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Introduction

Given an undirected graph G(V, E) with non-negative edge weights w ij , the objective of the Maximum Cut problem (max-cut) is to find a partition of the vertex set into two subsets S and S, such that the sum of the weights of the edges having endpoints in different subsets is maximum. Formally, the weight of the cut (S, S) to be maximized is given by W (S, S) = i∈S,j∈S w ij . This well known combinatorial problem was shown to be NP-complete by Karp [START_REF] Karp | Reducability Among Combinatorial Problems[END_REF]. It has applications in many fields including VLSI circuit design and statistical Physics [START_REF] Barahona | An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design[END_REF].

In this article, we study a bi-criteria version of the max-cut problem. Formally, we are given an undirected graph G(V, E) and two distinct weighting functions. Each feasible cut is then evaluated with respect to these two criteria.

In general no feasible solution can meet optimality simultaneously for both criteria. However, a set of solutions which dominates1 all the others (the socalled Pareto curve) always exists. Because of the complexity of the classical (mono-criterion) max-cut problem, determining this Pareto curve is computationnally problematic. Indeed, the bi-criteria max-cut problem generalizes maxcut. Moreover, the size of the Pareto curve, i.e. the number of non-dominated solutions, may be exponential.

Concerning multi-criteria optimization (see [START_REF] Ehrgott | Multicriteria optimization[END_REF] for a recent book on the topic), three different approaches are often followed: the budget approach, the Pareto curve approach and the simultaneous approach. In this article we follow the third one.

By taking as a reference an ideal solution, namely a (not necessarily feasible) cut which simultaneously maximizes all objective functions, one tries to compute a feasible cut which approximates this ideal solution with a performance guarantee on each criterion.

In this direction, Stein and Wein [START_REF] Stein | On the existence of schedules that are near-optimal for both makespan and total weighted completion time[END_REF] considered a scheduling problem with two well studied criteria, namely the makespan and the average weighted completion time. They derived existence and non-existence theorems on schedules that are simultaneously near-optimal with respect to both objective functions. A series of recent papers follow this approach [START_REF] Rasala | Existence theorems, lower bounds and algorithms for scheduling to meet two objectives[END_REF][START_REF] Aslam | Improved bicriteria existence theorems for scheduling[END_REF][START_REF] Angel | A note on scheduling to meet two minsum objectives[END_REF][START_REF] Baille | A Note on Bicriteria Schedules with Optimal Approximations Ratios[END_REF][START_REF] Bampis | Bicriteria approximation algorithms for scheduling problems with communications delays[END_REF].

In this article, we follow the same approach for the bi-criteria max-cut problem. The paper is organized as follows: A formal presentation of the problem is given in Section 2. Sections 3 and 4 are respectively devoted to a deterministic and a randomized bi-criteria approximation algorithm with performance guarantee. Finally, some outlooks and concluding remarks are given in Section 5.

Formalization and notation

We are given an undirected graph G(V, E) where each edge e ∈ E has a nonnegative weight w e and a non-negative length l e . A solution (S, S) is feasible if it constitutes a partition of V . An edge e belongs to a cut (S, S), denoted by e ∈ (S, S), if e links a vertex in S and a vertex in S. The following objective functions, namely the total weight and the total length, are considered: The bi-criteria weighted max-cut problem is then to find a feasible cut (A, A) such that:

W (S, S) = e∈(S,S)
W (A, A) ≥ α OP T W and L(A, A) ≥ β OP T L
where 0 < α ≤ 1 and 0 < β ≤ 1. An (α, β)-approximation algorithm outputs a solution which is simultaneously α-approximate on the first criterion (the total weight) and β-approximate on the second criterion (the total length). 

