
HAL Id: hal-00341347
https://hal.science/hal-00341347

Submitted on 19 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximation results for a bicriteria job scheduling
problem on a single machine without preemption

Eric Angel, Evripidis Bampis, Laurent Gourvès

To cite this version:
Eric Angel, Evripidis Bampis, Laurent Gourvès. Approximation results for a bicriteria job scheduling
problem on a single machine without preemption. Information Processing Letters, 2005, 94 (1), pp.19–
27. �hal-00341347�

https://hal.science/hal-00341347
https://hal.archives-ouvertes.fr

Approximation Results for a Bicriteria Job Scheduling Problem on
a Single Machine without Preemption

Eric Angel Evripidis Bampis Laurent Gourvès

LaMI, Université d’Évry, Tour Évry 2, 523 Place des terrasses de l’agora, 91000 Évry Cedex
angel,bampis,lgourves @lami.univ-evry.fr

Abstract

We study the problem of minimizing the average weighted completion time on a single machine under
the additional constraint that the sum of completion times does not exceed a given bound B (1 !Cj
B !wjCj) for which we propose a 2 1 -approximationalgorithm. We also address the problem1 !c jCj
B !wjCj for which we present a 2 2 -approximation algorithm. After showing that the problem
of minimizing two different sums of weighted completion times is intractable, we present an algo-
rithm which computes a 2 1 " 1 (resp. 2 1 " 2)-approximate Pareto curve for the problem
1 !Cj !wjCj (resp. 1 !c jCj !wjCj).

Keywords: Bicriteria optimization; Single machine scheduling; Approximate Pareto curve

1 Introduction

Because of their usefulness in industrial applications, scheduling problems are extensively studied since the
middle of the 20th century. More and more complex models are examined by researchers to fit to practical
situations but solutions are often evaluated with respect to only one objective (or criterion). Nevertheless,
the multi-objective nature of many of these problems created a new interest in this topic [6, 13].

In this paper, we consider the problem of scheduling n jobs on a single machine without preemption (i.e.
the processing of a job cannot be interrupted once it has started). Each job j 1 n has a processing
time pj, a weight wj and a cost cj. We assume that pj, wj and cj are positive integers. Along the paper,
we will consider that each job may start at time t 0. Moreover, no precedence constraints are taken into
account. For problems without release dates and non decreasing objective functions, it can be shown that
only schedules without idle times have to be considered. Therefore it is sufficient to determine an optimal
permutation of the jobs and, thus, the problem becomes a sequencing one. For ease of presentation, # will
denote a solution (a permutation of the jobs). For any permutation # of n jobs, # i denotes the ith job of #
(where 1 i n) while # 1 j denotes the position of job j in # (where 1 j n). For a permutation #, the
completion time of a job j # i is denoted byC#j !1 k i p# k . When the context is clear, the superscript
will be dropped, i.e., Cj will be used instead of C#j . The addressed problem is bi-objective: along the
article, the first (resp. second) objective will be called the total cost (resp. the total weight) of the schedule.
We assume that c # and w # denote respectively the total cost and the total weight of a permutation #:

c # !
1 j n

c jC#j w # !
1 j n

w jC#j

Research partially supported by the thematic network APPOL II (IST 2001-32007) of the European Union and the France-
Berkeley Fund project MULT-APPROX

1

Dealing with different (often conflicting) objectives leads to the following statement: in general, there
is not a unique optimal solution. The set of efficient solutions (called Pareto curve) constitutes a trade-off
between the different objectives. Because of the NP-hardness and/or the intractability of most of the consid-
ered problems, designing an algorithm which computes in polynomial time a Pareto optimal solution or the
whole Pareto curve is in general unlikely. Among the different classical approaches for multi-objective prob-
lems, one can distinguish the following two: The first one called the Pareto approach consists in computing
a set of solutions which approximates the entire Pareto curve. The second one, called budget approach,
consists in minimizing one criterion while the other does not exceed a given budget.

