in S ′ is equal to
∑n

i=1 Wi(S
′) =

∑n
i=1

∑i
j=1 lj = n l1 + (n − 1) l2 + · · · + 2 ln−1 + ln.

We saw that there are two queues A and B in O. Let us see the smallest value that
s =

∑n
i=1 Wi(O) can take. This problem is equivalent to the scheduling problem P2||

∑
j Cj for

which we have two machines and we want to schedules jobs in order to minimize the sum of com-
pletion times. In [2] it has been proved that an LPT list scheduling algorithm gives the optimal

11

solution. More precisely, an optimal solution can be obtained by sorting the jobs in non decreas-
ing lengths, and schedule each job in a round-and-robin way on each machine. Therefore, if n
is even (resp., odd) the queue A will be composed of jobs 1, 3, . . . , n− 1 (resp. 1, 3, . . . , n− 2, n)
and the queue B will be composed of jobs 2, 4, . . . , n (resp., 2, 4, . . . , n − 1), in this order. This
way ln−(2 i) and ln−(2 i+1) will be counted i+ 1 times in s, whereas they are counted (2i+ 1) and
(2i + 2) times in

∑n
i=1 Wi(S

′). Thus, each task i is at most counted twice more in
∑n

i=1 Wi(S
′)

than in the minimum value of
∑n

i=1 Wi(O). So
∑n

i=1 Wi(S
′) ≤ 2

∑n
i=1 Wi(O) and then the sum

of the completion times in S is smaller than or equal to twice the sum of the completion times
in O. ✷

Theorem 3.3 The price of anarchy of the SPT policy for the Average Completion Time problem
is larger than or equal to 55/41 ≈ 1.34.

Proof : Let us consider the instance shown on Figure 2: we have a ring of length 10, and 9
tasks: 6 tasks {1, . . . , 6} of length 1, 2 tasks {7, 8} of length 1 − ε, and one task 9 of length
1− 2 ε, where ε is a small value. In the sum of the completion times we will neglect the ε, since
we can fix ε as small as we wish.

S

d1, . . . , d6

d7, d8

d9

Figure 2: Example where the price of anarchy tends towards 55/41 for the Average Completion
Time problem with the SPT policy. The source is S, and di is the destination of task i.

If all the tasks take the left side of the ring we have a Nash equilibrium and the sum of the
completion times is 55. In the optimal solution, tasks 7, 8 and 9 take the right side of the ring
and the sum of the completion times is 41. Thus, the price of anarchy is at least 55/41 when
the policies of the links are SPT. ✷

3.2 The LRD policy

Theorem 3.4 The price of anarchy of the LRD policy, for the Maximum Completion Time
problem, is smaller than 3.

Proof : Let T be the set of tasks to be routed, and (X1,X2) a partition of T . Let (X1,X2, Pol)
denote the solution obtained when the policy of each arc is Pol and when the tasks which choose
to take the left outgoing arc from the source are in X1 and tasks which choose to take the right
outgoing arc from the source are in X2. Let Cmax(X1,X2, Pol) denote the last completion time
in this solution, and let Cmax(X,Pol) be the last completion time in this solution of a task
belonging to the set X (where X is either X1 or X2) . Let S be a Nash equilibrium when the
policies are LRD, and let A (resp., B) be the set of tasks which choose to take the left (resp.
the right) outgoing arc from the source in S.

Let us suppose w.l.o.g. that the source node is node 1, which has then two neighbors: node
2 at its left and node m at its right. Once tasks are partitioned into sets A and B, the routing

12

can be viewed as two parallel routings in two paths: one path starting at node 1 which has
an outgoing arc towards node 2, which has an outgoing arc towards node 3, . . . , which has
an outgoing arc towards node m, and where tasks belonging to A are routed; and one path
starting at node 1, which has an outgoing arc towards node m, . . . , which ends at node 2, and
where tasks belonging to B are routed. According to the Theorem 2.6, LRD is an optimal
strategy in a path so, given an assignment of the tasks into two buffers left and right, LRD is
not worse than the other policies: Cmax(A,B,LRD) ≤ Cmax(A,B, SPT). Let us now compare
Cmax(A,B, SPT) to the maximum completion time OPT in an optimal solution. Let i be the
task which has the largest completion time in (A,B, SPT), and let us suppose w.l.o.g. that i
belongs to A. Its completion time is equal to Cmax(A,B, SPT) = Wi + li D, where Wi is the
waiting time before the departure of i from the source (one has Wi < 2OPT , see the proof
of Theorem 3.1), and D is the number of arcs that i has to cross to arrive at its destination.
If the path that i takes to go to its destination is its shortest path, then li D ≤ OPT and
Cmax(A,B,LRD) ≤ Cmax(A,B, SPT) < 3OPT . Otherwise the shortest path from the source
to the destination of i is the path on the right side of the ring, and i would have taken its shortest
path if it would have been in B. In this case its completion time would have been smaller than
3OPT (less than 2OPT of waiting time, and a travel time of at most OPT). Since we have a
Nash equilibrium, i minimizes in (A,B,LRD) its completion time by going on the left side of
the ring, and then this completion time is smaller than or equal to the completion time it would
have by going in B, and so is smaller than Cmax(B,LRD) ≤ Cmax(B,SPT) < 3OPT . ✷