A deterministic approximation algorithm

Build (S 3 , S 3 ) s.t. S 3 = (S 1 ∩ S 2 ) ∪ (S 1 ∩ S 2 ) Step 4: If L(S 1 , S 1 ) ≥ 0.5 L(S 2 , S 2 ) Then Return (S 1 , S 1 ) Else If W (S 2 , S 2 ) ≥ 0.5 W (S 1 , S 1 ) Then Return (S 2 , S 2 ) Else Return (S 3 , S 3 )
Theorem 1. Bi-Approx is a deterministic (α/2, α/2)-approximation algorithm for the bi-criteria weighted max-cut problem if Al is a deterministic α-approximation algorithm for the mono-criterion weighted max-cut problem.

Proof. Clearly, if Bi-Approx returns (S 1 , S 1 ) or (S 2 , S 2 ) then the solution returned is either (α, α/2) or (α/2, α)-approximate, and hence (α/2, α/2)-approximate.

In the following, we suppose that (S 3 , S 3 ) is returned by Bi-Approx and we prove that it is an (α/2, α/2)-approximate cut.

We partition V into four subsets X, Y , Z and

T such that (S 1 , S 1 ) = (X ∪ Y, Z ∪ T ) and (S 2 , S 2 ) = (X ∪ Z, Y ∪ T ). Vertices of each subset are shrinked into super-nodes denoted by v X , v Y , v Z and v T . More precisely, all nodes v ∈ X fall into v X , all nodes v ∈ Y fall into v Y etc.
Edges between two super-nodes are also shrinked into one super-edge such that:

w vA vB = v∈A,v ′ ∈B w v v ′ and l vA vB = v∈A,v ′ ∈B l v v ′
where A ∈ {X, Y, Z, T }, B ∈ {X, Y, Z, T } and A = B. Finally, we get a new graph K 4 as depicted in Figure 2. Now observe that if l vX vT + l vY vZ ≥ l vX vY + l vZ vT is true then we get a contradiction since instead of (S 3 , S 3 ), (S 1 , S 1 ) would have been returned:

l vX vT + l vY vZ ≥ l vX vY + l vZ vT l vX vT + l vY vZ ≥ (l vX vY + l vZ vT + l vX vT + l vY vZ )/2 L(S 1 , S 1 ) ≥ L(S 2 , S 2 )/2
Symmetrically, if w vX vT ) + w vY vZ ≥ w vX vZ + w vY vT is true then we get a contradiction since instead of (S 3 , S 3 ), (S 2 , S 2 ) would have been returned: Thus we have:

w vX vT + w vY
(wv X v Y , lv X v Y ) (wv Y v T , lv Y v T ) (wv T v Z , lv T v Z ) (wv Z v X , lv Z v X ) (wv X v T , lv X v T ) (wv Y v Z , lv Y v Z )
l vX vT + l vY vZ < l vX vY + l vZ vT and
(1) w vX vT + w vY vZ < w vX vZ + w vY vT .

(

From inequality (1) we get:

(l vX vY + l vZ vT )/2 > (l vX vT + l vY vZ )/2 

l
W (S 3 , S 3 ) > 0.5W (S 1 , S 1 ) W (S 3 , S 3 ) > α 2 OP T W
The analysis of Bi-Approx is tight. To see it, consider the instance given in Figure 3 where K is a large integer. The ideal point has a total weight and a total length equal to 1 while (S 1 , S 1 ) achieves the values (α, α K-1 2K ) and (S 2 , S 2 ) achieves the values (α K-1 2K , α). The algorithm returns a solution (S 3 , S 3 ) such that S 3 = {v 1 , v 3 , v 5 } and its total weight and total length are both equal to α K+1

2K . When K tends to infinity, the solution returned tends to be (α/2, α/2)approximate.

S1 S2 v1 v2 v3 v4 v5 (1 -α, 1 -α) (α K+1 2K , 0) (α K-1 2K , α K-1 2K ) (0, α K+1 2K )
Fig. 3. Instance for which Bi-Approx returns an (α/2, α/2)-approximate solution.

Corollary 1. There exists a deterministic (0.43928, 0.43928)-approximate algorithm for the bi-criteria weighted max-cut problem.

Proof. Replace Al in Bi-Approx by the derandomized algorithm of Goemans and Williamson [START_REF] Goemans | Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming[END_REF] which is a 0.87856-approximate algorithm and the result follows.