We consider these two approaches for our scheduling problem. Using the classical three fields notation,
the budget version of our problem is denoted by 1 !c jCj B !wjCj (where B is the given budget). On the
other hand, 1 !c jCj !wjCj denotes the problem of computing a set of solutions which approximates
the whole Pareto curve.
Previous work: With a reduction from PARTITION, Hoogeveen [6] shows that 1 !c jCj B !wjCj is

NP-hard even if the cost of each job is fixed to one. Since the constrained problem is NP-hard, computing
the whole exact Pareto curve is also NP-hard. However, it is possible to get in polynomial time a subset of
the Pareto curve for 1 !c jCj !wjCj . Bagchi [3] proposes a combinatorial algorithm which outputs the
set of all supported solutions1 of the Pareto curve for a bicriteria scheduling problem on a single machine
(the two objectives are the sum of completion times and the total absolute differences in completion times).
As mentioned by Hoogeveen [6], this algorithm can be adapted to our problem. However, Bagchi [3] states
that “an algorithm for optimizing one criterion subject to a constraint on the other criterion should be quite
valuable”. This was the main motivation for our work.

More recently, Angel et al. [1] considered the simultaneous approximation approach2 for the bicriteria
problem of minimizing simultaneously the sum of completion times and the sum of weighted completion
times. They proposed a 1 1

$ 1 $ -approximation algorithm for any $ 0. They have also proved that
for 0 $ 1, there is an instance such that no x y -schedule (x is the sum of completion times and y the
sum of weighted completion times of the schedule) with x 1 $ and y 1 1 $

2$ 1 exists .
Our contribution: We study the problem 1 !c jCj B !wjCj, and we provide two approximation

algorithms.
Furthermore, we use these results in order to obtain an approximate Pareto curve for the problem

1 !c jCj !wjCj . We also show that the Pareto curve of the problem can contain an exponential number
of solutions. We use techniques introduced in [3, 5, 9, 11].

The paper is organized as follows: We first present a combinatorial 2 1 -approximation algorithm
for the problem 1 !Cj B !wjCj. The next section addresses the problem 1 !c jCj B !wjCj for
which we present a 2 2 -approximation algorithm based on linear programming. In Section 4.2, we show
the intractability of problems 1 !Cj !wjCj and 1 !c jCj !wjCj . Moreover, we present an algo-
rithm to compute a 2 1 " 1 -approximate (resp. 2 1 " 2 -approximate) Pareto curve for the problem
1 !Cj !wjCj (resp. 1 !c jCj !wjCj).

2 A constant approximation algorithm for 1 !Cj B !wjCj

This section presents how the approach used in [11] can be adapted to the problem 1!Cj B !wjCj.
The starting point is a formulation of the problem as an optimization program but the derived algorithm is

1Solutions of a Pareto curve are partitioned into two distinct sets: supported and non-supported Pareto optimal solutions. A
solution of a bicriteria problem is supported iff it is optimal for a linear combination of the two criteria. Non-supported solutions
are often much harder to compute.

2One tries to compute a single solution that is good, to an approximation with performance guarantee point of view, on each
criterion. For example, this approach is followed by Aslam et al. [2] for a bicriteria scheduling problem.

2

z

d z #

z

d z

w #

slope c # B

Figure 1: The plot of d z # as z varies while d z is drawn in bold.

combinatorial. We first recall the definition of an % & -approximate solution in our specific context before
presenting the result and the method to get it.

Definition 1 Given B, an % & -approximate solution is a permutation with total cost at most %B and of
total weight at most &W, where W is the minimum total weight of any permutation of total cost at most B.

The result of this section is given in the following theorem.

Theorem 1 There is a polynomial time algorithm for 1 !Cj B !wjCj which outputs a 2 1 -approximate
solution.

2.1 Lagrangean relaxation

Given a feasible cost B, the problem can be formulated as the following optimization program (cj appears
but in this section it is considered to be equal to one for each job j):

Min# !n
j 1 wjC#j

subject to:
!n
j 1 c jC#j B
is feasible.

Using Lagrangean relaxation consists in inserting the constraint!n
j 1 c jC#j B into the cost function with

a real positive multiplying factor z:

d z #
n

!
j 1

wj zc j C#j zB

d z Min# d z #

One can see that d z is a lower bound on W (the weight of an optimal solution for the optimization
program). To provide the best lower bound on W , we try to find z such that d z Maxz 0 d z . The
function d z is concave and piecewise linear (see Figure 1). Any permutation # corresponds to a line d z #
with slope c # B and intercept w # . If we consider the monocriterion minimization problem 1 ! wj
z c j Cj, finding the best permutation of jobs can easily be done in polynomial time with Smith’s rule [12].
Indeed, jobs must be scheduled by increasing pj w j z c j ratio. Moreover, several permutations can

3

Step 1: Compute # and #
Step 2: Compute PATH between # and #
Step 3: Return the first permutation #out in PATH s.t. c #out B

Table 1: Sketch of the combinatorial algorithm.