Theorem 3.5 The price of anarchy of the LRD policy, for the Maximum Completion Time
problem, is larger than or equal to 1.5.

Proof : Let us consider the instance shown in Figure 3: we have a ring of length 2n + 2, and n
tasks: n − 1 tasks {2, . . . , n} of length 1 and a task 1 of length 2n. The destination of task i is
the ith node on the left from the source.

SS

dndn

dn−1dn−1

d2d2

d1d1

n

n
n

2 n
2 n3 n − 1

2 n
2 n

Figure 3: Example where the price of anarchy is 3/2 for Maximum Completion Time problem
with the LRD policy. Left : Nash equilibrium. Right : Optimal solution. The source is S, and di

is the destination of task i. There are n − 1 tasks {2, . . . , n} of length 1 and a task 1 of length
2n. The number inside a ring at each node di is the completion time of task i in this ring.

In the Nash equilibrium shown on Figure 3 Left, all the tasks take the left side of the ring and
the maximum completion time is 3n − 1. In the optimal solution (shown on Figure 3 Right),
task 1 takes the left side of the ring, and the other tasks the right side of the ring, and the
maximum completion time is 2n. Thus the price of anarchy when the policies of the links are
LRD is (3n − 1)/(2n), which tends towards 3/2 when n gets large. ✷

13

4 Case where there is only one destination

We are now interested in the price of anarchy (for rings), or approximation ratio (for trees) when
all the tasks have the same source and the same destination. In this case the LRD policy does
not make sense if it does not have a sub-policy to give a priority to tasks which have the same
destination: any policy which does not introduce idle times is indeed an LRD policy. We will
show that, in a ring, all these policies have a price of anarchy of at most two for the Maximum
Completion Time problem. Likewise, since there is one single destination, if a task is larger than
another, then it has a larger remaining travel time, and so the results for the LPT and LRT
policies are the same.

4.1 Paths and Trees

The cases of paths and trees here are the same, since there is only one path between a source
and a destination in a tree. For the Average Completion Time problem, since the SPT policy is
optimal when there are several destinations, it is also optimal when there is only one destination.
For the LPT and LRT policies, the proof of Theorem 2.5 can be used, slightly modified, in the
sense where there is a very large task followed by many small tasks, and the path is a single arc:
the approximation ratio is then in Θ(n). The approximation ratio of the LRD policy depends of
its sub-policy: if it does not have a sub-policy then LRD can be the worst possible policy, e.g.,
LPT, and its approximation ratio is then in Θ(n) for this problem.

For the Maximum Completion Time problem, we know that the LRD policy is optimal in a
path (see Section 2.3). Since there is a single destination, the SPT, LPT and LRT policies are
also LRD policies and thus are optimal for this problem.

4.2 Rings

The upper bounds obtained for rings in the case where tasks can have multiple destinations are,
of course, upper bounds in the case of a unique destination; thus, the price of anarchy for the
Average Completion Time problem is at most 2 for the SPT policy. As we saw in Section 3, the
approximation ratio of a policy in a path is a lower bound of the price of anarchy of this policy
in a ring. Thus, the price of anarchy is in Ω(n) for the LPT and LRT policies for the Average
Completion Time problem in a ring. Likewise, it is in O(n) because the travel time of each task
is smaller than or equal to the maximum completion time in an optimal solution.