Interestingly, an existence theorem can be derived from the algorithm Bi-Approx.

Theorem 2. For all instances of the bi-criteria weighted max-cut problem, there always exists a feasible solution which approximates the ideal point within a ratio 1/2 on the two criteria.

Proof. Suppose that Al in Bi-Approx is an optimal (1-approximate) algorithm for the mono-criterion weighted max-cut problem and the result follows.

The question whether the above theorem can be improved arises but the following theorem brings a negative answer. Theorem 3. No (α, β)-approximation algorithm with α > 1/2 or β > 1/2 is likely to exist for the bi-criteria max-cut problem.

Proof. Consider the complete graph K 3 whose edges e, e ′ and e ′′ are such that w e = l e ′ = 0 and l e = w e ′ = w e ′′ = l e ′′ = 1. The ideal solution (I, I) has a total weight and a total length both equal to 2 while no feasible cut has a total weight and a total length simultaneously strictly superior to 1.

As usual, we consider that a randomized algorithm for a mono-criterion maximization problem is an α-expected approximate algorithm if the expected value (denoted by E[X]) of the solution returned is at least α times the value (denoted by OP T ) of an optimal solution: E[X] ≥ αOP T .

When randomization is considered, the bi-criteria weighted max-cut problem is then to find a feasible cut (A, A) such that E[W (A, A)] ≥ αOP T W and E[L(A, A)] ≥ βOP T L where 0 < α ≤ 1 and 0 < β ≤ 1.

There is no hope to get an (α, β)-expected approximate algorithm for the bi-criteria weighted max-cut problem with α = β and α > 2/3. To see it, consider the example given in Figure 4 where the ideal cut (I, I) achieves the values [START_REF] Barahona | An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design[END_REF][START_REF] Barahona | An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design[END_REF]. Four cuts (S 1 , S 1 ), (S 2 , S 2 ), (S 3 , S 3 ) and (S 4 , S 4 ) are feasible with values respectively (0, 0), (2/3, 2/3), (1/3, 1), and (1, 1/3). Let Ran Al be a randomized algorithm which outputs (S i , S i ) with a probability p i . Obviously, one has p 1 + p 2 + p 3 + p 4 = 1. The expected value of the cut (S, S) output by Ran Al is:

E[W (S, S)] = 2p 2 3 + p 3 3 + p 4 and E[L(S, S)] = 2p 2 3 + p 3 + p 4 3 .
The problem is then to find p 1 , p 2 , p 3 and p 4 such that E[W (S, S)] ≥ α, E[L(S, S)] ≥ α and α is maximized. When p 1 = p 3 = p 4 = 0 and p 2 = 1, α reaches 2/3 which is the best possible value. As a consequence, no randomized algorithm can be (α, α)-expected approximate with α > 2/3. This statement has a consequence in the approximability of the weighted bi-criteria max-cut problem. Indeed, there is no hope to design a deterministic (α, β)-approximate algorithm such that α + β > 4/3. To see it, suppose that we have such an algorithm. One can build two solutions (S 1 , S 1 ) and (S 2 , S 2 ) such that W (S 1 , S 1 ) ≥ αOP T W , L(S 1 , S 1 ) ≥ βOP T L, W (S 2 , S 2 ) ≥ βOP T W and L(S 2 , S 2 ) ≥ αOP T L. Now consider the randomized algorithm which consists in returning (S 1 , S 1 ) with a probability 1/2 and (S 2 , S 2 ) with a probability 1/2. We would get an ( α+β 2 , α+β 2 )-expected approximate solution (S, S) and α+β 2 > 2/3. The algorithm (called Ransam in [START_REF] Hromkovič | Algorithmics for Hard Problems: Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics[END_REF]) which consists in building a cut (S, S) by puting equiprobably a vertex v ∈ V to either S or S is 1/2-expected approximate for the mono-criterion weighted max-cut problem. One can remark that it achieves the same performance guarantee for a multi-criteria weighted max-cut problem. However, a better randomized algorithm can be built for the bi-criteria max-cut problem. We propose an algorithm called Ran Bi-Approx which uses a mono-criterion α-approximation algorithm (called Al in the following).