HIERARCHICAL ORDER 1:
if pu wu z# cu pv wv z# cv
then u is scheduled before v
else if pu wu z# cu pv wv z# cv

then v is scheduled before u
else if pu cu pv cv

then u is scheduled before v
else v is scheduled before u

HIERARCHICAL ORDER 2:
if pu wu z# cu pv wv z# cv
then u is scheduled before v
else if pu wu z# cu pv wv z# cv

then v is scheduled before u
else if pu cu pv cv

then v is scheduled before u
else u is scheduled before v

Table 2: Hierarchical orders 1 and 2.

minimize ! wj z c j Cj if there are jobs with equal pj w j z c j ratio. In this case, there must be at
least one permutation # such that c # B and at least another one # such that c # B. Just look at
Figure 1, since z is optimal, at least two lines go through d z : one with a negative slope and another one
with a positive slope. A line represents a permutation # whose slope is c # B. If these two solutions do
not exist, we have a contradiction to the fact that z is optimal. Since these two permutations both minimize
! wj z c j Cj, it is possible to swap specific adjacent jobs (namely, jobs with equal pj w j z c j ratio)
without any increase in the cost.

2.2 The algorithm

Any permutation #b can be reached from another one #a by a series of swaps involving adjacent jobs3.
Moreover, the number of intermediate permutations is polynomially bounded (at most n n 1 2). Such
a procedure can be employed to reach # from # , moreover, swaps can be restricted to jobs with equal
pj w j z c j ratio. As a consequence, each intermediate permutation has the same cost as # and # . In
the sequel, PATH denotes such an ordered list of intermediate permutations between # and # . A sketch
of the algorithm is given in Table 1 while the next subsection provides a combinatorial procedure to compute
and # .

2.3 How to get # and #

For any fixed z#, it is possible to say whether z# z , z# z or z# z . Just consider the hierarchical
order 1 defined in Table 2. With it, one can produce a permutation # ; if c # B then z# z . Indeed,
among all optimal schedules for wj z#c j, there is no permutation with total cost strictly lower than c # .
Now consider the hierarchical order 2 defined in Table 2. With it, one can produce a permutation # ; if
c # B then z# z . Symmetrically, there is no permutation with total cost strictly greater than c # .
Therefore, if c # B and c # B then z# z . In fact, determining whether z# is smaller, larger or
equal to z requires the computation of two permutations which can be done in O n logn time. In the sequel,
we directly compute # and # without previously determining z . To do that, we exploit the fact that it is

3W.l.o.g, suppose that #b i i for all i and apply a Bubble sort algorithm [7] on #a.

4

Case zuv z : schedule u before v if g zuv " h zuv " , otherwise schedule v before u.
Case zuv z : schedule u before v if pu cu pv cv, otherwise schedule v before u.
Case zuv z : schedule u before v if g zuv " h zuv " , otherwise schedule v before u.

Table 3: Three cases.

possible to know the ordering between any pair of jobs u v without knowing z [11]. Just consider the two
following functions of z:

g z pu wu zcu h z pv wv zcv
We distinguish two cases, when g and h have no breakpoint and when g and h have a breakpoint zuv. For
the first case, the ordering between u and v does not depend on z. Therefore, by the rule of Smith, u must
be scheduled before v if g z h z , otherwise schedule v before u. For the second case, the ordering
between u and v is established by z ; namely, it changes depending if the value of z is smaller or larger
than zuv. Determining whether zuv is smaller or larger than z requires the computation of two permutations
(O n logn with Smith’s rule). Now we consider three cases (see Table 3) for any arbitrary small value ".
A procedure can be derived to output # (to get # , in Table 3, replace the second case by Case zuv z :
schedule u before v if pu cu pv cv, otherwise schedule v before u). It needs the computation of zuv for
each pair of distinct jobs and for each positive zuv, the comparison to z requires the computation of two
optimal permutations. Thus, the time required to compute # or # is O n3 logn .

2.4 Proof of Theorem 1

Swapping any pair of adjacent jobs of a permutation # can induce a variation of its total cost denoted
by 'l. We assume that # contains two jobs u and v such that u is placed just before v. We denote by
pu, Cu and cu (resp. pv, Cv and cv) the processing time, completion time and cost of u (resp. v). The
total cost of # before and after the swap are respectively denoted by c # and c # . One can see that
'l c # c # cu Cu Cu cv Cv Cv cupv cvpu sinceCu Cu pv andCv Cv pu. Therefore,
'l can be upper bounded as follows:

'l Maxu v cupv cvpu cmaxCmax
where cmax Max j c j and Cmax Max j p j .