If the ring has only two arcs (m = 2), then the Maximum Completion Time problem is a
routing problem on two identical parallel links (P2||Cmax). The only possible Nash equilibrium
when the policy is LPT is equivalent to the solution obtained by a centralized LPT algorithm,
which greedily schedules tasks from the largest one to the smallest one. This can easily be shown
by contradiction: let us suppose that in a Nash equilibrium a task i starts later than a task j
smaller than it (li > lj). Since the policy of each arc is LPT, task i cannot be scheduled on the
link on which task j is scheduled. By going via this link, task i would start earlier and thus
decrease its completion time: task i has an incentive to change its strategy, and this situation
is then not a Nash equilibrium. On the contrary, the solution obtained by a centralized LPT
schedule is clearly a Nash equilibrium. Therefore, the approximation ratio of the LPT algorithm
for (P2||Cmax), which is 7/6 [5], is a lower bound of the price of anarchy of the LPT policy for
the Maximum Completion Time problem.

Let us now prove the remaining bounds of the results in Table 1.3. The following theorem
shows that the price of anarchy for the Maximum Completion Time problem is at most 2 for
the SPT, LPT, LRT, and LRD policies.

14

Theorem 4.1 The price of anarchy of any policy which does not introduce idle time, for the
Maximum Completion Time problem, is smaller than or equal to 2.

Proof : Let us consider that we have a ring of length m ≥ 2, n tasks, a unique source and a
unique destination. Let OPT be the maximum completion time in an optimal solution for our
problem. Let (A,B) be a partition of the tasks such that, in the optimal solution, the tasks of
A take the left path, of length La, and the tasks of B take the right path, of length Lb. Let us
suppose that the length of the shortest path is L = min{La, Lb}. Task n is the largest task, and
let us suppose w.l.o.g. that task n belongs to A.

Observe that the problem of scheduling the tasks of A to their unique destination is a
scheduling problem on a path, where LRD is optimal according to Theorem 2.6. Since the
destination is unique, we can conclude that all the policies which do not introduce idle times
are optimal, and their maximum completion times are the same as the one obtained with the
SPT policy, that is the sum of all the tasks before task n plus the travel time of task n:∑

i∈A\n li + ln La ≥
∑

i∈A\n li + ln L. We have, therefore, OPT ≥
∑

i∈A\n li + ln L. Moreover,
we also know that OPT ≥

∑
i∈B li, since the tasks of B have at least one arc to cross.

We introduce the solution S (which is not necessarily a Nash equilibrium) in which all the
tasks take the shortest path from the source to the destination. The maximum completion
time for solution S is equal to

∑n−1
i=1 li + ln L. Observe now that no Nash equilibrium Snash

is worse than the solution S. The proof is by contradiction. If in solution Snash a task has a
completion time larger than

∑n−1
i=1 li + ln L, then this task is necessarily scheduled on the path of

the longest length, and it would decrease its completion time by choosing to go via the shortest
path, meaning that Snash is not a Nash equilibrium.

Thus, the maximum completion time in a Nash equilibrium is
∑n−1

i=1 li + ln L = (
∑

i∈B li) +
(
∑

i∈A\n li + ln L) ≤ 2OPT . ✷

Theorem 4.2 The price of anarchy of the SPT policy, for the Maximum Completion Time
problem, is larger than or equal to 5/3.

Proof : Let us consider the instance in which we have a ring of length 3, and 3 tasks: two tasks
of length 1 and a task of length 3. The destination is the node at the right of the source: there
are from the source to this node a path of length 2 and a path of length 1. The solution in which
the three tasks take the path of length 1 is a Nash equilibrium, and the maximum completion
time is 5. In an optimal solution, the tasks of length 1 take the path of length 2 and the task of
length 3 take the path of length 1: the maximum completion time is then 3. Thus, the price of
anarchy of the SPT policy for the Maximum Completion Time problem is larger than or equal
to 5/3. ✷

Theorem 4.3 The price of anarchy of the SPT policy, for the Average Completion Time prob-
lem, is larger than or equal to 219/187 ≈ 1.17.

Proof : Let us consider the instance in which we have a ring of length 4, and 6 tasks: three tasks
of length 1, a task of length 1.5, a task of length 2.25, and a task of length 3.375. The destination
is the first node at the right of the source: there are from the source to this node a path of
length 3, and a path of length 1. The solution in which all the tasks take the path of length 1
is a Nash equilibrium, and the sum of the completion times is 27.375. In an optimal solution,
two tasks of length 1 take the path of length 3 and the other tasks take the path of length 1:
the sum of the completion times is then 23.375. Thus, the price of anarchy of the SPT policy
for the Average Completion Time problem is larger than or equal to 27.375/23.375 = 219/187. ✷

15

5 Concluding remarks

We analyzed the worst case performance of decentralized policies which route tasks released
from the same source in networks whose underlying topology is a path, a tree, or a ring. We
showed significant differences between the four studied policies, since the use of some policies
(for example, SPT) provides solutions which are in the worst case 2 or 3 times worse than
the solutions obtained with an optimal centralized algorithm, whereas some other policies (for
example, LPT) do not have such a bounded worst case ratio.