Ran Bi-Approx Input: G and Al

Step 1:

Find (S 1 , S 1 ) with Al s.t. W (S 1 , S 1 ) ≥ α OP T W Step 2: Find (S 2 , S 2 ) with Al s.t. L(S 2 , S 2 ) ≥ α OP T L Step 3: Build (S 3 , S 3 ) s.t. S 3 = (S 1 ∩ S 2 ) ∪ (S 1 ∩ S 2 ) Step 4: Let γ = (3 - √ 5)/2 Step 5: If W (S 2 , S 2 ) ≥ γW (S 1 , S 1 ) Then If L(S 1 , S 1 ) ≥ γL(S 2 , S 2 )
Then Return (S 1 , S 1 ) with a probability 0.5 and (S 2 , S 2 ) with a probability 0.5 Else Return (S 1 , S 1 ) with a probability γ and (S 2 , S 2 ) with a probability 1

-γ Else If L(S 1 , S 1 ) ≥ γL(S 2 , S 2 )
Then Return (S 1 , S 1 ) with a probability 1 -γ and (S 2 , S 2 ) with a probability γ Else Return (S 3 , S 3 ) Theorem 4. Ran Bi-Approx is a randomized ( Proof. The algorithm considers four cases. For the first case, we suppose that: W (S 2 , S 2 ) ≥ γW (S 1 , S 1 ) and L(S 1 , S 1 ) ≥ γL(S 2 , S 2 ). So, we have: W (S 2 , S 2 ) ≥ γαOP T W and L(S 1 , S 1 ) ≥ γαOP T L.

Since the solution returned in this case is (S 1 , S 1 ) with a probability 0.5 and (S 2 , S 2 ) with a probability 0.5, the expected value on each criterion of the solution returned is at least α(1+γ) 2 times the optimum. For the second case, we suppose that: W (S 2 , S 2 ) ≥ γW (S 1 , S 1 ) and L(S 1 , S 1 ) ≥ 0. So, we have W (S 2 , S 2 ) ≥ γαOP T W. Since the solution returned in this case is (S 1 , S 1 ) with a probability γ = 1-γ 2-γ and (S 2 , S 2 ) with a probability 1 -γ = 1 2-γ , the expected value on each criterion of the solution returned is at least α 2-γ times the optimum.

The third case is symmetric to the second case, the expected value on each criterion of the solution returned is at least α 2-γ times the optimum. For the fourth case, we suppose that: W (S 2 , S 2 ) < γW (S 1 , S 1 ) and L(S 1 , S 1 ) < γL(S 2 , S 2 ).

As it was done before, we consider that the set of vertices is partitioned into four subsets (see Figure 1) and the proof is done on a simple K 4 graph (see Figure 2). So, we have: (1 -γ)W (S 1 , S 1 ) < W (S 3 , S 3 ) Symmetrically, from inequality (4) we get:

w vX
(1 -γ)L(S 2 , S 2 ) < L(S 3 , S 3 )

In this case, (S 3 , S 3 ) is returned and its value on each criterion is at least (1-γ)α times the optimum. Let f (γ) = min{1 -γ, 1 2-γ , 1+γ 2 } for 0 ≤ γ ≤ 1. This function finds its maximum when γ = 3- √ 5

2 . As a consequence, the solution returned by Ran Bi-Approx has an expected value on each criterion which is at least Corollary 2. There exists a randomized (0.54297, 0.54297)-expected approximate algorithm for the bi-criteria weighted max-cut problem.

Proof. Replace Al by the algorithm of Goemans and Williamson [START_REF] Goemans | Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming[END_REF] in Ran Bi-Approx and the result follows.