Now, consider the algorithm whose sketch is given in Table 1. It outputs a permutation (say #out) which
is the first in PATH having a total cost larger than B. Therefore, one can bound c #out by B 'l. We get:

c #out B 'l B cmaxCmax 1 cmax B

We can now argue that Cmax must be at most B since otherwise the instance will be infeasible. Since
w #out d z W , #out approximates B W within a factor 1 cmax 1 . Moreover, since for all j,
c j 1, we get a 2 1 -approximation.
With this former algorithm, the approximation is not constant when, for each job, cj is not fixed to one.
However, the next section presents a constant approximation algorithm based on linear programming.

3 A constant approximation algorithm for 1 !c jCj B !wjCj

We are going to define a linear program whose optimal solution will allow us to build a 2 2 -approximate
schedule by a simple heuristic procedure. The same technique was used by Hall et al. [5] to obtain a 2-
approximation algorithm for the problem denoted by 1 prec! j w jCj which consists in scheduling jobs on

5

a single machine to minimize the sum of weighted completion times while jobs are subject to precedence
constraints.

Theorem 2 There is a (2,2)-approximation algorithm for 1 !c jCj B !wjCj.

Proof. It follows from Smith’s rule that if we set wj p j for all jobs j, then the sum!n
j 1wjC#j is invariant

for any ordering # of the jobs. Therefore we have!n
j 1 pjC#j !n

j 1 pj !
j
i 1 pi !n

j 1!
j
i 1 pj pi. Let y j

be a decision variable which represents the completion time of job j for j 1 n. We have therefore for
any feasible schedule,!n

j 1 pjy j !n
j 1!

j
i 1 pj pi (the inequality comes from the possibility of idle time in

the schedule). It can be easily seen that this inequality remains valid for any subset A 1 n of jobs.
We obtain that ! j A p jy j 1

2 ! j A p2j ! j A p j 2 is a valid inequality for the completion times of jobs
in any feasible schedule. The linear program we consider is the following one:

Min !n
j 1wjy j (1)

subject to: ! j A p jy j 1
2 ! j A p2j ! j A p j 2 A 1 n (2)

!nj 1 c jy j B (3)
y j 0 1 j n (4)

Queyranne [10] has shown that the linear program given by (1), (2) and (4) is solvable in polynomial
time. There exists a polynomial-time separation algorithm for the exponential number of constraints in
the set (2), and by the equivalence between optimization and separation [4] the result follows. Adding the
single constraint (3) to the set (2) does not prevent the separation algorithm to work, and therefore the linear
program given by (1), (2), (3) and (4) remains polynomially solvable.

We solve this linear program to obtain an optimal solution ỹj for all j. These values do not generally
represent a feasible schedule but are lower bounds for the completion time of jobs in an optimal solution.
To obtain a feasible solution we schedule the jobs according to these values.

Let us assume that jobs have been renumbered so that ỹ1 ỹn. LetCj !
j
k 1 pk be the completion

time of job j in the schedule we obtain, and let Cj be the completion time of job j in an optimal schedule.
Then ỹ j! j

k 1 pk !
j
k 1 pkỹk

1
2 !

j
k 1 p

2
k

1
2 !

j
k 1 pk

2 because of constraints (2). Therefore ỹj! j
k 1 pk

1
2 !

j
k 1 pk

2, and ỹ j 1
2 !

j
k 1 pk

1
2Cj. We get that Cj 2ỹ j 2Cj and therefore ! j w jCj ! j 2wjCj .

Moreover ! j c jCj 2! j c j ỹ j 2B because of constraints (3).
The same idea for the bound of twice the LP value has been used earlier in [8].
Next section is devoted to the approximation of the Pareto curve with performance guarantee on the two

criteria.

4 Approximating the whole Pareto curve

As stated by Hoogeveen [6], the whole set of supported solutions of the Pareto curve for our problem can
be computed in polynomial time. At the same time, the problem is NP-hard, meaning that the hardness
comes from the computation of the non-supported Pareto optimal solutions. Moreover, as we will see
in Subsection 4.1, the whole Pareto curve can contain an exponential number of solutions. The set of
supported Pareto optimal solutions constitutes an approximation of the whole Pareto curve. Nevertheless,
we are interested in obtaining a worst case performance guarantee on both objectives. We are using for that
the notion of % & approximate Pareto curve (a general definition of an approximate Pareto curve with
performance guarantee can be found in [9]).