In the case of rings, we did not mention in this paper the convergence time needed in order to
reach a Nash equilibrium. We assumed that the situation where tasks choose their destinations
in a ring is a Nash equilibrium. However, this would not be realistic if the time to reach (or
compute) a Nash equilibrium is too long. For the SPT and LPT policies, the tasks easily
converge towards a Nash equilibrium: for the SPT policy, for example, the smallest task chooses
its shortest path; given this, the smallest remaining task chooses the path which will minimize
its completion time, and so forth. Each task, in increasing order of lengths, makes its choice
according to the strategies of the other tasks. The convergence time towards a Nash equilibria
in rings is an open question for the LRD and LRT policies.
We focused on the worst case quality of pure Nash equilibria. Note that it is possible to avoid
mixed Nash equilibria (i.e. Nash equilibria in which the strategy of each task consists in choosing
the side path of the ring with a probability 0 < p < 1 and the right side of the ring otherwise),
by fixing a negligible delay ε on one of the two outgoing links of the source (this means that
there is an idle time of length ε before each task taking this link). This way the travel time of
a task which takes the left side of the ring will never be the same as the travel time of this task
if it takes the right side of the ring, and there will not exist Nash equilibria which are not pure.

We only considered paths, trees, and rings network topologies in this paper. In the future it
would be interesting to study the price of anarchy induced by local policies in general graphs.
The case where tasks are released from the same source and have to go to the same destination
in general graphs would certainly be a good starting point in this direction.

References

[1] F.M. auf der Heide and B. Vöcking. A packet routing protocol for arbitrary networks. In Proceedings
of the 12th Symposium on Theoretical Aspects of Computer Science (STACS), pages 291–302, 1995.

[2] J. Bruno, E.G. Coffman Jr., and R. Sethi. Algorithms for minimizing mean flow time. In Proceedings
of IFIP Congress, pages 504–510, 1974.

[3] G. Christodoulou and E. Koutsoupias. The price of anarchy of finite congestion games. In Proceedings
of the 37th ACM Symposium on Theory of Computing (STOC), pages 67–73, 2005.

[4] G. Christodoulou, E. Koutsoupias, and A. Nanavati. Coordination mechanisms. In Proceedings
of the 31st International Colloquium on Automata, Languages, and Programming (ICALP), LNCS
3142, pages 345–357, 2004.

[5] R. Graham. Bounds on multiprocessor timing anomalies. SIAM Jr. on Appl. Math, 17(2):416–429,
1969.

[6] A. Hall, S. Hippler, and M. Skutella. Multicommodity flows over time: Efficient algorithms and
complexity. Theoretical Computer Science (short version in ICALP 2003), 379(3):387–404, 2007.

[7] N. Immorlica, L. Li, V.S. Mirrokni, and A. Schulz. Coordination mechanisms for selfish scheduling.
In Proceedings of the 1st Workshop on Internet and Network Economics (WINE), LNCS 3828, pages
55–69, 2005.

[8] E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. In Proceedings of the 16th Sympo-
sium on Theoretical Aspects of Computer Science (STACS), LNCS 1563, pages 404–413, 1999.

16

[9] F.T. Leighton, B.M. Maggs, and S.B. Rao. Packet routing and job-shop scheduling in o(congestion
+ dilatation) steps. Combinatorica (preliminary version in FOCS 88), 14(2):167–186, 1994.

[10] F.T. Leighton, B.M. Maggs, and A.W. Richa. Fast algorithms for finding o(congestion + dilatation)
packet routing schedules. Combinatorica, 19(3):375–401, 1999.

[11] R. Ostrovsky and Y. Rabani. Universal o(congestion + dilatation + log1+ε n) local control packet
switching algorithms. In Proceedings of the 29th ACM Symposium on Theory of Computing (STOC),
pages 644–653, 1997.

[12] R. W. Rosenthal. A class of games possessing pure strategy nash equilibria. International Journal
of Game Theory, 2:65–67, 1973.

[13] T. Roughgarden and E. Tardos. How bad is selfish routing? Journal of the ACM, 49(2):236–259,
2002.

[14] D.B. Shmoys, C. Stein, and J. Wein. Improved approximation algorithms for shop scheduling prob-
lems. In Proceedings of the 2nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
148–15, 1991.

17