Since we considered a bi-criteria max-cut problem and provided approximation algorithms, the question whether it is possible to get similar results with more than two criteria arises. Unfortunately, the example given in Figure 5 shows that it is not possible to build a deterministic algorithm which approximates the ideal point with a performance guarantee when tree criteria are considered. As a consequence, there is no hope to find an approximation algorithm with performance guarantee for the k-criteria weighted max-cut problem where k > 2. However, Ransam remains a 1/2-expected approximation algorithm for any k-criteria weighted max-cut problem. Remark that approximation results for the k-criteria weighted max-cut problem can be found if another approach is considered. Indeed, if we restrict ourselves to feasible solutions then rarely a solution will dominate all the others (i.e. will be better than the others on each criterion) but a set of solutions which dominates all the others always exists. This set of solutions is called the Pareto curve and Papadimitriou and Yannakakis [START_REF] Papadimitriou | On the approximability of trade-offs and optimal access of web sources[END_REF] proved that an approximation with performance guarantee of this curve (an ε-approximate Pareto curve) always exists.
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  e and L(S, S) = e∈(S,S) l e . Let (O, O) (resp. (P, P )) be a feasible cut which maximizes the total weight (resp. length). Let (I, I) be an ideal (not necessarily feasible) cut such that: W (I, I) = W (O, O) = OP T W and L(I, I) = L(P, P ) = OP T L.

Fig. 2 .

 2 Fig. 2. Vertices and edges of G are shrinked to get a complete graph with four nodes.

Fig. 4 .

 4 Fig. 4. The ideal cut (I, I) has a total weight and a total length both equal to 1.

  -expected approximation algorithm for the bi-criteria weighted max-cut problem if Al is an α-approximation algorithm.

Fig. 5 .

 5 Fig.5. The ideal cut (I, I) achieves the values (1, 1, 1) while any feasible cut achieves 0 on at least one coordinate. Thus, no approximation factor can be guaranteed.

  vZ ≥ w vX vZ + w vY vT w vX vT + w vY vZ ≥ (w vX vZ + w vY vT + w vX vT + w vY vZ )/2 W (S 2 , S 2 ) ≥ W (S 1 , S 1 )/2
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an α-approximate cut for W an α-approximate cut for L Fig.

1

. Vertices of G are partitioned into four subsets X, Y , Z and T . This partition depends on (S1, S1) and (S2, S2).

  L(S 3 , S 3 ) > 0.5L(S 2 , S 2 ) w vX vY + w vZ vT + (w vX vZ + w vY vT )/2 > (w vX vT + w vY vZ )/2 w vX vY + w vZ vT + w vX vZ + w vY vT > (w vX vT + w vY vZ + + w vX vZ + w vY vT )/2

	L(S 3 , S 3 ) ≥	α 2	OP T L
	From inequality (2) we get:		

vX vZ + l vY vT + (l vX vY + l vZ vT )/2 > (l vX vT + l vY vZ )/2 l vX vZ + l vY vT + l vX vY + l vZ vT > (l vX vT + l vY vZ + + l vX vY + l vZ vT )/2 (w vX vZ + w vY vT )/2 > (w vX vT + w vY vZ )/2

  vY + w vZ vT + w vX vT + w vY vZ < γ w vX vZ + w vY vT + + w vX vT + w vY vZ (3) l vX vZ + l vY vT + l vX vT + l vY vZ < γ l vX vY + l vZ vT + + l vX vT + l vY vZ .

	(4)
	From inequality (3), we get:

w vX vT + w vY vZ < γ w vX vZ + w vY vT + + w vX vT + w vY vZ (1 -γ) w vX vT + w vY vZ < γ w vX vZ + w vY vT (1 -γ) γ w vX vT + w vY vZ < w vX vZ + w vY vT (1 -γ) γ w vX vT + w vY vZ + w vX vZ + w vY vT < 1 γ w vX vZ + w vY vT (1 -γ) w vX vT + w vY vZ + w vX vZ + w vY vT < w vX vZ + w vY vT + + w vX vY + w vZ vT

A solution x dominates another solution y if x is at least as good as y for all criteria and strictly better for at least one criterion.
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