6

Definition 2 An % & -approximate Pareto curve for our problem is a set P of permutations having the fol-
lowing property: For any permutation # in the exact Pareto curve P , there exists at least one permutation
P such that c # %c # and w # &w # .

4.1 Intractability

Suppose 1 !c jCj B !wjCj is solvable in polynomial time. Therefore, one can compute the whole Pareto
curve by solving 1 !c jCj B !wjCj for each possible value of B. However, in the case where the Pareto
curve contains an exponential number of solutions, this procedure has a complexity in time which is not
polynomially bounded. We prove that, even if cj is fixed to 1 for all jobs, the problem 1 !c jCj !wjCj
remains intractable4.

We consider the following instance In with n jobs: each job j has a processing time nj 1, a weight nj 1
and a cost equal to 1.

Lemma 1 For the instance In, !1 j n c jCj !1 j n w jCj is invariant for any ordering # of the jobs.

Proof. Consider optimizing the expression: ! c jCj w jCj ! c j w j Cj for the specific instance In.
Each job has pj n j 1 and cj w j n j. Therefore pj c j w j 1 n for all jobs. Thus by Smith’s rule,
any ordering # of the jobs is optimal.

Lemma 2 Let # and # be two permutations of In. One has
n

!
i 1
C## i

n

!
i 1
C## i i 1 n # i # i

Proof. () is obvious. To prove (), we first state that the job n with processing time nn 1 (the largest in
In) is at the same position in # and in # . Let i and i# be positions such that # i # i# n. Suppose that
i i# (the case i i# is symmetric and can be treated by similar arguments) and!n

i 1C## i !ni 1C## i .
The cost of any permutation # in In can be expressed as follows:

n

!
i 1
C## i

n

!
i 1

i

!
k 1

p# k

n p# 1 n 1 p# 2 2p# n 1 p# n
n

!
i 1

n i 1 n# i 1

Let %i n i 1. Thus, %i and %i# are such that:
n

!
i 1
C## i %i n

n 1 !
1 i n
i i

%in# i 1 and
n

!
i 1
C## i %i#nn 1 !

1 i n
i i#

%in# i 1

Since i i#, we have %i %i# . One can show the following inequality:

!
1 i n

%in# i 1 !
1 i n

%in# i 1

contradicting the fact that the total cost of # is equal to the cost of #. Just consider the following inequalities
which are true since i 1 n 1 %i n:

4A problem is intractable if there exists at least one polynomially sized instance for which, no polynomial time algorithm can
output its Pareto set.

7

HIERARCHICAL ORDER 3:
if pu cu pv cv
then schedule u before v
else if pv cv pu cu

then schedule v before u
else if pu wu pv wv

then schedule u before v
else schedule v before u

HIERARCHICAL ORDER 4:
if pu wu pv wv
then schedule u before v
else if pv wv pu wu

then schedule v before u
else if pu cu pv cv

then schedule u before v
else schedule v before u

Table 4: Hierarchical orders 3 and 4.

%i %i# nn 1 %# 1 n 1 n
n 2

%# 1 n 1 nn 2 %# 1 n 2 n
n 3

...
%# 1 2 n1 %# 1 1 n

0

%# 1 1 n0 0

!1 i n
i i

%in# i 1 %i %i# nn 1 !1 i n
i i#

%in# i 1

It leads to say that i cannot be different from i#. Now, using iteratively this argument on jobs of smaller
processing time, one can show that two permutations of equal cost in In must be identical.

Theorem 3 The problem 1 !Cj !wjCj is intractable.

Proof. With Lemma 1 and 2, one can deduce that the Pareto curve of In is composed of n! different points
and given that the size of In is O n2 log n , the result follows.

4.2 Approximate Pareto curves for 1 !c jCj !wjCj

A Pareto curve is a set of solutions in which we can distinguish particular ones: the extreme points. On
Figure 2, the two extreme points of the Pareto curve are denoted by A and B. In concrete terms, A has the
lowest total weight among all optimal schedules for the total cost. Symmetrically, B has the lowest total cost
among all optimal schedules for the total weight. Necessarily, these extreme points are supported. Using
the hierarchical orders given in Table 4, one can compute them in O n logn time.

Suppose the cost-space is divided into columns (see Figure 2) in such a way that, for any couple of
permutations # # which are in the same column, one has c # 1 " c # with " 0. So, using an
% & -approximation algorithm for the problem 1 !c jCj 1 " m !wjCj produces a solution which
constitutes an % 1 " & -approximation of solutions whose costs are between 1 " m 1 and 1 " m

(and particularly Pareto optimal ones). By repeating this procedure for m 0 1 M where 1 "M is
greater than the total cost of B, we are able to compute an % 1 " & -approximate Pareto curve of the
problem. Since we consider a polynomially sized amount of budgets, this approximate Pareto curve can be
computed in polynomial time.

With results from Sections 2 and 3 we derive the two following propositions:

Proposition 1 There is a polynomial time algorithm for 1 !Cj !wjCj which outputs a 2 1 " 1 -
approximate Pareto curve.

8

to
ta
lw
ei
gh
t

A

B

1 " k 1 " k 1 total cost

Pareto curve

Figure 2: Dots A and B are the extreme points of the Pareto curve.

Proposition 2 There is a polynomial time algorithm for 1 !c jCj !wjCj which outputs a 2 1 " 2 -
approximate Pareto curve.

5 Concluding remarks

In this paper we propose a 2 1 -approximation algorithm for the problem 1!Cj B !wjCj and a 2 2 -
approximation algorithm for the problem 1 !c jCj B !wjCj. We also state intractability of problems
1 !Cj !wjCj and 1 !c jCj !wjCj for which we present a procedure to get approximate Pareto
curves.

Note that it is also possible to get in polynomial time a 2 1 -approximate Pareto curve for 1 !Cj !wjCj
by taking advantage of Bagchi’s approach [3]. Remark that, in Section 2, permutations denoted by # and
are always supported Pareto optimal solutions. Therefore, a 2 1 -approximate Pareto curve for the
problem 1 !Cj !wjCj can also be computed with the approximation algorithm of Section 2.

Remark that it is possible to get a 2 2 -approximation algorithm for the problem 1!c jCj B !wjCj
for which precedence constraints are added. Indeed, adding precedence constraints into the linear program
of Section 3 does not prevent the heuristic to work.

Acknowledgment

We thank Aleksei Fishkin for pointing to us the reference [5].

References

[1] E. Angel, E. Bampis, and A.V. Fishkin. A note on scheduling to meet two min-sum objectives. In
Proceedings of the ninth international workshop on project management and scheduling (PMS’2004),
pages 143–146, Nancy, France, 2004.

[2] J. Aslam, A. Rasala, C. Stein, and N. Young. Improved bicriteria existence theorems for scheduling. In
Symposium on Discrete Algorithms (SODA) Proceedings of the tenth annual ACM-SIAM symposium
on Discrete algorithms, pages 846–847, 1999.

[3] U. Bagchi. Simultaneous minimization of mean and variation of flow time and waiting time in single
machine systems. Operations Research, 37:118–125, 1989.

9

[4] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequenses in combinatorial
optimization. Combinatorica, 1:169–197, 1981.

[5] L.A. Hall, A.S. Schulz, D.B. Shmoys, and J. Wein. Scheduling to minimize average completion time:
off-line and on-line approximation algorithms. Mathematics of Operations Research, 22:513–544,
1997.

[6] H. Hoogeveen. Single-Machine Bicriteria Scheduling. PhD thesis, Eindhoven University of Technol-
ogy, 1992.

[7] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison Wesley,
1998.

[8] F. Margot, M. Queyranne, and Y. Wang. Decompositions, network flows, and a precedence constrained
single-machine scheduling problem. Operations Research, 51(6):981–992, 2003.

[9] C.H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and optimal access of
web sources. In Proc. of the 41th Annual IEEE symposium on Foundations of Computer Science, pages
86–92, 2000.

[10] M. Queyranne. Structure of a simple scheduling polyhedron. Mathematical Programming, 58:163–
185, 1993.

[11] R. Ravi and M. Goemans. The constrained minimum spanning tree problem. In Proc. of the Scandi-
navian Workshop on Algorithmic Theory (SWAT), pages 66–75, 1996.

[12] W.E. Smith. Various optimizers for single-stage production. Naval Research Logistic Quaterly, 3:59–
66, 1956.

[13] V. T’kindt and J-C. Billaut. Multicriteria Scheduling: Theory, Models and Algorithms. Springer, 2002.

10

